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Abstract:
Recent developments in diameter metrology at NIST have enabled the dimensional char-
acterization of piston-cylinder assemblies (PCA) with unprecedented precision. For the
newest generation of PCA, standard uncertainty on measurement of outer diameter is
12 nm, while uncertainty on measurement of inner diameter is 14 nm. With a high-
accuracy dimensional dataset in hand, the task of determining the pressure generated by
a specific PCA is reduced to converting diameter (and straightness and roundness) to
effective area (and distortion coefficient).

Details on how this was done for the artifact PCA2062 are described. PCA2062 was
dimensioned in 2017 and 2020; the area repeated within 0.2× 10−6 ·Aeff. The calculation
produced estimates of fall-rate and rotation-decay that agree with experimental observa-
tions within 12 %. Fall-rate is proportional to the square of gap-width, so the agreement
between calculation and measurement validates the dimensional estimate of gap-width
within (36±42) nm, where the 42 nm uncertainty is governed by the present state of flow
theory. Finally, an estimate of uncertainty in the effective area of a dimensioned artifact
is provided: as expected, diameter is the main culprit, but there are open questions with
the flow model that preclude an accurate evaluation of the distortion coefficient. For the
530 kPa operating range of PCA2062, distortion is not a significant problem, but the
effect would be dominant in assemblies operating 1 MPa and above.

1 Introduction and motivation

An experimental effort is underway to measure the refractivity of helium gas at the level
of 10−6 · (n − 1). The motivation is that a precision measurement of helium refractivity
at known temperature allows a realization of the pascal, in what is sometimes called the
optical pressure scale [1]. The underlying principle is the ideal gas law, which defines
pressure p = ρRT in terms of molar density ρ and temperature T ; the gas constant
R is a fixed value. The interest in helium (refractivity) is because the Lorentz–Lorenz
equation provides a direct link between refractivity and density ρ = 2

3AR
(n− 1) + · · · via

the polarizability AR. Polarizability is a fundamental property of a single atom, and for
helium, it can be calculated [2] well-within 10−6 · AR. Consequently, the realization p =
2

3AR
(n− 1)RT provides a well-understood physical system, in which all input parameters

are known without reference to an ancillary measurement of pressure. The ultimate
accuracy of this new scale can approach the u(T )-limit; or, how well the thermodynamic
temperature of the helium gas can be known.

One attraction [3] of the optical pressure scale is that it neither relies on artifacts nor
restricted materials. Indeed, one stimulant to perfecting the optical realization is that it
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has potential to settle the twenty-five-year old, unresolved disagreements in mechanical
pressure scales—unresolved disagreements which have been at the level of 5 × 10−6 · p
for piston gages [4], and 15 × 10−6 · p for mercury manometers [5]. To meaningfully
conclude on past disagreements requires that one can compare a new optical realization
to a traditional mechanical realization at the highest levels of accuracy. It is this necessity
for a best-effort realization of the mechanical pressure scale that motivates the present
work. At the National Metrology Institute (NMI) level, the outlook [3] is that the optical
pressure scale will supersede the mechanical scale in terms of accuracy, reliability, and
universality.

Towards this best-effort realization of the mechanical pressure scale, three sets of
piston-cylinder assemblies (PCA) have been dimensioned, and their effective areas estab-
lished traceable to the SI meter. These state-of-the-art PCA comprise a 50 mm-diameter
fixed piston with a floating/rotating cylinder. The PCA2062 was manufactured in 2014,
coarse dimensioned in 2015, fully dimensionally-characterized in 2017, and redimensioned
in 2020 [6]. Next follows some details on how these dimensional datasets were converted
to effective area, which rely heavily on two references by Sabuga and coworkers [7, 8].
The procedure begins by fusing together three separate dimensional inputs (diameter,
straightness, and roundness) to form a birdcage model of the artifact. Then, the pressure-
induced distortion is added to the birdcage; the distortion is calculated by finite-element
methods, and needs one parameterized input, which is the pressure distributed down the
gap between the piston and cylinder. This distributed pressure is calculated based on the
theory of rarefied gas dynamics. Finally, the cross-sectional area of the distorted bird-
cage is calculated. The following explanation will attempt to logically work backwards:
starting from the output (area), and unwinding step-by-step to the input (dimensions).

2 Calculation procedure

The pressure generated by the piston-gage is given by

ppg =
mg

Aeff [1 + (t90 − 20) · 2αWC] · (1 + b)
+ pvac, (1)

where m is a mass load and g is local gravity. The effective area Aeff is described more
below, and is estimated chiefly by dimensional measurements made at t90 = 20 ◦C; when
the piston-gage operates away from this reference temperature, its diameter (effective
area) must be scaled for the thermal expansion αWC. (The notation t90 refers to temper-
ature measurement on the international temperature scale of 1990.) As pressure inside
the cylinder increases, the piston and cylinder deform, thus changing the diameter (effec-
tive area); the deformation parameter b accounts for pressure-induced distortion. Finally,
Eq. (1) must balance for pressure acting outside the cylinder; in the present case, op-
eration is in “absolute mode” and the pressure outside the cylinder pvac is pumped to
< 0.3 Pa, and measured with a capacitance diaphragm gage.

The effective area Aeff of the PCA must take into account forces caused by flow and
friction in the gap—the space between the piston and cylinder, which is approximately
580 nm. Historically, these forces were estimated by the theory of Dadson [9], which
assumed viscous flow. The more recent theory of Sharipov [7, 10] is based on rarefied gas
dynamics, which computes a flow coefficient determined by the level of rarefaction for all
pressures and dimensions distributed down the gap. For a pressure differential across the
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gap p1 − p2 (in this case p2 = pvac), Sabuga, Sharipov, and Priruenrom [7] write the area
at pressure A0 = A1 − A2 − A3 having three components [11]

A1 =
πG2

c1p1 − πG2
c2p2

p1 − p2

A2 =−
π

∫ lc

0

hz · Gc
dpz
dz

dz

p1 − p2

A3 =−
2π

∫ lc

0

pz · Gc
dGc

dz
dz

p1 − p2
.

(2)

The effective area Aeff is found by calculating A0 for several different p1, and extrapolating
p1 → 0; the distortion coefficient b is deduced from the slope of the extrapolation. In
A0, the first component A1 is the area upon which the mass-force acts, and depends on
the radius (generatrix) at top Gc1 and bottom Gc2 of the cylinder. The generatrix of a
cylinder, described below, is obtained as the line that minimizes deviations between three
sets of dimensional measurements: straightness, roundness, and point-to-point diameter.
The other two components in (2) are A2 and A3, and arise from the drag forces owing to
gas flow in the gap and surface curvature; both of these components require knowledge
of the pressure distribution pz along the gap, and need the gap dimensions to be updated
for pressure-induced distortion. The width of the gap hz = Gc − Gp is the difference
between the generatrixes of cylinder and piston. The height of the cylinder lc = 40 mm
includes a 2 mm extrapolation of diameter measurements at both ends of the cylinder.
The coordinate system is shown in Fig. 2(a); z is along the cylinder axis and x is radial;
the variables Gc,p, hz, and pz are all functions of z.

The calculation is iterative [12]: First there is a calculation of the pressure distribution
from p1 down to p2 along the gap

pz = p1 + (p2 − p1)

∫ z

0

[hz ·GP]
−1 dz

∫ lc

0

[hz ·GP]
−1 dz

, (3)

which requires the Poiseuille coefficient [10, 13]

GP = a00 +





1
2
√
π
ln Gc

h
+ π

2
for δ ≤ 4× 10−4

∑
i

ai · log(δ)i for δ > 4× 10−4,
(4)

the interpolation of which is based on evaluation of the rarefaction parameter [10, 13]

δz =
pzhz

ηvmp

(5)

where η is gas viscosity, and vmp = (2RT/M)1/2 is the most probable speed and depends
on the gas constant R, temperature T , and molar mass M . For GP at δ > 4 × 10−4,
a 12th-order polynomial is fit to the solution [10] of the one-dimensional, infinite plate,
planar Poiseuille flow, with coefficients ai
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a0 = 1.547801 a1 = −7.215365× 10−3 a2 = 1.270563× 10−1

a3 = 2.027864× 10−2 a4 = 3.679723× 10−3 a5 = 1.707451× 10−3

a6 = 5.697987× 10−4 a7 = 6.654191× 10−5 a8 = −7.441006× 10−6

a9 = −2.983074× 10−6 a10 = −3.433585× 10−7 a11 = −1.806107× 10−8

a12 = −3.699704× 10−10.

A numerical algorithm to calculate GP is given in Ref. [10]. The function of (4) is
plotted in Fig. 1(a), together with output from the algorithm of Ref. [10]; the function
(4) is modified from Ref. [10] as follows. The two-part function of (4) is clipped [7] as

D, S, R

Gc, Gp, hz

pz δz , Eq. (5)

GP, Eq. (4)

pz , Eq. (3)

∆x, FEA

A0, Eq. (2)
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Figure 1: (a.) Poiseuille flow coefficient derived from Ref. [10] and modified to the
physical situation of the present work. The inset figure shows the difference between (4)
and four error cases covering u(GP). (b.) Block diagram of the procedure to calculate
A0. (c.) Pressure distribution down the gap pz for two cases in helium, p1 = 50 kPa and
p1 = 500 kPa, and with p2 = 0.
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δ < 4×10−4 to approximate the annular flow [14] in the limit Gp

Gc
→ 1; this patch addresses

the problem with the infinite plate solution, in which GP tends toward infinity as δ → 0.
The clipping threshold is specific to each PCA geometry [7] by the quotient Gc

hz
; it is worth

noting that for PCA2062, even at helium pressures as low as p1 = 10 kPa (and p2 = 0), the
annular flow approximation applies to less than 2 % of the gap region, and its influence
on A0 is negligible. The function (4) allows for a tangential momentum accommodation
coefficient of 0.9, by setting the offset factor a00 = 0.25. Lack of knowledge about the
accommodation coefficient is a main contributor to uncertainty in the theory of rarefied

x − 24 984 300 /nm

−400−200
0

200
400

y
− 2

4
98
4
30
0
/n
m

−400
−200

0

200

400

z
cy
lin

d
er

/
m
m

0

−10

−20

−30

−40

−50

−60

Gc(z)
Dc(θ)

Dc

x − 24 983 600 /nm

−400
−200

0
200

400

y
− 2

4
98
3
60
0
/n
m

−400
−200

0

200

400

z
p
is
to
n
/
m
m

0

−10

−20

−30

−40

−50

−60

Gp(z)
Dp(θ)

Dp

X

Z

Y

24.984 24.9844 24.9848

radial axis, x /mm

−60

−50

−40

−30

−20

−10

0

p
is
to
n
–
cy
lin

d
er

h
ei
g
h
t,

z
/
m
m

Gp(z)
Gc(z)

p1

p2

pz

polyfit

meas

∆x fea

∆x /(fm/Pa)

−30
0

30

60

90

120

150

180

210

240

piston

cylinder

a.

b.

c.

d.

1

2
3

4

5

Figure 2: (a.) Finite-element model of pressure-induced distortion in the piston and
cylinder. (b.) Least-squares-adjusted generatrixes of piston and cylinder, with overlay of
pressure-induced distortion at p1 = 500 kPa and p2 = 0. (c. and d.) “Birdcage” model
of piston and cylinder constructed by fusing three sets of dimensional data: straightness,
roundness, and point-to-point diameter.
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gas dynamics; the four perturbations to GP, plotted in the inset of Fig. 1(a), are also
relevant to the uncertainty.

In the calculation of pz, the terms pz and δz are interdependent, and so iteration
is required for convergence. (To startup, δz is initialized with a linear distribution of
pressure down the gap.) The procedure must also be iterated for hz, because the width
of the gap changes, caused by pressure-induced distortion of the piston and cylinder.
The pressure-induced distortion is computed using finite-element analysis (FEA), which
is parameterized for the pressure load pz applied to the gap, obtained by calculation
of (3). This all works with a master Python script which handles several things: (i)
calculates pz based on the most recent estimate of GP and hz; (ii) dynamically updates
two FEA scripts (one piston script and one cylinder) with pz and runs the FEA program;
(iii) extracts/imports ∆x from the FEA displacement results along the PCA engagement
region; (iv) updates Gp and Gc for the respective ∆x, recomputing pz and GP; and (v)
iterates. An overview block diagram of the calculation procedure is shown in Fig. 1(b).
The computed area converges within 10−8 ·Aeff after two iterations [see Fig. 3(a)], and the
main advantage of this “closed-loop” implementation is that numerical investigation of
model sensitivity to input errors can be performed with versatility. Another closed-loop
benefit is demonstrated in Fig. 3(c): the effective area and distortion coefficient can be
calculated throughout the cylinder fall down the piston—something impractical to do
with an open-loop implementation which hand-transcribes settings from one program to
another. The FEA is shown in Fig. 2(a), which is actually two separate simulations of
piston and cylinder, which have been clipped to the same ∆x colorscale and combined (the
width of the gap is arbitrarily exaggerated in x). The FEA model is axisymmetric about
x = 0, and the boundary conditions are also annotated in Fig. 2(a): 1○ pressure p1 applied
to partial inner surface of cylinder, 2○ pressure p1 applied to inner, top, partial outer,
and partial bottom surface of piston, 3○ distributed (gap) pressure pz applied to engaged
segments of piston and cylinder as a function of z, 4○ piston constrained in z (by clamped
o-ring), 5○ lip of cylinder constrained in z (by mass load). The distorted profiles of the
piston outer diameter and cylinder inner diameter, along the region of engagement, are
extracted from the FEA and added to the generatrix (actual dimensional measurements)
in Fig. 2(b), with p1 = 500 kPa. Fig. 2(b) is also annotated with the locations of the
pressure “regions” p1, pz, and p2.

The dimensional inputs to (2) are the generatrixes of piston and cylinder. Dimensional
characterization provided high-density data traces of roundness and straightness, and low-
density data on point-to-point diameter. The best estimate of the artifact geometry is
obtained by fusing together (synchronizing [8]) the intersecting points in the three sets
of measurements. In Ref. [8], the generatrix and directrix

G(z) = Sθ(z) + o+ t · z
D(θ) = Rz(θ) + q + w cos θ + v sin θ

(6)

are found by adjusting the measured straightness Sθ(z) and roundness Rz(θ) by the model
parameters o, t, q, w, v. Straightness Sθ(z) is a function of height z, and is indexed for
each trace made in azimuth θ; the parameters offset o and taper t are vectors of dimension
equal to the number of traces in θ (which is 8 for both piston and cylinder). Roundness
Rz(θ) is a function of θ, and is indexed for each trace made in z; the parameters q, w,
and v are vectors of dimension equal to the number of traces in z (which is eight for the
piston and five for the cylinder). The model parameters are deduced by least-squares
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minimization of the objective function

E2 = min
o,t,q,w,v

5∑

i=1

(∑
e2i

Ni

)
, (7)

which has

e1 = G − D

e2 =
D − (G + G ′)

2

e3 =
D − (D +D′)

2

e4 =
Dref

2
− Gref

e5 =
Dref

2
−Dref,

(8)
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Figure 3: (a.) Convergence of the pz and FEA iteration loop. (b.) Calculated area as a
function of pressure for the piston–cylinder assembly PCA2062 in “absolute mode” with
p2 = 0. Inset: relative contributions of A2 and A3 to A0. (c.) Change in Aeff and b,
relative to values at z = 0, as the cylinder falls down the piston.
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and D are the measured point-to-point diameters. (The term E is the root-mean-square
error of the optimization, and is a metric of statistical uncertainty. The integer Ni is the
sample size of each residual error matrix ei.) The flow calculation of Sabuga, Sharipov,
and Priruenrom [7] uses the generatrix G of the piston and cylinder to calculate the cross-
sectional area that best describes a three-dimensional artifact. The residual matrices e4
and e5 in (8) are setup as reference points to define the coordinate system in which the
dimensional adjustment is performed. This means they are setup as sparse matrices of
four diameters; two at different z heights and two at different θ azimuthal angles; the
choice of height and angle is arbitrary. The notation G ′ and D′ refers to the generatrix
and directrix at the opposite azimuthal orientation.

The least-squares adjusted datasets are shown in Fig. 2(c) and (d); these plots are
sometimes called the “birdcage” [15, 16]. The plot of the piston in Fig. 2(c) has been
scaled in the radial axis by subtracting 49.9672 mm from the diameter; the plot of the
cylinder in Fig. 2(d) has had 49.9686 mm subtracted from the diameter. Once the vectors
o and t have been found by the least-squares adjustment of the intersecting points, each
straightness trace can be converted to its respective G. The result is a set of eight G which
are a function of z, and are indexed for each straightness trace in θ. For calculation of
A0, the eight G are averaged over θ.

Finally, this dimensional characterization of G is used in the area calculation of (2),
to produce a determination of A0 = A1−A2−A3 as a function of pressure. The A0 result
is plotted in Fig. 3(b); the relative contributions of A2 and A3 are shown in the inset of
Fig. 3(b). From this, the effective area of PCA2062 has been determined

A2062
eff = 1961.0292(37) ·

[
1 + 5.06(73)× 10−12 · p

Pa

]
mm2

in helium at 20 ◦C, and valid for the dimensional characterization of 2020. The distortion
coefficient b is best described by a linear term. The estimation from the slope of the line
in Fig. 3(b) is for a monolithic assembly. The final estimate given above is 3.8 % smaller
than the slope of the line in Fig. 3(b); this reduction in distortion is based on a finite-
element simulation of a 0.1 mm epoxy joint between the titanium (cap) and tungsten
carbide that forms the hollow cylinder assembly.

The uncertainty budget for this determination is listed in Table 1, and will be de-
scribed elsewhere. Here is briefly mentioned that dimensional measurements comprise
the chief contributor, among which the entry “instability” refers to reproducibility of the
PCA2062 in the dimensionings of 2017 and 2020. A history and control chart may reduce
this uncertainty component over the coming decades. The largest contributor to flow is
the entry “G” which represents standard deviation among the 64 pair-selections of piston
and cylinder generatrixes. On this point it is emphasized that the boundary conditions
of the flow model have fixed walls (Poiseuille flow), which does not describe the rotating
cylinder.

3 Conclusion

A procedure has been described to convert a dimensional dataset to effective area for
a specific PCA. The procedure first fuses together all dimensional inputs (diameter,
straightness, and roundness) to form the birdcage and average generatrix. The flow (dis-
tributed pressure) down the gap between piston and cylinder is then calculated using the
theory of rarefied gas dynamics. Next, the distributed pressure is parameterized to load
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Table 1: Standard uncertainty in mechanical pressure generated by PCA2062.

component u(ppg)× 106

Aeff

dimensional 1.7
D, 13 nm
E , 9.9 nm
extrapolation, 10 nm
αWC, 4.6 nm
compression, 3 nm
instability, 17.8 nm

flow 0.7
RGD, 2.9× 10−4 mm2

G, 13× 10−4 mm2

hz, 0.1× 10−4 mm2

b 0.4
m 54 mPa + 0.1
g 0.2
pvac 25 mPa

combined (k = 1) [(60 mPa)2 + (1.9 µPa/Pa)2]1/2

a finite-element model, which estimates geometric distortion to the generatrixes. Finally,
the calculation is iterated to convergence. The entire procedure runs in a self-contained
Python script, which executes the finite-element program as a function call.

Based on the quality of the dimensional characterization, its reproducibility, and a de-
tailed error analysis, it seems realistic that the artifact PCA2062 can approach 2 µPa/Pa
standard uncertainty. It is pointed out that the authoritative work of Schmidt et al. [16]
claimed 3.0 × 10−6 · p uncertainty on the 36 mm diameter PCA39, which, when scaled
for differences in diameter, would translate to 2.2 × 10−6 · p for the 50 mm diameter
PCA2062—despite a generation of progress in dimensional metrology and flow modeling,
the performance of the (other) last artifact-based standard [3] remains essentially un-
changed. Indeed, if anything, the checkered history of piston gage claims [4, 17], together
with recent evidence in key comparisons of diameter [18, 19], urge caution below the
5 µPa/Pa level (125 nm in diameter). Crossfloat comparisons that show agreement be-
tween force and diameter ratios at fractionally within 10−6 may lead to false-confidence:
ratios validate consistency of the dimensional characterization, not its accuracy. What is
needed is a stringent test between the optical and mechanical pressure scales at the level
of a few 10−6 · p.
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