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ADDITIVE MANUFACTURING (AM)
creates parts layer by layer directly from
three-dimensional computer-aided design data.
Building in layers allows the fabrication of
complex geometric shapes as well as function-
ally graded materials (Ref 1). Despite the part-
quality and process-control challenges (Ref 2),
the AM process has proven capable of produc-
ing production-quality parts, and its applica-
tions have evolved from rapid prototyping to
industrial commercialization (Ref 3). Accord-
ing to Wohlers Report 2021 (Ref 4), AM has
already been commercialized as a routine pro-
duction technology in aerospace, automotive,
medical, and consumer products sectors.

While continuous improvements in AM are
being made, the push toward successful indus-
trialization depends on the ability to solve
many remaining issues that include limited
material choices quality consistency, and scal-
ability (Ref 2). Collectively, recent advances
in materials science, process monitoring and
control, and nondestructive evaluation techni-
ques are offering a means to address those
issues (Ref 5-7). Large amounts of different
data types are generated from the emerging
AM technologies, and AM materials-develop-
ment processes are being used as inputs to
data-driven analytics that can sustain these
advances. In addition, connecting AM machines
and activities with existing manufacturing sys-
tems, including both machines and management
applications, is likely to increase production
throughput and address known scalability issues
(Ref 8, 9).

As of this writing (2022), the industrializa-
tion of AM has not reached its scale. One of
the more pressing problems is the lack of sys-
tem and data integration. The AM systems are
commonly siloed, and manufacturing execu-
tive systems are seldom set up for AM-based
production. The big data generated from AM
in-process monitoring and nondestructive eval-
uation are commonly acquired manually and
scattered around the shop floor. The AM engi-
neering data are still seldom reused across
departments. Even though both AM machine

builders and industrial automation software
providers are creating partnerships to push
the development of AM integration and data-
management solutions (Ref 8—11), the applica-
tions are not reported, and standard practices
have not been established and shared. Chal-
lenges in AM data integration stem from the
complexity of the tasks, including:

® The wide scope of integration across prod-
uct, machine, and material domains

® The variety of data types

® The unstructured high volume and high
velocity of the data

This article discusses systematic ways to
address the aforementioned challenges by
exploring various AM-specific data-integration
scenarios that can improve the current AM
ecosystem. A reference framework that cap-
tures the heterogenous AM data sources and
existing data-integration mechanisms are used
(Ref 12). General data-integration practices—
based on existing manufacturing data and lab
information system integration experiences—
are recommended to automate AM data flow,
operations, and development.

Projecting forward, AM data standards will
play a key role in AM data integration. ASTM
International Committee F42.08 focuses on AM
data interoperability standards. New AM stan-
dards are arriving in the areas of data registration,
data fusion, and data security. With the advance-
ments of AM data standards and by leveraging
existing, more general data standards and other
manufacturing-domain information standards,
the commercialization of the AM industrializa-
tion process is expected to accelerate.

The Additive Manufacturing
Ecosystem

The AM processes create part geometries
and material properties simultaneously. Conse-
quently, the quality of AM parts depends on a
multitude of factors related to feedstock
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material properties, machine performance,
and build process parameters. Like traditional
manufacturing, AM development includes
product development, machine life-cycle man-
agement, and production control and opera-
tion. Unlike traditional manufacturing, AM
depends more on material development and
uses advanced data analytics and artificial
intelligence technologies extensively.

Figure 1 shows a totally integrated AM eco-
system, which captures all AM activities along
the part, material, and machine axes that inter-
sect at the production center. Implementing the
broad scope and multidisciplinary nature of the
AM ecosystem requires solutions to expanded
data-integration problems. In Fig. 1, the part axis
comprises life-cycle activities that constitute a
rapid transformation process from part design
to qualified part. Each of these activities pro-
duces and uses data that ultimately affect the
final part’s performance. Similarly, the activities
in the material axis determine the AM raw qual-
ity of the material and the machine axis defines
the AM machine performance, both of which
can introduce problems, directly leading to build
failures. The three life-cycle axes come into play
during the production phase.

Along each life cycle in the AM ecosystem,
the digital data from upstream activities must
be integrated naturally into the downstream
activities to form a digital thread. In the pro-
duction phase where the three life cycles meet,
data from all three digital threads must be
integrated and used as inputs to the production
activities, such as process control and produc-
tion management.

In addition, data also flow across each life
cycle (shown in red in Fig. 1) to support AM part
qualification and engineering/control decisions.
These flows result in the need to fuse and inte-
grate data residing in different sources and to
provide users with a unified view of the com-
bined data. Therefore, easy access to all the data
from the three threads is key to enabling AM
production control and understanding product
quality. The following sections present AM
data-integration scenarios based on the life



cycles to support the part, material, and machine
development and the production functions.

Additive Manufacturing Part Life Cycle

Additive manufacturing part development
includes seven major activities. The initial
specific activity results in customer specifica-
tions, which are used as inputs to the part-
design and the process-selection activities.
The second activity creates an AM-process-
specific design, which can include build ori-
entation, lattice selection, and support structures.
During process planning, parameters such as
build layout, layer thickness, scan path, and
so on are decided. The output of this activity
is a machine-specific job file that includes
the selected process parameters. The produc-
tion activity covers the AM build process,
which is followed by the postprocess activity.
The last activity is AM inspection and certifi-
cation, which ensures that an AM component
meets specifications.

Material Life Cycle

In the material life cycle, specifications for
a new material are first generated based on
the customer’s requirements for the AM part.
The AM material life cycle continues with the
development phase. Here, feedstock materials
are developed to meet the requirements of the
AM system, and AM material is developed by
combining feedstock material with process
parameters and postprocessing treatments to
meet the requirements of the final part. Feed-
stock material development must also include
scaleup to meet the needs for large-scale pro-
duction. Both feedstock materials and final
AM part materials must go through strict
qualification or certification processes. For
example, for metal powders, the certification
process includes chemical tests for material
grade conformance, particle size distribution,
and microstructure characterization, among
others. Also, as-built material tests are often
required, using one or multiple AM systems and
predefined process settings. The AM feedstock
is often reused to increase feedstock efficiency
by reducing waste. However, before reuse, the
feedstock material must be recertified (Ref 13).

Machine Life Cycle

As previously mentioned, an AM machine
can fabricate free-form parts with complex
geometries and structures. The commissioning
activity involves installing and testing the AM
machine. If successful, the operating and main-
tenance activities, typically the longest activ-
ities in this life cycle, will repeat until the
AM machine is retired. (Information about
the design and setup can be used to refurbish
aretired AM machine.) When a machine reaches
end of life, decommissioning activities, which
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Fig. 1 Part, material, and machine life cycles in the additive manufacturing (AM) ecosystem. O&M, operation and

management. Adapted from Ref 7

involve disconnecting, disassembling, and dis-
posing of an AM system, are required. When
possible, the recycled functional components
can be reused.

Additive Manufacturing Production
Hierarchy

The AM production phase shown in Fig. 1
can be described as a hierarchical system
(Ref 13). Additive manufacturing production
involves a vertical function integration of pro-
cess monitoring and control, job dispatch and
machine monitoring, operation management,
and production planning (Fig. 2). In a smart
operation, autonomous and intelligent machine
behaviors—including self-awareness, reasoning
and planning, and self-correction—are key, but
information resulting from these behaviors must
flow up and down the hierarchy. The data integra-
tion across the manufacturing production hierar-
chy is vital and critical for AM industrialization.
Data integration during production allows access
to field and plant data for making quick decisions
and optimizing production throughput and qual-
ity, for accurate measures of energy and material
use, and for improved shop floor safety and
enhanced manufacturing sustainability.
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Cross-Life-Cycle Additive
Manufacturing Data Integration

Design for Additive Manufacturing

Design for AM is a process to design for man-
ufacturability using AM machines (Ref 14). Dif-
ferent from traditional manufacturing, this
additive design process empowers engineers to
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create more complex parts by taking advantage
of the free-form printing process while consider-
ing the specific capability limitations of AM
machines, for example, minimum thin-wall
width. This design process takes information
not only from product requirements but also
from AM processes and AM machines.

Additive Manufacturing Part Qualification

Part qualification represents the broadest data-
integration scenario in AM. It facilitates valida-
tion that an AM-built component is meeting
design intent. The qualification process has four
aspects: supplier qualification, machine/process
qualification, part qualification, and lot accep-
tance (Ref 15). This indicates that to qualify an
AM part, information from all the digital threads
in the AM ecosystem are needed; consequently,
totally integrated AM data are demanded.

Additive Manufacturing Data Are
Big Data

The AM ecosystem consists of a wide range
of data sources, including both managed sys-
tems and unmanaged, distributed raw sources.
As of this writing (2022), the different types
of unstructured AM data—generated from
and used in AM ecosystem activities—are
often termed “big data,” which can vary from
one-dimensional time-series data to two-
dimensional images to three-dimensional (3D)
models to unstructured texts and to inspection
results. Consequently, across the entire life
cycles shown in Fig. 1, volumes of data are
produced. For example, during the fabrication
and inspection of a single AM part, several
terabytes of data can be collected.

Aside from the volume, AM data sets are also
characterized by high velocity but low veracity.
For example, high-speed, melt-pool-monitoring
cameras alone can capture 20,000 frames per
second, with a typical image size of approxi-
mately 20 kB. With multiple, in situ monitoring
sensors deployed, gigabytes of AM process and
part data can be generated every second. Quanti-
tative errors and missing samples can lead to
either data-accuracy problems and/or data-com-
pleteness problems. Representative AM data
sources are described in the following sections.

Material Databases

Material databases store material data
according to type, physical characteristics,
mechanical properties, and standard classifica-
tions. They can be stand-alone commercial
products or individual modular software com-
ponents. Some users build their own proprie-
tary and customized database systems; others
use open-source, material-database, software
systems. Both software systems provide the
functions for database access and integration.
The content of the material database systems
can be based on various databanks, for example,

MIL-HDBK-17F produced by the Air Force
Materials Laboratory and maintained by the
Composite Materials Handbook-17 organization
(Ref 16). There are multiple online material
databases that are accessible by everyone from
everywhere:

® ASM International: https://www.asminter-
national.org/materials-resources/online-data
bases

MatWeb: https://www.matweb.com

® Matmatch: https://matmatch.com

® MATDAT: https://www.matdat.com

Note that these databases typically have lim-
ited software-integration interfaces.

Lab Information-Management Systems

Lab information-management systems (LIMS)
are designed for managing workflow and data
created in research and development labs,
especially across the material-development
process and life cycle. The data include those
related to lab instruments, samples, experiment
pedigree, analytics tools, and reports. The LIMS
play a critical role in AM material and process
development by collecting, sharing, analyzing,
and archiving scientific data.

Asset-Management Systems

In addition to AM machines, additive man-
ufacturers often have several different types
of assets to monitor and maintain them.
Asset-management systems act as a data
hub for storing any information related to
those manufacturing assets, including AM
machines, sensors, postprocessing equipment,
and Internet of Things (IoT) devices. This
information can include the age of the asset,
acquisition date, location, functionality, and
operational life cycle. Information is usually
available to track the asset’s health condition,
calibration results, and maintenance data.
These asset data are extremely useful for AM
process control and part defect diagnosis.

Enterprise Resource Planning

Enterprise resource planning (ERP) is a type
of software that organizations use to manage
day-to-day, enterprise-level activities. The
ERP-related activities include master planning,
accounting, procurement, and supply chain
operations. By collecting the shared, transac-
tional data of an organization from multiple
sources, ERP systems eliminate data duplication
and provide data integrity with a single source of
truth. The ERP systems are designed around a
single defined data structure (model) that typi-
cally has a common underlying database.

Product Life-Cycle Management

Product life-cycle management (PLM)
software manages all the information associated
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with every step of a product or service life cycle
across global supply chains. This information
includes the data from items, parts, products,
documents, requirements, engineering change
orders, and quality workflows. The PLM builds
a coherent data structure frequently used as part
of various digital threads. Standards, such as
the standard for exchange of product model data,
are key to enable product life-cycle data
integration.

Manufacturing Execution System

Manufacturing execution system (MES)
software manages, monitors, and synchronizes
the execution of real-time manufacturing pro-
cesses. The ISA 95 provides standard models
of MES functions (Ref 17). The MES coordi-
nates the transformation of raw material to
finished goods by executing work orders based
on the production schedules and integrating
ERP and PLM systems. The MES integration
also mandates machine connectivity for pro-
cess monitoring, provides feedback on process
performance, and supports component and mate-
rial-level traceability, genealogy, and integra-
tion with process history, where required.
These capabilities extend from product/process
design release and work order release through
completion of the manufacturing process.

Aside from conventional MES software ven-
dors for traditional manufacturing, a smaller
group of specialized niche players whose sole
expertise is additive MES is emerging on the
market. Even though the pool is smaller, their
workflows and features can be quite unique
(Ref 18).

Historian

Historian is a database software service
for short-term, long-term, and permanent
monitoring. It is an important component for
both supervisory control and data-acquisition
(SCADA) systems and manufacturing operation-
management systems. The SCADA systems
allow industrial organizations to monitor, gather,
and process real-time data and to control indus-
trial processes both locally and remotely with
human-machine interface software. Trended
manufacturing process data and events are stored
in Historians that allow for easier data analysis in
both real-time and offline.

Data Lake

A data lake is a place to store several differ-
ent types of data, as well as a method for orga-
nizing large volumes of highly diverse data
from distributed sources. The data lake is
mainly designed to handle unstructured data
in the most cost-effective manner possible.

The term unstructured data refers to data
characterized by not having any structure,
apart from that record or file level (Ref 13).
These data can be textual or nontextual and
human or machine generated. Unstructured



data can also be anything from design files, which
include engineering documents and images, to
machine data such as log files and sensor data.
Another large group of AM data is referred
to as semistructured. These data are largely
unstructured but use internal tags and markings
that separate and differentiate various data ele-
ments, thereby placing them into pairings
and hierarchies. Common examples include
emails, HyperText Markup Language (HTML),
comma-separated values (CSV), Extensible
Markup Language (XML) and JavaScript Object
Notation (JSON) documents, and electronic data
interchange (EDI) and Resource Description
Framework (RDF) files. Each example has meta-
data that enable their correct interpretation.

Distributed Additive Manufacturing
Data Storage

The data sources described previously are
generally either stored in centralized structured
query language databases or managed by com-
mercially available manufacturing information
systems (Ref 19-21). However, in AM, most
data are distributed in local personal com-
puters or servers. Data from feedstock chara-
cterizations, for example, are typically
manually ingested into .csv files and stored
in lab computers. Computer tomography data,
exported from an x-ray computed tomography
scan of an as-built part, are transferred to a
shared server through mobile hard-disk
drives. Mechanical test data are captured in
figures and plots and stored in third-party
lab computers. Hundreds of gigabytes of
high-speed melt pool images, captured during
an AM process, are typically stored on a local
hard-disk drive and transferred manually for
more permanent storage.

Streaming Additive Manufacturing
Data Sources

Data streaming is the process of transmit-
ting data continuously into data-processing
or data-visualization software. A data stream
consists of a series of data elements ordered
in time. In traditional manufacturing, mea-
surement and control data can be streamed
from fabrication equipment or workstations
continuously. Additive manufacturing sys-
tems have sensors measuring process vari-
ables such as the oxygen concentration, laser
power, position of the build platform, and
chamber and build platform temperatures.
There are also camera-type systems that col-
lect images of the powder bed and melt pools
during fabrication. With embedded real-time
data analytics in the AM systems, process
anomalies can be detected when measure-
ments or observations deviate from expected
or predicted values. When either occurs, the
build processes could be paused or stopped.
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Additive Manufacturing Data-
Integration Framework

Data in the AM ecosystem can be located any-
where across AM value chains and in different
types of data repositories (managed or unman-
aged). Integrating such disparate types and sizes
of that data and across such a wide scope is chal-
lenging. Figure 3 shows an example of a three-
level, big-data-integration framework that covers
data sources, integration mechanisms, and man-
agement technologies. The lowest level deals
with raw data cleaning and contextualization
and curating them into managed data systems.
The middle level combines data residing in dif-
ferent managed sources for business analytics.
The top level facilitates information exchange
between different software applications.

Lower-Level Data Integration
Manual Data Ingestion

In AM facilities or labs, data (especially
metadata) are commonly collected and in-
gested manually. For example, in a Hall flow
test for metal powders, multiple measurements
of the elapsed time for 50 g of powder dis-
charged through a funnel are measured and
recorded. Information on the powder sample
pedigree, specialized equipment, measurement,
and test results must be recorded. Each lab uses
its own data-element definitions and records the
associated measurements in customized, propri-
etary Excel (Microsoft) spreadsheets.

loT Data Acquisition

IoT data streams can only be acquired by
computer systems through communication

protocols. Traditional manufacturing field
devices, such as programmable logic control-
lers, process instruments, actuators, and in-
telligent input/outputs, are connected using
industrial field-bus standards such as Profibus,
Controller Area Network (CAN), and Modbus.
Collectively, these standards enable computer-
integrated manufacturing. Today (2022),
MTConnect and Open Process OPC UA are
two emerging standards at the forefront of har-
monizing data exchange across shop floors,
especially for alarms and events. At the same
time, more and more standardized, session-
layer protocols are being adopted as part
of integrating more modern manufacturing
devices, such as Message Queuing Telemetry
Transport (MQTT), Constrained Application
Protocol (CoAP), and Data Distribution Ser-
vice (DDS).

However, the protocols previously men-
tioned do not support a high data rate by
nature, and they are normally limited to lower
payload sizes. For high-speed camera data, for
example, AM melt pool images sampled at
10 kHz, specialized protocols are employed
for data acquisition, such as Camera Link.
Note that real-time processing or streaming
this type of high-velocity data can be
extremely challenging.

Data Migration

Data migration is the process of migrating
data from one or more input sources into a tar-
get system. In AM, legacy data are often
migrated for the purposes of querying and
analysis. Data from heterogeneous sources are
extracted first, then cleaned and reorganized
based on the target-system data format or
structure. Finally, the newly structured data
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are loaded into the target data-management sys-
tem, such as a material database, LIMS, PLM,
ERP, or data lake. The process is also referred
to as ETL (extract, transform, and load).

Data Modeling

At the lower levels of integration data mod-
eling is a critical step to curate raw data and
integrate legacy data sources into managed
data systems. Data modeling refers to the
description of the organization of data in the
management information system of an enter-
prise (Ref 22). Data modeling provides the defi-
nition, structure, and format of the data, whether
logical or physical (Ref 23). General practice for
enterprise data modeling can be found in Ref 24.
Standard, neutral data models and data schema
enable simple data integration.

Higher-Level Data Integration

Lower-level data integration contextualizes
raw data and structures the data and metadata
into information. The resulting organized data
are managed by various information systems
within an enterprise (Fig. 3). To support the
totally integrated AM ecosystem, these indi-
vidual information systems must be further
integrated. This is referred to as high-level
data integration; there are two types of integra-
tion techniques: data warehousing and data
federation.

Data Warehousing

Data warehousing establishes data stores
from various data sources to support different
business analytics and reporting needs. The
ETL tools previously mentioned are the key
components of a data-warehousing software
product. When using such a product, individ-
ual—but related—data are extracted from each
individual source, cleaned, and then merged to
form integrated data stores. These type of data
stores contain no duplication or redundancy of
information. Data-warehousing software is a
key means to create the integrated data needed
to support enterprise-wide decision making.
Today (2022), these products are moving from
local data centers to cloud-based data
warehouses.

Data Federation

When data integration goes beyond the
boundary of an enterprise, data federation is
needed. Data federation is a process that
allows multiple databases to function as virtu-
ally one. Without copying data and duplicating
data using another storage system, data federa-
tion establishes a virtual data repository that
provides a unified interface for a range of
sources based on a common data model.
Figure 4 shows an example of a common AM
data model developed at the National Institute
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Fig 4 National Institute of Standards and Technology additive manufacturing common data model. Source: Ref 19

of Standards and Technology (NIST) (Ref 25).
This common model provides a single source
of data for front-end applications. A data-
federation system includes metadata reposi-
tories, data abstraction, read and write access
to source data systems, and advanced security.
Data federation is a technique to create a collab-
orative data-management system for data
sharing within the AM ecosystem. This data
sharing enables, facilitates, and accelerates AM
development and deployment.

Data Flow for Application Integration

Additive manufacturing development relies
on a workflow of various business analytics
functions. Smart manufacturing systems allow
data to flow in and out of these functions based
on a service-oriented architecture (Ref 26) or
application programing interface (API).

Enterprise Bus

Enterprise bus (ESB) is a common imple-
mentation pattern for service-oriented architec-
tures. The ESB can route messages between
enterprise applications and provide commodity
services. These services include event handling,
data transformation and mapping, message and
event queuing and sequencing, security or
exception handling, protocol conversion, and
enforcing the proper quality of communication
service.

Canonical Data Model

The canonical data model (CDM) is a data
model that covers all data from connected
enterprise systems. The CDM models all the
data from individual data sources so that there
are always unambiguous translations from the
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CDM to the individual data models and vice
versa. Open Application Group Integration
Specification is a good example that defines a
canonical model for enterprise application
integration.

REST Application Programing Interface

Application programing interface (API) is
a software intermediary that allows two appli-
cations to communicate through a predefined
set of definitions and protocols (Ref 27). The
API allows an organization to share resources
while maintaining security, control, and
authentication. Today (2022), applications
usually use REST API, also known as REST-
ful API, a set of architectural constraints.
Developers can implement RESTful API by
following several criteria for an API to be
considered RESTful (Ref 28). By using REST
API, users do not need to understand every
application in a system to use its functions.
These functions can be exposed through APIs,
and data can be easily exchanged between
them.

Recommended Additive
Manufacturing Data-Integration
Practice

After identifying AM-specific application
scenarios and their associated data-integration
requirements, AM data architects and engi-
neers can proceed to plan and execute those
scenarios using existing data-integration tech-
niques and tools. Figure 5 presents a workflow
that can facilitate two such scenarios: process
monitoring and control for real-time applica-
tions and long-term data archiving for offline
applications.
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The workflow consists of seven steps listed
in the following sections (Ref 29). These steps
can be applied for both data streaming and
batch-data processing. In the former case, the
seven steps run in consecutive, discrete peri-
ods, to be scheduled or manually triggered. In
the latter case, however, those steps run
continuously.

Step 1: Defining a Data Source

Recall that the AM ecosystem integrates
the data from three external life cycles within
the AM production hierarchy. Within each
life cycle, there are numerous and varied data
sources and their associated life-cycle activ-
ities and integration methods. Defining each
varied data source is required, and its defini-
tion is based on answers to questions about
the chosen data-integration methods. Ques-
tions can include: What are the data that must
be integrated? What are their structures?
What type of data source can provide both,
and how do we integrate them? The AM data
architects and engineers typically provide
answers to these questions based on specific
needs and use cases. These answers define
the capabilities that a potential data source
must have to become a viable part of the solu-
tion to AM data-integration problems. The
first answer is the data types themselves.
Example data types include images, videos,
and 3D models. A coordinate system is
another example of a first answer that can be
used to interpret the position and size of
any measurement data. The second answer
includes any data source, or device, that has
the capabilities to provide one of the named
data types. Each such data source has a
data-source description, which provides the
information attributes about the defined,
physical data source. The metadata associated
with each device, such as device model and
device type, are also needed.

Archiving
data
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Step 2: Collecting Data

After defining each selected data source
(device type), it is necessary to determine
how each source will collect and communicate
its data. For static and discrete data sources,
importing/exporting functions can be used.
For streaming and continuous data sources,
data are generated during a predetermined time
interval, defined either when an important
event occurs or when a specific condition is
satisfied. Independent of the device or mecha-
nism that creates the data, there are two main
approaches when it comes to collecting that
data from the device: push or pull. In the first
approach, data are pushed from the device at
their own frequency. In the second approach,
when the device cannot push its data, the
device stores that data until its recipient must
launch an application that will pull the data
from the device. In either case, it is important
to define a standard for exchanging the data.
Recommended best practice is to define a stan-
dard for representing the location of both data
and metadata. These standards result in mes-
sages to the receiving system that is hosting
the application.

Step 3: Queueing Data

Processing and parsing these messages
require system resources. To prevent system
overload, a message queue can be helpful. In that
way, data will be temporarily stored in the queue
until it is processed and then stored in the system.
(Multiple queues may be necessary.) For exam-
ple, the first queue stores raw, unprocessed data
waiting to be processed. The second queue tem-
porarily holds that processed data while it is
waiting to be stored in the system. Two examples
of common multimessage-queue technologies
are Apache Kafka and IBM MQ. From this
point, data will be archived for both real-time
analysis and long-term archiving.
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Step 4: Archiving Data

Developing a stable and tenable archiving
system depends on which persistent-storage
technology is selected. Regardless of the
choice, AM image data and its associated
metadata should be defined and stored sepa-
rately. It is common to use file systems as an
image-storage mechanism. Another convenient
way to handle images and other binary objects
is to shift responsibility to cloud-based storage
centers. Storage-as-a-service provides features
to easily scale computational resources and
provide access permissions. It also offers a
user interface, command-line tools, and an
API for several programming languages.

The decision of what type of storage to use
depends on the target use case. If there are no
technical or financial obstacles, uploading
images to an external cloud-managed storage
system is a recommended choice, because
images are easier to maintain, and space lim-
itations are not a factor. On the other hand, if
image data are private and should be kept in
local systems, then cloud storage is not a
recommended option; a file system storage
may be a better fit in this case. However, this
option requires more resources and skills to
set up and later administrate. A file system
does allow for more freedom to customize
and adjust the solution to specific target use
cases.

In addition to storing images, metadata should
be stored. Unlike the actual data, the most com-
mon way to store the metadata is a relational
database-management system (RDBMS). The
main advantage of an RDBMS is that most engi-
neers know this technology, and the commercial
DBMS tools have integrations with many exter-
nal tools. Also, because metadata in AM pro-
duction processes do not often change,
document databases could be used, such as
NIST’s Additive Manufacturing Materials
Database (AMMD).

Step 5: Downgrading Data Amount

To achieve sustainability, the system must be
capable of managing different data sizes and sav-
ing only the data necessary for future use cases.
Several policies must be defined, including delet-
ing old data, aggregating data, removing dupli-
cates, and reducing data quality (if needed).

Step 6: Building Decision Models

Data are being collected and processed for one
reason: to gain value from it. Machine learning-
based predictive models need a solid history of
the labeled data as input to make future predic-
tions. Rule-based expert systems are built using
if-then rules, which are defined by the experts
in the specified area. A common practice is to
combine both approaches to build reliable, pre-
diction-based decision-making systems.
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Step 7: Using Decision Models in
Practice

There are several options on how decision-

making models can be used in practice. In
AM, for example, if a model can predict a crit-
ical event in the machine, an alert can be sent
to the staff in charge of handling that issue. If
the model reports an in-process monitoring
anomaly, it can be used to change the process
parameters or stop the build.
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