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Owing to their great importance in materials science and other fields, we investigate the solution and os-
motic properties of uncharged compact nanogel particles over a wide range of solvent quality and particle
concentration by molecular dynamics (MD) simulations. We characterize the osmotic pressure by estimat-
ing the second and third virial coefficients, and by extension, we identify the θ-point where the second
virial coefficient vanishes. Calculations of the structure factor indicate that these particles are similar to
macrogels in that the particle-like scattering profile disappears at moderate concentrations. We also find
that improving the solvent quality enhances the spatial segmental uniformity, while significant heteroge-
neous structure arises near the θ-point. Well below the θ-point where the second osmotic virial coefficient
vanishes, these heterogeneous structures become less prevalent as the particles tend to collapse. We also in-
vestigate the degree of swelling and structure of compact nanogel particles with a variable excluded volume
interaction and gel particle concentration. The osmotic modulus and the scaling exponents in good and
θ-point conditions of these gels are characteristic of interacting randomly branched polymers, i.e., “lattice
animals”.

I. INTRODUCTION

Nanogel particles are typically, but not always, hy-
drogel materials with a high capacity for swelling in wa-
ter, depending on the extent of cross-linking and poly-
mer excluded interactions within and between them.1–3

They are increasingly becoming essential building blocks
of modern (bio)-manufacturing,4–6 because they are of-
ten highly bio-compatible, due to their hydrophilic na-
ture. The high loading capacity for guest molecules
and their unique physical properties offer distinct ad-
vantages over other types of nanomaterials for biomed-
ical applications. Moreover, they are highly customiz-
able since they can be composed of a variety of nat-
urally occurring or synthetic polymers, and their size,
softness, and degradability can be fine-tuned by vary-
ing the chemical composition. For example, nanogel
particles can be designed to exhibit multi-stimuli re-
sponsiveness in targeted therapy of cancer7 or to pro-
vide targeted delivery of short interfering RNA (siR-
NAs), a gene-regulating tool to increase the efficacy of
chemotherapy drugs.8 Owing to the growing number of
applications of nanogel particles, there is a need to un-
derstand these particles better to enable optimization
of their properties for specific applications.
While nanogel particles are predominately being

used as targeted drug-delivery vehicles, nanogel parti-
cles have been also used in bacteria bio-production,9

as self-healing materials,10 in enhanced oil recovery,11
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coatings12,13 and sensors.14 Another emerging role of
nanogel particles is by embedding them within a poly-
mer network to improve performance for the desired ap-
plication. Specifically, the articular cartilage of the knee
and hip exhibits compromised load-bearing capacity
when its compressive resistance is reduced. Moreover,
articular cartilage experiences large-amplitude repeti-
tive loading during walking or jumping, so a rapid re-
covery of the bulk tissue is crucial to normal function.
Deviation from the physiological material performance
in articular cartilage is associated with degenerative
conditions such as osteoarthritis.15–18 Recently, Horkay
and Basser19 have utilized nanogel particles to develop
a synthetic composite hydrogel that mimics functional
properties of articular cartilage.19 As a prerequisite to
studying composite gels, it is prudent to develop de-
scriptions of the two primary components, the network
and the nanogel particles. In this paper, we study the
swelling and osmotic properties of compact nanogel par-
ticles in dilute and concentrated solutions in the absence
of a polymer matrix. The inclusion of the polymer ma-
trix is integral for creating the composite gel model, but
it also increases the complexity of the model. We plan
for this to be the subject of a subsequent paper. It is
then essential to understand the behavior of the nanogel
particles in the absence of a polymer matrix as the nat-
ural step toward our goal.

Our previous study of polymers having a network
topology indicated that the apparent exponents de-
scribing the mass scaling of these polymers under good
solvent conditions generally depend on the density of
branch points in the network and the fraction of bonds
cut in the network.20,21 This led us to define two distinct
general classes of networks. First, the ‘ideal’ or ‘com-
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pact nanogel particles’ have a network topology defined
by a lattice-like structure, resulting in a more symmetric
particle-like geometry. Second, the ‘open nanogel parti-
cles’ have a polymer network that is highly defective so
that the polymer network forms an anisotropic fractal-
like structure. The mass scaling of the ‘open gels’ was
found to conform rather well with randomly branched
polymers (‘lattice animals’), but the situation was found
to be more complicated for the perfect nanogel particles
whose size did not seem to conform with the expecta-
tions of randomly branched polymers.21 In particular,
the apparent mass scaling exponents describing the av-
erage size of these nanogel particles depended on the
mesh spacing in the network. The radius of gyration
mass scaling exponent when the mesh size was small was
found to be consistent with that for the swollen linear
chains composing the network in isolation (ν ≈ 0.588)
with increasing M while the apparent exponent was
found to be near (ν ≈ 1/3) with increasing branched
points in each direction. An examination of the struc-
ture factor of these closed gel nanoparticles exhibits a
mass scaling similar to self-avoiding linear polymers at
high scattering wavevector. However, a cross-over to a
wavevector scaling is consistent with a higher effective
fractal dimension at larger length scales.20,21 It is ap-
parent from these observations that the structures sim-
ulated cannot be described as being ‘fractal’ objects,
but they are rather hybrid structures having properties
in common to fractals, epitomized by linear polymer
chains, and symmetric particles having uniform density.
It is difficult from the limited size simulations to deduce
the asymptotic mass scaling in the limit of large poly-
mer mass from the study of individual network polymer
chains, but additional insights into these mass scaling
characteristics can be obtained from the study of the
swelling of these structures as solvent quality is varied
and from the concentration dependence of the osmotic
pressure under variable solvent conditions. We will show
that there are slow cross-over effects on the ν exponent,
as found even in linear polymer chains when the poly-
mers are semi-flexible, suggesting there is an appreciable
rigidification of polymer network when the mesh spacing
is small.

This paper studies the swelling and osmotic proper-
ties of compact nanogel particles in dilute and concen-
trated solutions. We have already developed methods
for generating nanogel particles, and we have studied
the structure and conformational properties in athermal
dilute solutions.20,21 We use these methods to construct
gels composed of nanogel particles and characterize their
structure, osmotic pressure, and osmotic modulus. In
addition, we estimate the virial coefficients of compact
nanogel particles and compare them with star polymer
solutions. We also investigate the influence of solvent
quality on the degree of swelling in both dilute and con-
centrated nanogel particle concentrations.

The paper is organized as follows. Section II contains
details of the simulation model and methods. The re-
sults are presented in section III, where we investigate

the influence of solvent quality in the swelling of nanogel
particles in dilute and concentrated solutions. We also
investigate the scattering profiles of these gels and the
calculate the osmotic modulus. Finally, we draw our
conclusions in Sec. IV.

II. METHODS AND MODELS

We employ a bead-spring model suspended in an im-
plicit solvent, in which we have adapted a model de-
veloped previously for studying the swelling behavior of
linear polymer chains in solution. All the nanogel parti-
cles are assigned the same mass m, size σ, and strength
of interaction ε; we set ε and σ as the units of energy
and length.

The expression describing the non-bonded interac-
tions operating between all pairs of beads contains
three terms. First we write the purely repulsive
Weeks-Chandler-Andersen (WCA) potential,22 which is
a Lennard-Jones potential cut and shifted at the posi-
tion of the minimum, rmin = 21/6σ:

VWCA(r) =

{
4ε

[(
σ
r

)12 − (
σ
r

)6]
+ ε r ≤ rmin

0 r > rmin

(1)

To represent the attractive interactions, the WCA po-
tential is shifted in the range 0 ≤ r ≤ rmin by a square-
well (SW) potential,

VSW(r) =

{
−λε 0 < r ≤ rmin

0 r > rmin
(2)

where the well-depth parameter λ allows for a tuning
of the effective monomer-monomer attractive interac-
tion strength or the “solvent quality”. We again note
that we follow previous work23 in the use of this model
coarse-grained interaction potential. To interpolate the
potential smoothly between −λε at r = rmin and 0 at a
cut-off distance rcut > rmin, we add the term

Vcos(r) =

{
1
2λε

[
cos (αr2 + β)− 1

]
rmin < r ≤ rcut

0 r > rcut
(3)

α and β satisfy the conditions αr2min + β = π and
αr2cut + β = 2π. The cosine form of the potential also
means that dVcos/dr = 0 at r = rcut. We choose
rcut = 3σ/2, for which α and β become, α = 4π

9−4 3√2

and β = 2π − 9
4α. The final non-bonded potential is

V (r) = VWCA + VSW(r) + Vcos(r), see Fig. 1. The pa-
rameter λ controls the depth of the potential well at
r = rmin, and provides a convenient measure of the
solvent quality. In a good solvent, the effective bead-
bead interactions are purely repulsive; this corresponds
to λ = 0. In a poor solvent, the bead-bead interactions
are attractive, and this behavior can be modeled with
λ = 1; the parameter λ also corresponds roughly to the
Lennard-Jones potential well, which has been used fre-
quently in the past in coarse-grained modeling of neutral
polymers both in solution and in the melt.24,25
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In simple models of uncharged polymer solutions, a
variable excluded volume interaction strength is nor-
mally described theoretically by the ratio of the strength
of the nearest-neighbor interaction (e.g., the depth of
a square potential) divided by temperature) as in the
classical Flory-Huggins theory of polymer solutions and
polymers in the melt state where the the dimension-
less energetic well-depth parameter (normally denoted
as χ) is estimated from fitting the model calculations
based on such idealized intermolecular potentials to
experiment.26 It is well-known that this approach must
often be modified by adding a constant “entropic” term
to the χ interaction parameter so that the T depen-
dence is more complicated than indicated by the original
Flory-Huggins theory neglecting monomer and solvent
structure, as well as the topology and bending rigidity
of the molecules. A general, albeit complex extension
of the Flory-Huggins model has been developed which
addresses these specific monomer effects27,28 which ex-
plains this more complex temperature phenomenology
of polymer-polymer interactions under high polymer
polymer concentrations where mean field theory reason-
ably applies. Correspondingly, we may expect some de-
viation from the simple dependence of solvent quality
on the ratio λε/T that one may infer from the Lennard-
Jones or the square-well like potential alone. We address
this complication in describing the reduced interaction
strength so that obtain a unified description of the vari-
ation of solvent quality by varying either λ or T .

The benefit of using the depth of the potential interac-
tion instead of T for the control of the solvent quality is
that a wider range of “solvent quality” can be explored
by molecular dynamics simulation. A “map” between
the λ and T can be constructed by matching an appro-
priate quantity, here we used the radius of gyration for
a nanogel particle, see inset of Fig. 1. A first order ap-
proximation results in λ = (T +0.5)−1, which evidently
athermal solvents having λ → 0 require T → ∞; an im-
proved description is found with λ = (T 1.33 + 0.54)−1.
In other words, athermal or very “good” solvents re-
quire high temperature values that are prohibited in a
molecular dynamics simulation. Moreover, high tem-
perature simulations of some complexity models, such
as polymers, have the potential of not sampling ap-
propriately the configurational space due to deviation
between the configurational temperature and thermo-
dynamic temperature.29 The segments along a chain
are connected with their neighbors via a stiff harmonic
spring, VH(r) = k(r− l0)

2, where l0 = 0.99σ is the equi-
librium length of the spring, and k = 2000 ε/σ2 is the
spring constant.

A perfect compact gel that is composed of star poly-
mers placed in a square or in a cubic lattice and with
two or more of their free ends bonded with the free
ends of the neighboring stars, the number of branched
points (or star polymers) in each direction is labeled
as Nx, Ny, and Nz, see Fig. 2.20 The repeating struc-
tural unit of the polymer network studied here is a
branched structure that is identical to a regular star
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FIG. 1. The non-bonded, bead-bead interaction potential
V (r) with λ = 1, showing the contributions from VWCA(r)+
VSW(r) (black) and Vcos(r) (red). Inset: average radius of
gyration of a nanogel particle via λ variation (black line) and
temperature T variation (symbols). Two relations between
λ and T are presented.

polymer. Other polymeric structures and/or other lat-
tices could be utilized but these are out of the scope
of the current study. A regular star polymer has a
core particle, which is connected with the free end of
f chains (or arms) composed of M segments. Thus, the
total number of interaction centers per star polymer is
Mw,star = fM + 1. The molecular mass of a nanogel
particle is Mw = (NxNyNz)Mw,star. We use the quan-
tity Nb to characterize the number of branched points
in each direction. We focus on nanogel particles having
Nb = Nx = Ny = Nz. Every star polymer unit at the
interior of the nanogel is fully bonded with its neighbors
and thus the only dangling polymer chains are located
at the exterior of the nanogel structure. Nanogel par-
ticles are randomly placed in a simulation box without
overlaps. For highly dilute conditions, we consider a
single nanogel particle in a simulation box several times
larger than the size of the nanogel particle. For con-
centrated solutions, we considered a small number of
nanogel particles ranging from one to eight. Unless
stated otherwise, we mainly focus on compact nanogel
particles having Nb = 10, f = 4, and M = 25.

The systems in dilute concentrations were equili-
brated at constant temperature kBT/ε = 1.0, main-
tained by a Nosé-Hoover thermostat. In concentrated
solutions, the systems were equilibrated at constant
temperature kBT/ε = 1.0 and constant pressure main-
tained by a Nosé-Hoover thermostat and barostat. Typ-
ical simulations equilibrate for 5000 τ and data is accu-
mulated over a 150 000 τ interval, where τ = σ(m/ε)1/2

is the MD time unit; the time step used was ∆ t / τ =
0.005.
The osmotic pressure of the system is calculated from

the virial equation Π = ρkT + W/V , where the inter-
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FIG. 2. Schematic of the molecular architecture of
the nanogel particle. Typical screenshots of a equilibrated
molecular configuration of compact nanogel particle at in-
finite dilution (the simulation box is so large that is not
visible) and fixed osmotic pressure conditions, where the
nanogel particles fill the simulation box and interacting
through periodic boundaries.

nal virial W is calculated from the sum of a pair virial
function w(rij) = rijdU(rij)/drij . Due to the presence
of non-vanishing intra-molecular contributions, a small
constant is added in Π to ensure that the correct limit
is reached at vanishing small segmental densities.

III. RESULTS AND DISCUSSION

We first discuss the two main approaches to identify-
ing the θ-point in compact nanogel particles MD simu-
lations where the second virial coefficient vanishes. The
first approach involves taking advantage of the invari-
ance of the mass scaling of the size of the polymer, and
the second approach uses the virial equation to estimate
the second virial. Once the θ-point is identified, then
we develop a universal description for the size of the
compact nanogel particles. Following this analysis, we
calculate the form factor and structure factor for these
structures and characterize the structure of these gels as
the θ-point is approached. Finally, we utilize our model
of compact nanogel particles to estimate the osmotic
modulus over a wide range of molecular characteristics
and solvent conditions.

A. Compact nanogel particles in super-dilute
concentrations

We initiate our discussion on the swelling of compact
nanogel particles in super-dilute concentrations. We de-
fine the segmental density ρ = NgelMw/V , where Ngel

is the number of nanogel particles and V is the vol-
ume of the simulation box. We note the local segmental
density inside the nanogel particle ρgel = Mw/Vnanogel,
where Vnanogel is the volume occupied by nanogel parti-
cle, does not decrease towards vanishing small values as
ρ → 0 due to the polymer crosslinking. For the purposes
of the current study, we assume that the volume of the
nanogel particle is approximately, Vnanogel ≈ 4π

3 R3
g.

At high temperatures, polymer chains in solution30–32

and, by extension, the gels,33 swell due to the dom-
inance of repulsive interactions, while at low tempera-
tures, the polymer chains collapse because the attractive
interactions dominate over the repulsive interactions re-
sulting in chain collapse conformations. At intermediate
temperatures, near the θ-temperature where attractive
interactions compensate the repulsive inter-polymer in-
teractions, the chains adopt nearly ‘ideal’ conformations
because the attractive and repulsive interaction contri-
butions cancel each other, but the scaling of the poly-
mer size under this ideal condition depends on polymer
topology, in general. Linear chain melts and concen-
trated solutions have practically ideal chain conforma-
tions between monomers because the surrounding chains
almost completely screen the interactions between the
monomers.

There are two main approaches to identifying the θ-
temperature for a polymeric system. The first one takes
advantage of the size mass invariance that polymers
exhibit at the θ-temperature, provided one knows the
Flory exponent, νθ appropriate to the kind of polymer
involved. The approach is relatively straightforward,
requiring the estimation of the size of the polymer at
different solvent quality solvents and molecular masses.
The radius of gyration Rg is typically used as a measure
of polymer size for this purpose. As the temperature of
the system is increased, the polymer (assuming that it
is neutral) will swell. This type of calculation is re-
peated for polymers of different molecular masses. The
θ-temperature can be identified by the location where
Rg/M

νθ
w remains fixed for all molecular masses. The ad-

vantage of this approach is that it is relatively straight-
forward to implement computationally. However, its
disadvantage is that it requires a priori knowledge of νθ,
which cannot be assumed to be the same as polymers
having a linear topology and this definition does not
generally coincide with the condition at which the sec-
ond virial coefficient vanishes for finite-sized polymers.
The second approach is the estimation of θ-temperature
by the calculation of the second virial, and we will dis-
cuss this approach in Subsection III C.

The scaling regions are clearly distinguishable in
Fig. 3. In the first region Rg/M

νθ
w increases as Mw in-

creases corresponding to a good solvent regime, and in
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FIG. 3. Average radius of gyration, Rg, of isolated
nanogel particles normalized by the scaled molecular mass,
M

νθ
w , where the νθ = 2/5 is the Flory exponent at the θ-

point, as a function of the reduced solvent quality parameter,
(λθ−λ)/λθ, where λθ = 0.7. The highlighted regions outline
the good solvent conditions for (λθ − λ)/λθ > 0 and poor
solvent conditions for (λθ−λ)/λθ < 0. The uncertainty esti-
mates correspond to two standard deviations. Typical equili-
brated molecular configurations of compact nanogel particle
at infinite dilution at different solvent conditions are also
presented.

the second region Rg/M
νθ
w decreases as Mw increases

corresponding to a poor solvent regime. In between
these two regimes all Rg/M

νθ
w curves for different values

of Mw cross, suggesting that Rg/M
νθ
w becomes indepen-

dent of Mw variation. This crossover point defines the
θ-point. Additionally, our high fidelity results provide
a clear identification of a single point where Rg/M

νθ
w

remains invariant of Mw corresponding to λθ ≈ 0.7,
see Fig. 3. While the same mass scaling exponents for
each solvent quality condition are found in both linear
chains and our compact nanogel particles, the location
of the θ-point is significantly different; for linear chains,
λθ,chains = 0.646. The branched nature of the polymer
network evidently also influences the θ-point.
Knowledge of the conditions at which the θ-conditions

emerge provide an important reference point to describe
the changes in the size of a polymer over the variation
of the solvent quality. There is no rigorous theory for
the swelling of these networks, but we offer a highly
simplified model. Inspired by previous modeling of the
swelling of polymer brushes and gels;34 The basic idea is
that the extent of polymer swelling ultimately saturates,
and we model the swelling by a tanh function which

FIG. 4. Average radius of gyration, Rg, of isolated compact
nanogel particles normalized by Rg at θ-point, as a func-
tion of the reduced temperature, τ = (T − Tθ)/T and chain
length, M , scaled with an exponent φ. The highlighted re-
gions outline the good solvent conditions for τ > 0 and poor
solvent conditions for τ < 0. The uncertainty estimates cor-
respond to two standard deviations. The dashed line is a fit
of Eq. 4 and the values of the parameters are presented in
Table I.

varies sigmoidally and inherently exhibits this satura-
tion tendency. Indeed, we find Rg/Rg,θ for that com-
pact nanogel particle having M and variable Nb follows
this empirical functional form rather well. In particular,
Rg/Rg,θ for compact nanogel particles can be described
by the empirical functional form,

Rg

Rg,θ
= 1 + c0 tanh

[
τMφ

c1

]
(4)

where the c0, c1, and φ are fitting parameters, and τ
is the reduced temperature τ = (T − Tθ)/T . The re-
sults of this approximation,which a direct extension of
the scaling relation for the dimensions of macroscopic
gels and grafted polymer brushes,34 are shown in Fig. 4.
We also used the following relation, [(λθ − λ) /λθ]

γ ∼
(T −Tθ)/T , where γ is a fitting parameter. This simple
approximant clearly captures the overall trend in the
nanogel particle swelling rather well. We note that for
the good and the poor solvent regimes, a different set of
values for these parameters were found, and their val-
ues are presented in Table I. This simple approximation
cannot apply to the case of highly variable M since the
different mass scaling between the θ-solvent, and good
solvent limits will make the gap between the theta and
good solvent limits progressively larger with increasing
M . This same situation arises in linear polymer chains,
but where the good solvent and θ-solvent scaling ex-
ponents are different from branched polymers. Future
work will describe the size of compact20 and open21

nanogel particles that are more suitable when consider-
ing an extensive range of polymer molecular mass. We
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next briefly show that a simple extension of the renor-
malization (RG) group theory to describe the swelling
of our nanogel particles appears to be promising for de-
scribing this type of crossover above the θ-point.
In Fig. 5, we show a comparison to the first order

renormalization group expression for R2
g/R

2
g,θ,

35,36

R2
g/R

2
g,θ = (1+z/u∗)(2ν−2νθ)/φ [1 + b(z/u∗)/(1 + z/u∗)]

(5)
for linear polymers with the swollen and θ-point expo-
nents fixed by values appropriate for the present poly-
mers, i.e., ν = 1/2 and νθ ≈ 2/5 in a good solvent and
θ-conditions. The ‘crossover exponent’ φ for the binary
excluded volume interaction equals, φ = 2−d νθ, where
d is the spatial dimension, and the observed value of φ is
close to the predicted value φ = 0.8 obtained by taking
νθ = 2/5. In the fit in Fig. 5 to Eqn. 5, the general-
ized dimensionless excluded volume parameter parame-
ter is taken to scale as z = τMφ and and b is a fitting
parameter with values equal to b = 4.16 for ν = 1/2
and b = 2.66 for ν = 0.588, respectively. As discussed
by Douglas,37 there are two extensions of Wiener path
model to describe polymer networks where the one di-
mensional time coordinate of the Wiener path describ-
ing linear polymers is replaced by a ‘multi-dimensional
time’ variable that describes the topological structure of
the polymer network. One of these models, the Wiener
sheet model, leads to the same critical properties as
randomly branched polymers, e.g., a critical dimension
of 8 for binary excluded volume interactions and 6 for
ternary interactions, ν = 1/4 in the absence of excluded
volume interactions, etc., while the other network model
has an ‘infinite critical dimension‘ since the average ra-
dius of the polymer network only increases logarithmi-
cally with the polymer mass in the absence of excluded
volume interactions, a well known property of the James
and Guth model of polymer networks.38,39 We expect
that the development of a perturbative treatment of ex-
cluded volume interaction in ‘Wiener sheet’ polymers,
and a subsequent renormalization of the perturbation
theory series expansion in z should lead to an expression
of the form Eq. 5, but this type of expansion has not yet
been attempted. However, there have been perturba-
tive treatments of binary excluded volume interactions
and a corresponding RG analysis of randomly branched
polymers; see discussion in Supplementary Information.
There has been some disagreement about which

model is most appropriate in describing random net-
works which arise in a wide range of physical problems.

TABLE I. Parameters and their values for universal descrip-
tion of the radius of gyration of compact nanogel particles,
see Eq. 4.

Parameter τ > 0 τ < 0
c0 0.89 0.24
c1 5.31 2.64
φ 0.8 0.8
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FIG. 5. Average square radius of gyration, R2
g, of isolated

compact nanogel particles normalized by R2
g at θ-point, as

a function of the reduced temperature, τ = (T − Tθ)/T and
chain length, M , scaled with an exponent φ. The dashed line
is a fit of Eq. 5 with ν = 1/2 (black line) and ν = 0.588 (red
line). The uncertainty estimates correspond to two standard
deviations.

We note that Parisi40 and Cates41 have made argu-
ments favoring the properties of the first type of network
model. Numerical simulations of random surfaces hav-
ing a free boundary in three dimensions42,43 appear to
closely accord with ν in three dimensions being exactly
1/2 under self-avoiding conditions, as suggested for our
network polymer simulations.

The crossover function for the swelling of the nanogel
particles in Eq. 5 provides a reasonable reduction of a
swelling data and interpolates between the mass scal-
ing before for the nanogel particles in the good solvent
limit where Rg scales as Rg ∼ M1/2 and the observa-
tions of the present paper for nanogel particles at their
θ-point where Rg,θ scales as, Rg,θ ∼ M0.4. We should
note that in a previous paper we initially estimated the
exponent ν for the closed gel polymers to have a value
consistent with linear polymer chains in a good solvent
(ν = 0.588), but we now appreciate the uncertainties in
this type of exponent estimation for the inherently lim-
ited size of the polymeric structures that we can simu-
late. Accordingly, we can obtain some insight into this
apparent exponent by considering the crossover expres-
sion Eq. 5 with ν assumed to equal our former estimate,
i.e., ν = 0.588. We see in Fig. 5 that this exponent
also describes our swelling data for smaller values of z,
but the cross-over curve is better described by ν = 1/2
for large z. Minimally, this underscores the uncertainty
in the estimation of ν and to the need for further in-
vestigation of this quantity for much larger networks.
Similar trends were observed in the formation of clus-
ters of branched polymers.44 Below we approach this
problem from another direction through the scaling of
the osmotic pressure with polymer concentration where
we find compelling evidence for ν = 1/2 in a good sol-
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vent from the scaling of the osmotic pressure of solu-
tions of these polymers in the semi-dilute concentration
regime. At any rate, the extension of the linear chain
RG crossover description of chain swelling to network
polymers seems promising, and we plan to develop this
type of crossover description further in the future.
Continuum perturbative models of polymers with ex-

cluded volume interactions should only apply for rela-
tively high mass polymers where chain semi-flexibility
and other effects related to the detailed functional form
of the pair interaction does not influence the asymp-
totic scaling.45–47 Even random flight polymer chains
do not closely resemble Gaussian chains because of short
range correlations and chain semi-flexibility makes the
approach to this asymptotic scaling slower. The limita-
tions of the two parameter model of polymer excluded
volume observed for linear polymers should apply also
to randomly branched polymers; see discussion in Sup-
plementary Information.

B. Size of nanogel particles in concentrated solutions

Now that we understand the swelling behavior of com-
pact nanogel particles under infinite dilution conditions,
we focus on concentrated solutions where the nanogel
particles fill the interstitial space resembling a mesh of
polymer chains. Similar to linear polymer solutions, we
can define three characteristic concentration regimes:
(i) the dilute solution, in which the individual polymers
do not overlap, (ii) the semi-dilute solution where poly-
mers are strongly overlapping but the volume fraction
of polymers are still small, and iii) the concentrated so-
lutions. The crossover between dilute and semi-dilute
regimes is typically defined by the overlap concentra-
tion defined as ρ/ρ∗ = 1, where ρ∗ = 4π

3 R3
g,ρ=0.

The nanogel particles exhibit two distinct behaviors.
In dilute solutions ρ/ρ∗ < 0.2, we find Rg/Rg,ρ=0 ≈ 1
meaning that in these dilute concentrations the size
of the nanogel is not concentration dependent. Above
the threshold ρ/ρ∗ ≈ 0.2, we find a sharp crossover to

a power-law Rg/Rg,ρ=0 ∼ (ρ/ρ∗)
−µ

, where µ ≈ 1/3,
see Fig. 6. This scaling exponent provides information
on how the nanogel particle’s size changes once each
particle starts to interact with each neighbors in solu-
tion. An effect that has been observed in polymer solu-
tions, the corresponding exponent is µ ≈ 0.12 for linear
chain,48 µ ≈ 0.29 for ring polymers,48 and µ ≈ 0.22
for single-chain nanoparticles solutions.49 The starting
point in understanding this effect is based on the ob-
servation that the conformational properties of linear
polymer chains in a melt are essentially the same as
those for ‘unperturbed’ chains without excluded vol-
ume interactions, consistent with arguments given by
Flory.50 Freed and Edwards51 theoretically explained
this behavior from the screening of excluded volume in-
teractions with increasing polymer concentration and it
has been confirmed by Small Angle Neutron Scattering
(SANS) with labeled linear chains.52 For nanogel par-
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FIG. 6. Average radius of gyration normalized by its value
of infinite dilution, Rg/Rg,ρ=0 as a function of the reduced
segmental density, ρ/ρ∗, where ρ∗ = 4π

3
R3

g,ρ=0.

ticles, at concentrations where we observe this emer-

gence of Rg/Rg,ρ=0 ∼ (ρ/ρ∗)
−1/3

scaling, the inter-
stitial space is filled by the nanogel particles. This
is consistent with recent modeling of dense microgels
suspensions.53 Thus any volume changes (δV ) are cor-
related by changes in the size of the nanogel particle,
suggesting δV ∼ ρ−1 ∼ R3

g. This behavior is observed
for all the solvent quality range as seen Fig. 6. The ex-
ponent in nanogel particles is much larger than in the
case of linear chains but closer to ring polymers.

C. Osmotic pressure and second virial coefficients of
compact nanogel particles

The osmotic pressure Π can be estimated from the
virial coefficients in the virial equation, a formulation
developed by McMillan and Mayer.54,55 For a monodis-
perse polymer solution, the compressibility factor Z can
be expanded in powers of ρ,

Z =
MwΠ

kBTρ
= 1 +

∑
n=1

Bn+1ρ
n, (6)

where ρ is the polymer number density,Mw is the molec-
ular mass of the polymer, Π is the osmotic pressure,
and the coefficients Bn are the virial coefficients. The
osmotic pressure is one of the most easily accessible
quantities in polymer physics, and knowledge of Bn pro-
vides the estimation of Π in the dilute regime in which
ρR3

g ≪ 1. The Bn coefficients also contain interparticle
information on the nature of the interaction between
the particles in the solution, which are temperature-
dependent. In particular, B2 provides information of
the pair-wise interactions, B3 the 2- and non-additive
3-body interactions. The second virial captures the de-
viation from the ideal behavior (MwΠρ = 1) and it is re-
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lated to the effective interaction u(r) between two poly-
mers,

B2 = −2π

∫
f(r)r2dr, (7)

where f(r) is the Mayer function defined as f(r) =
exp (−u(r)/kT )−1.55 Higher-order terms if known pro-
vide a wider range in which Eq. 6 is accurate. For poly-
mer solutions and gels, the nature of the virial coeffi-
cients deviates from the McMillan and Mayer frame-
work, and their meaning remains an active topic of
research.56,57 Specifically, the determination of the val-
ues of the second and third virial coefficients (or even
higher-order terms) requires to be determined solely on
the interaction among two and three (or more for high
order terms) solvated particles, respectively.58 From an
experimental perspective, this is challenging. However,
in practice, knowledge of the second and third virial co-
efficients provides a reliable prediction for the osmotic
pressure in the dilute regime where the expression is ac-
curate up to B2ρ ≈ 1, even for relatively small values of
the degree of polymerization. The value of coefficients
Bn depends on the polymer solution and temperature.
Even in the context of the soft sphere model, where the
polymer is viewed in an average sense as a soft inter-
penetratable Gaussian ‘blob’ representing a segmental
density cloud,59–61 the nature of the virial coefficients is
not clear.
To estimate the virial coefficients, we consider the

virial expansion for ρ as power series in terms of a re-
duced concentration that is defined in terms of the sec-
ond virial coefficient.56,62,63 In particular, we have,

MwΠ

kBTρ
= 1 + ρ̂+ γρ̂2 + ... (8)

where γ ≈ 0.25 is the dimensionless virial ratio,62 ρ̂ =
ρMwB2. Concentrated polymer solutions and gels ex-
hibit similar osmotic pressure behavior at the high con-
centrations where packing interactions of the polymers
becomes predominant and we correspondingly hypothe-
size that this universality also applies in the semi-dilute
regime between the dilute and concentrated regimes. In
particular, we hypothesize that Eq. 8 applies as an ap-
proximation to both polymer solutions of different ar-
chitectures and polymer gels.
The θ-temperature or solvent is defined when the tem-

perature and/or solvent results in B2 = 0,64,65 requiring
the evaluation of the integral in Eq. 7 at ρ → 0. This cal-
culation can be done analytically for simple models like
hard spheres and square well potential, but it becomes
challenging, requiring extensive computation/sampling
resources, with increasing the complexity of the molec-
ular architecture. There are a few studies of the esti-
mation of the second virial of different polymers having
molecular topology near the θ-point than in the good
solvent conditions, such as stars47,66,67 and rings68,69

that offer some insight into this problem. We calcu-
late the pair-correlation of the center-of-mass of star
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FIG. 7. Pair correlation function, g(r), for center of mass
star polymer (f = 4 arms and M = 25 arm length) solution
at a segmental density ρσ3 ≈ 0.016. Inset: second virial of
star polymer solutions as a function of λ; results at different
polymer concentrations are also presented. The dashed line
is an extrapolation to identify the θ-point at B2 = 0.

polymers in dilute solutions, see Fig. 7, and by uti-
lizing g(r) = e−u(r)/kT , we obtain the concentration-
dependent second virial by Eq. 7. We note that by
doing this calculation in a polymer solution, we effec-
tively mimic the experimental difficulties in estimat-
ing B2 solely based on the interaction of two parti-
cles/polymers. We minimize this problem by repeating
the process by reducing the polymer concentration and
identifying the second virial by extrapolating to ρ → 0,
see inset of Fig. 7. As we decrease the solvent quality
(increasing λ), the adjustment needed by extrapolating
to ρ → 0 becomes smaller. Moreover, the dependence
of B2 in our star solution model as a function of λ sug-
gest that λθ,star ≈ 0.7. This value corresponds to a
lower θ-temperature than linear chains, consistent with
experimental observations of the star and ring68,70 poly-
mers. Now that we have determined the values of B2

at different quality solvents, we use them to compact
nanogel particles composed of star polymers.

The osmotic pressure of compact nanogel particles is
presented in Fig. 8. We find that the osmotic pressure
of both systems (gels and star polymer solutions) in the
high-density regime are in agreement even though we
used the same value for B2 in both cases. This agree-
ment confirms our initial hypothesis that these two sys-
tems exhibit approximately the same osmotic behavior
at high densities. The deviation is expected at lower
densities because the nanogel particles cease to behave
as a unified macrogel structure or a star polymer solu-
tion. Another consequence of our assumption is that
λθ,gel = λθ,star ≈ 0.7, which is in agreement with our
estimation of the θ-point by the Rg mass scaling as we
discussed above. In the case of star polymer solutions,
Tθ in gels is also expected to be lower than in linear
chains.
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vent quality parameter, λ. The cases of hard spheres based
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branched structures56 are also presented.

D. Structure factor

To probe the structure of nanogel particles, we focus
on calculating the spatial correlations between the poly-
mer segments. The structure factor, S(q), is a suitable
property for this purpose and describes the mean corre-
lations in the positions of a collection of point particles
distributed in space.73 S(q) is defined55 as:

S(q) =
1

Ns

〈
Ns∑
j=1

Ns∑
k=1

exp [−iq · (rj − rk)]

〉
, (9)

where i =
√
−1, q = |q| is the wave number, rj is the

position of particle j, ⟨⟩ denote the time average, and
Ns is the total number of polymer segments defined as
Ns = NxNyNz(fM + 1).
The scattering profiles generated by our model can be

described by the following functional form,

S(q) = Aq−µ +
S0

1 + (ξq)2
. (10)

The heterogeneous structure formation resulting in a
steep upturn in S(q) is captured in the first term. Both
parameters are A and µ are fitting parameters, where
µ describes the fractal nature of the clusters formed at
length scales larger than the size of the polymer chains
and typically, in experiments, the scaling exponent µ
is found to be in the range 2 to 5.74 In polymer sys-
tems, clustering often plays an important role, how-
ever, large clusters do not contribute significantly to
the thermodynamics of the solution but strongly mod-
ify the scattering spectrum in the low-q range.74 The
second term, given by Ornstein-Zernike expression75

(Lorentzian function), captures the local structure and

interactions between the polymer chains composing the
nanogel structure. The parameter ξ is a ‘correlation
length’ that describes that local packing of the chain
segments and S0 is the estimated height of the plateau
in the absence of heterogeneous structure formation. We
emphasize that Eq. 10 is phenomenological and we are
following common experimental practice in defining the
correlation length as prescribed by Eq. 10.

At highly dilute concentrations of compact nanogel
particles, the form factor P (q) is typically described by
the “fuzzy sphere” model,76 in which the particles are
described by a dense homogeneous core and an outer
loose corona.77–79 At length scales larger than the size
of the nanogel particle, there is a sharp increase in P (q)
that results in P (q → 0) → Mw. At length scales near
Rg, and sufficiently high values of Nb > 5, there is a
primary scattering peak characteristic of particle-like
scattering. A power-law behavior is observed at high
q-values corresponding to the fractal nature of the poly-
mer chains. We proposed an extension to the fuzzy
sphere model to improve the description of the scat-
tering profile at higher q-values, for more details see
Ref. 20. A typical example of S(q) data for a nanogel
particle and a fit to the “extended fuzzy sphere model”
is presented in Fig. 9a.

The scattering features of an isolated nanogel particle
disappear in concentrated solutions of nanogel particles
because the interface surrounding the nanogel particles
vanishes once the nanogel particles start to interpene-
trate. In other words, the scattering features of nanogel
particles become indistinguishable at moderate and high
concentrations of these particles. In the athermal sol-
vents, the polymer segments are relatively uniformly
spatially distributed and fill the space resulting in a
plateau at lower q-values in S(q), see Fig. 9a. The height
of this plateau is often in experiments extrapolated to
q = 0 to determine the S(q = 0) value, which pro-
vides information about the long-range density fluctua-
tions. In equilibrium, S(0) = kTρκT , where κT is the
isothermal compressibility (we will discuss more about
κT below). The height of this plateau decreases with
an increase in Π. At Π ≈ 0.1, the structure factor be-
comes equal to unity over a wide range of length scales
(qσ < 1), and this is analogous to an ideal gas that
exhibits S(q) = 1 for all q. In other words, there is
a pressure threshold where the gel effectively loses its
structural features.

Near the θ-point, the chains in the nanogel struc-
ture begin to shrink and partially collapse. This ef-
fect creates denser regions in the gel structure than an
assumed homogeneous spatial segmental distribution.
The contrast between these denser regions, which oc-
cur randomly within the gel structure, and the voids
(regions in which there are no gel segments) results in
the formation of heterogeneous structures. This is ev-
ident in the structure factor profiles at low-q regime,
where a clustering term Sc(q) = Aq−µ is needed to de-
scribe the emergence of this behavior. The emergence of
clusters/heterogeneous structure formation has been ob-
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served experimentally.80 The heterogeneous structures
become more dominant because the collapsed structures
increase in size as the solvent quality worsens (increasing
λ) below but near the θ-point, λθ < λ ≈ 0.7. Eventu-
ally, these collapsed structures increase in size and start
to merge as the solvent quality worsens, λ > 0.7. More-
over, any voids in the gel structure shrink, resulting in
a more homogeneous and dense structure. An increase
in the osmotic pressure reduces the impact of hetero-
geneous structure formation in S(q). We note that the
influence of the solvent quality is also expected to influ-
ence the scaling exponent in the high q-regime in S(q)
scattering profiles.81 For linear chains and other regular
polymers, it is expected to scale as S(q) ∼ q1/ν . For the
chains in the nanogel particles, we find that S(q) ∼ q−1.3

for λ < 0.7, suggesting that the chains are significantly
stretched.

E. Osmotic modulus

The osmotic modulus, K, is defined as the inverse of
isothermal compressibility, κT ,

K ≡ κ−1
T = ρ

∂Π

∂ρ
=

(
− 1

V

∂V

∂Π

)−1

T

=

(
⟨V 2⟩ − ⟨V ⟩2

kT ⟨V ⟩

)−1

NPT

.

(11)
We find that at concentrated solutions, the osmotic
modulus of the nanogel particles scales with ρ for the
whole range of osmotic pressures. As the osmotic pres-
sure increases, the material’s resistance to volumetric
changes increases with ρ raised to a scaling exponent
that describes the fractal distribution of polymer seg-
ments in the gel structure. It is established in experi-
ments and in theory that K ∼ ρδ, where δ = 3ν/(3ν−1)
corresponding to δ = 9/4 for ν = 0.588 and δ = 3 for
ν = 1/2.75,82,83 Alternative functional forms for osmotic

modulus based on empirical observations have been
developed.56,84,85 Linear chain solutions under good sol-
vent conditions exhibit K ∼ ρ9/4 as expected. However,
in our nanogel particle solutions, the scaling exponent
was found to be K ∼ ρ3 in good solvent, see Fig. 10.
This highlights the difference in the fractal nature of
the gel from that of linear chain solution. We also note
that the experimental procedure of gelation through the
cross-linking of long linear chains may lead to the for-
mation of gel structures in which the chains are trapped
in a non-equilibrium state where the linear chain scaling
of the osmotic modulus is apparently preserved. Recent
measurements of polymers cross-linked to form a so-
lution network have shown a tendency to exhibit the
osmotic scaling exponents of the parent linear poly-
mer chains. It has been observed that diffusion of ran-
domly branched polymers and the viscosity of branched
polymer solutions in which the branched polymers are
formed from polymerizing oligomers in solution can be
quite different from solutions in which the branched
polymers are formed by cross-linking high molecular
mass polymers.86,87 There is evidently a ‘memory ef-
fect’ of the conditions of cross-linking that requires fur-
ther investigation. The fractal nature of our gel model
is also apparent in our solutions of network polymers.
In particular, we find a scaling exponent of K ∼ ρ6 near
the θ-point, suggesting νθ ≈ 2/5, which is in agreement
with our previous calculations on Rg mass scaling. This
scaling exponent is expected to increase further in the
poorer solvent conditions but is not expected to change
with the variation of the chain length, see Fig. 10. How-
ever, the range of K for the same range of Π was signif-
icantly different. Longer chains provide the gel with a
wider range of K behavior. The gel can initiate its re-
sistance to volumetric changes at lower segmental den-
sities and reach higher values of K at higher segmental
densities.
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To evaluate these predictions, we examine the elas-
tic modulus G of poly(vinyl acetate)/isopropyl alcohol
gels as a function of the polymer volume fraction. The
elastic modulus defines the elastic pressure that con-
tracts the gel while the osmotic pressure expands it.
The shear moduli of osmotically deswollen gel samples
at constant temperature exhibited a scaling exponent of
1/3 with the polymer concentration in both good and
θ-solvents, see Fig. 11.88 At equilibrium and an excess
amount of solvent, the elastic pressure balances the os-
motic pressure, suggesting that the scaling trends found
in osmotic modulus will be expected in elastic modulus.
The elastic modulus of poly(vinyl acetate)/isopropyl al-
cohol gels presented in Fig. 11 confirms the predictions
for the scaling exponents of our model.

IV. CONCLUSIONS

We investigated the structure and osmotic properties
of polymer gels composed of compact nanogel particles
over a wide range of solvent qualities by molecular dy-
namics simulations with a bead-spring model. We char-
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FIG. 11. Elastic modulus of poly(vinyl acetate)/isopropyl
alcohol gels as a function of the polymer volume fraction,
ϕ. The dotted lines approximately correspond to isotherms
with a temperature range is (from left to right) 70◦C, 60,
55◦C, 52◦C (identified as the θ-temperature), 50◦C, 45◦C,
37◦C, 30◦C, and 25◦C. Samples are identified by their poly-
mer concentration at the time of introduction of crosslinks
and with their degree of crosslinking; for example, 12/50
means that the concentration of PVA solution at which the
crosslinks were introduced was 12 mass % and the degree of
crosslinking was 50. For more details see Ref. 88.

acterized the osmotic pressure changes in the gel by es-
timating the second virial coefficients. Moreover, we
identified the conditions at which the θ-point emerges.
We found that the location of θ-point is the same in
both dilute and concentrated conditions, however, the
θ-point occurred at a lower temperature than linear
chains. Based on the location of the θ-point, we devel-
oped an empirical master curve to describe the swelling
of the nanogel particles in dilute concentrations. Even
at small values of osmotic pressures, the nanogel par-
ticles fill the interstitial space so that the particle-like
scattering is no longer apparent at moderate concentra-
tions. We also find that improving the solvent qual-
ity enhances spatial segmental uniformity in an average
sense, while significant heterogeneous structure forma-
tion occurs near the θ-point. Well below the θ-point,
these heterogeneous structures start to diminish as the
gels have nearly collapsed at high osmotic pressures. We
also investigate the degree of swelling and structure of
compact nanogel particles with the variation of solvent
quality at both infinite dilution and concentrated condi-
tions. Finally, we calculated the osmotic modulus and
the scaling exponents in good and θ-point conditions
found are characteristic of lattice animals.37 These find-
ings provide useful guidelines for the design of gels and
a better understanding of the role of gels in biological
function.
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