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A B S T R A C T

Zero-day attacks exploit unknown vulnerabilities so as to avoid being detected by cybersecurity detection
tools. The studies (Bilge and Dumitraş, 2012, Google, 0000, Ponemon Sullivan Privacy Report, 2020) show
that zero-day attacks are wide spread and are one of the major threats to computer security. The traditional
signature-based detection method is not effective in detecting zero-day attacks as the signatures of zero-day
attacks are typically not available beforehand. Machine Learning (ML)-based detection method is capable of
capturing attacks’ statistical characteristics and is, hence, promising for zero-day attack detection. In this survey
paper, a comprehensive review of ML-based zero-day attack detection approaches is conducted, and their ML
models, training and testing data sets used, and evaluation results are compared. While significant efforts
have been put forth to develop accurate and robust zero-attack detection tools, the existing methods fall short
in accuracy, recall, and uniformity against different types of zero-day attacks. Major challenges toward the
ML-based methods are identified and future research directions are recommended at last.
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1. Introduction

A zero-day attack is a new cyber-attack that is unknown to the
public and cybersecurity community, hence the name ‘‘zero-day". It
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exploits vulnerabilities that have not been disclosed publicly or employs
novel attacking tactics to avoid being detected by existing detection
tools. Attackers can, thus, attack targets of their choosing while re-
maining unrecognized. Bilge and Dumitras studied the duration and
https://doi.org/10.1016/j.comcom.2022.11.001
Received 22 July 2022; Received in revised form 1 November 2022; Accepted 2 No
Available online 25 November 2022
0140-3664/Published by Elsevier B.V.
vember 2022

https://doi.org/10.1016/j.comcom.2022.11.001
https://www.elsevier.com/locate/comcom
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2022.11.001&domain=pdf
mailto:yang.guo@nist.gov
https://doi.org/10.1016/j.comcom.2022.11.001


Y. Guo Computer Communications 198 (2023) 175–185

i
t
s

t
s
d
i
f

o

o

prevalence of zero-day attacks in [1]. Their results show that a typical
zero-day attack lasts 312 days on average before being detected, and
the volume of attacks continues to increase by up to five orders of
magnitude after vulnerabilities are disclosed publicly. Google’s Project
Zero [2] publishes their tracking records for publicly known cases of
detected zero-day attacks. On average, an ‘‘in the wild" zero-day attack
is discovered every 17 days, and it takes 15 days on average to develop
a patch for the vulnerability that is being exploited by active attacks. A
recent study conducted by Ponemon Institute [3] concludes that 80% of
security breaches are derived from zero-day attacks, with the average
incurred cost amounting to 1.2 million dollars per attack. All evidences
point to the severity of the threats created by the zero-day attacks.

Traditionally, cyberattack detection systems are broadly classified
into two categories: signature-based detection systems and anomaly-
based detection systems. The signature-based systems have a prede-
fined repository of static signatures, or fingerprints, that represent
known attacks. The detection is achieved by matching the incoming
signature with an attack signature already in the repository. In contrast,
the anomaly detection methods have a notion of normal activity and
flag deviations from that profile. Both approaches have been studied
extensively. In fact, signature-based detection systems have been suc-
cessfully deployed in operational environments and have proven to be
effective in detecting known attacks with high detection accuracy and
recall. However, it is expensive to keep the signature library up to date,
and the signature-based detection is prone to miss zero-day attacks with
alarmingly low recall [4], which is expected as the zero-day attacks’
signatures are typically not available in the repository.

Machine learning (ML) has become a promising technology for
cyber-attack detection. Machine learning (ML) algorithms build a model
based on sample data, known as training data, and are able to discover
complex statistical patterns that help detect similar attacks and respond
to attacks’ changing behavior. ML-based technology carries the promise
to be effective in detecting zero-day attacks. Extensive research has
been conducted on using ML model for zero-day attack detection [5–
13]. Various ML models, ranging from unsupervised ML, supervised
ML, to Transfer Learning, are explored.

While ML is a powerful tool, the adoption of ML to zero-day attack
detection faces several challenges. The availability of the training data
is vital for ML. By definition, the zero-day attacks are not known until
after an attack is discovered. The zero-day attack samples are, thus,
not available in the datasets. One solution is to assume that the novel
zero-day attacks are same or similar to the existing attacks. Hence, the
model trained using the existing data can be used to identify zero-day
attacks. This is an important assumption that needs to be validated.

Secondly, how to process the data and derive the feature vector,
an 𝑛-dimensional vector of numerical features that captures the char-
acteristics of attacks, is challenging. The design of feature vectors often
requires the domain knowledge of the cybersecurity practitioners and
is especially important in designing a zero-day attack ML model.

Finally, the evaluation of the ML-based zero-day attack detectors is
difficult. The testing data for a true zero-day attack are often unavail-
able, and a comprehensive benchmark that provides fair and thorough
comparison is lacking.

In the existing ML-based zero-day attack detection studies, the data
used in both the training and the testing are limited. The evaluation
results often fail to show that the proposed zero-day attack schemes
provide satisfactory detecting precision and are uniformly effective
against different types of zero-day attacks. While multiple surveys have
been conducted on intrusion detection and malware detection using
various approaches [14–18], none has been focused on ML-based zero-
day attack detection schemes. A comprehensive review of existing
ML-based models so as to compare and contrast their pros and cons
and identify the key design and evaluation gaps is highly desired.

In this paper, we conduct such a review, followed by a thorough
comparison in terms of types of ML models, training data, zero-day
attack testing data, and evaluation results. Challenges and future di-

rections are provided thereafter. The paper is organized as follows.
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Fig. 1. One-class SVM decision boundary.

In Section 2, the outlier-based zero-day attack detections are reviewed.
In Section 3, the supervised and hybrid learning-based zero-day attack
detection is reviewed. The Transfer Learning (TL)-based zero-day attack
detection is included in Section 4. The comparisons, challenges, and
future directions are included in Section 5, and conclusions in Section 6
wrap up the paper.

2. Outlier-based zero-day attack detection using normal data

Outlier-based zero-day attack detection trains the detection model
using the normal data that have been observed in the past. The model
detects zero-day attacks by assuming a zero-day attack differs signifi-
cantly from the normal behavior. One-class Supportive Vector Machine
(SVM) [19,20] and auto-encoder [21] are two representative Machine
Learning models for outlier-based zero-day attack detection, which are
explored in [5,6,10,22,23]. Outlier-based zero-day detection falls into
unsupervised learning, a type of ML algorithms that learns pattern from
unlabeled data.

2.1. One-class SVM-based detection

One-class Support Vector Machine (SVM) learn a tight and smooth
boundary that encloses ‘‘normal" data using non-linear kernels. An
outlier is detected if the data fall outside of the decision boundary, as
shown in Fig. 1.

Consider the normal data set {𝑥1, 𝑥2,… , 𝑥𝑁} where 𝑥𝑖 ∈  and 
s the feature space. Let 𝛷 be a feature mapping  →  that maps
he normal data from their original feature space  to a new feature
pace  . One-class SVM seeks to define a hyper-plane in feature space
: 𝑤 ⋅ 𝛷(𝑥) − 𝜌 = 0 such that the hyper-plane has the largest distance

o the origin, while all mapped normal data 𝛷(𝑥𝑖) lie at the opposite
ide of hyper-plane to the origin. For a new point 𝑥, its normalcy is
etermined by evaluating which side of the hyper-plane 𝛷(𝑥) falls onto
n the feature space  . The new point is deemed to be ‘‘abnormal" if it
alls inside the hyper-plane.

The hyper-plane can be found by solving the following quadratic
ptimization program:

min
𝑤,𝜉,𝜌

1
2
‖𝑤‖2 + 1

𝑣𝑁

𝑁
∑

𝑖=1
𝜉𝑖 − 𝜌 (1)

subject to (𝑤 ⋅𝛷(𝑥𝑖)) ≥ 𝜌 − 𝜉𝑖, 𝜉 ≥ 0 (2)

where 𝑣 is the regularization coefficient that trades off model complex-
ity and training error, and 𝜉𝑖 is the slack variable that enables One-class
SVM to have margin to exclude some noisy training data. The decision
function 𝑓 (𝑥) = 𝑠𝑔𝑛(𝑤 ⋅ 𝛷(𝑥) − 𝜌) will be positive for most samples 𝑥𝑖
contained in the training set.

In practice, the mapping 𝛷 is often not explicitly defined. Instead,
ne usually specifies kernel function (𝑥𝑖, 𝑥𝑗 ), where 𝐾(𝑥𝑖, 𝑥𝑗 ) = 𝛷(𝑥𝑖) ⋅
𝛷(𝑥 ). For example, Gaussian kernel 𝐾(𝑥 , 𝑥 ) = exp(−‖𝑥 − 𝑥 ‖

2∕𝜎2).
𝑗 𝑖 𝑗 𝑖 𝑗
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Fig. 2. Autoencoder architecture.

he optimization problem as defined in the Eqn(1) is usually solved in
ts dual form:

max
𝛼

−1
2

𝑁
∑

𝑖,𝑗=1
𝛼𝑖𝛼𝑗𝐾(𝑥𝑖, 𝑥𝑗 ) (3)

subject to
𝑁
∑

𝑖
𝛼𝑖 = 1, 0 ≤ 𝛼𝑖 ≤

1
𝑣𝑁

(4)

where {𝛼𝑖} is the dual variable. With selected kernel function and its
hyper-parameter 𝑣, the above dual optimization problem can be solved
as a quadratic programming problem. Having solved 𝛼𝑖, the value of 𝜌
an be recovered via 𝜌 = ∑

𝑗 𝛼𝑗𝐾(𝑥𝑖, 𝑥𝑗 ) with 𝑥𝑖 being any training data
hose corresponding 𝛼𝑖 satisfies 0 < 𝛼𝑖 < 1∕𝜈𝑁 . The decision function

s rewritten as 𝑓 (𝑥) = ∑

𝛼𝑖>0 𝛼𝑖𝐾(𝑥, 𝑥𝑖) − 𝜌. An incoming new data 𝑥 is
determined as an outlier if 𝑓 (𝑥) < 0.

2.2. Autoencoder-based detection

Autoencoder-based zero-day attack detection belongs to the so-
called reconstruction methods with the assumption that the ‘‘normal"
data can be reconstructed by an autoencoder with low reconstruction
error, while the outliers, or abnormal ones, cannot. Autoencoder is
a neural network that is trained to attempt to copy its input to its
output [24]. It consists of two segments, an encoder and an decoder,
as shown in Fig. 2.

The encoder function, denoted by 𝜙, maps the original data, 𝑥 ∈  ,
to a latent space  , which is present at the bottleneck, i.e., 𝜙 ∶  →  .
The decoder function, denoted by 𝜓 , maps the latent space  at the
bottleneck to the output space  , 𝜓 ∶  →  . The output, in this case,
is the same as the input function. Let 𝑥 be the input to the autoencoder,
and 𝑥′ be its output. The loss function of the autoencoder is defined
as (𝑥, 𝑥′) = ‖𝑥 − 𝑥′‖2. In other words, the autoencoder is trained to
recreate the input after some generalized non-linear compression. The
incoming new data 𝑥 is determined as an outlier if ‖𝑥−𝑥′‖2 > 𝛿, where
𝛿 is pre-set threshold.

2.3. Zero-day attack detection performance comparison: One-class SVM vs.
Autoencoder

∙ Data sets. In [5], the performance of One-Class SVM and autoen-
coder is compared. The experiments use two data sets: CIC-IDS2017
data set [25] and NSL-KDD data set [26]. Both data sets are widely used
in network intrusion detection evaluations. The CIC-IDS2017 data set
contains five-day pcap files that record the benign, insider and outsider
attacks traffic. The dataset contains benign traffic, as well as SSH & FTP
brute force attacks, DoS/DDoS, heartbleed, Web attacks, infiltration,
portscan, and botnet attacks. The full CIC-IDS2017 description and
analysis are available in [27]. The pcap files are pre-processed to
generate bidirectional flows features. The features with high correlation
are dropped in order to reduce its dimension.
177
Fig. 3. Kitsune’s anomaly detection framework.

NSL-KDD contains network features extracted from a series of TCP
connections captured from a local area network. The data set has 41
network features and 22 different types of attack, which can be grouped
into four main categories: Denial of Service (DoS), probing, Remote to
Local (R2L), and User to Root (U2R).

∙Model training. The models are trained solely using benign traffic
for both One-Class SVM and autoencoder models. Each of the attack
classes mimics a zero-day attack and is used to assess the ability of the
model to detect its abnormality

For hyper-parameter optimization in an autoencoder model, random
search [28] is used in order to select the architecture of the network,
number of epochs, and learning rate. The benign instances are split into
75% and 25% for training and validation, respectively. Once the model
training converges, it is evaluated using both benign traffic and attack
traffic. An attack instance is flagged as a zero-day attack if the Mean
Squared Error (MSE) (reconstruction error) of the decoded (𝑥′) and the
original instance (𝑥) is larger than a given threshold.

In the One-Class SVM training, a ‘𝑣 ∈ [0, 1]’ value is specified, which
is the lower and upper bound on the number of examples that are
support vectors and that lie on the wrong side of the hyperplane [29].
The output of the One-Class SVM is a binary value that indicates if an
instance is benign or a zero-day attack.

∙ Experiment results. The zero-day attack detection accuracy varies
greatly according to the different attack types. For instance, the detec-
tion accuracy of the attacks that are very different from benign (for
example, Hulk and DDoS), is high, in the rage of 92% to 99%; while the
detection accuracy of attacks that are less distinguishable from benign
traffic can be low, e.g., DoS-SlowHTTPTest’s detection accuracy is less
than 40%. Second, while One-Class SVM is well suited for flagging rec-
ognizable zero-day attacks, autoencoders generally out-performs One-
Class SVM for complex zero-day attacks as the performance rank is
significantly higher. Finally, both of the models demonstrate low miss
rate (false-positives).

2.4. Ensemble of autoencoders for zero-day attack detection

The authors in [6] employed an ensemble of Autoencoders for
online network intrusion detection. They developed Kitsune, a plug and
play network intrusion detection system that can learn to detect attacks
on the local network without supervision and in an efficient online
manner. Fig. 3 depicts the Kitsune’s core Machine Learning architecture
with an ensemble of autoencoders to collectively differentiate between
normal and abnormal traffic patterns. Kitsune has a feature extraction
component that extracts 𝑛 features of a network session under monitor-
ing. The collected features are then clustered into 𝑘 sub-instances, with
one sub-instance for each autoencoder. The outputs of the ensemble-
layer autoencoders are then fed into a output-layer autoencoder that
generates the final score.

Assume that there are 𝑘 ensemble-layer autoencoders with the input
pace of 𝑚 features. Kitsune employs the agglomerative hierarchical
lustering method to divide the 𝑛 features into 𝑘 clusters. The mapper
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ensures that each cluster has no more than 𝑚 features and captures the
normal behavior well enough to detect anomalous events occurring in
the respective sub-instances.

∙ Data sets and evaluation Kitsune is evaluated using a IP camera
video surveillance test-bed. The test-bed consists of two sets of HD
surveillance cameras, with each set having four cameras. The cam-
eras are connected to the Digital Video Recorder (DVR) via a VPN
tunnel. The evaluation deploys the software tools in the network to
generate four types, nine specific attacks, including OS Scan, Fuzzing,
Video Injection, ARP MitM (ARP Man in the Middle), Active Wiretap,
SSDP Flood, SYN DoS, SSL Renegotiation, and Mirai Botnet malware.
When first installed, Kitsune assumes that all traffic is benign while
in training mode. The online evaluation results are compared with the
offline algorithms using Isolation Forests (IF) [30] and Gaussian Mix-
ture Models (GMM) [31]. The offline algorithms have more information
and supposes to perform better than the online algorithms. The true
positive rate (recall), the false negative rate, the area under the receiver
operating characteristic curve (AUC), and the equal error rate (EER) are
used as the measurement metrics. The evaluations shows that Kitsune
can detect various attacks with a performance comparable to offline
anomaly detectors. The true positive rate varies greatly for different
types of attacks. For instance, the detection is not effective for attacks
such as ARP MitM, OS Scan, SYN DoS, SSL Renegotiation, and Video
injection. The true positive rate is smaller than 30% when the False
Positive Rate is set to be 0.001.

3. Supervised and hybrid learning-based zero-day attack detec-
tion using labeled data

Supervised learning is a type of machine learning technique that
maps an input to an output based on example input–output pairs. It
infers a mapping function from labeled training data consisting of a
set of training examples. A zero-day attack is a novel cyber-attack
that is unknown to the public. By definition, the labeled data of zero-
day attack are not available. However, the assumption is made that
the zero-day attack’s feature vector is similar to that of the existing
attacks [7,8,32,33], or that zero-day attacks can be modeled by adding
noise to existing data [10]. With the help of known attacks’ labeled
data, supervised learning can be employed to detect zero-day attacks.
Below we review some zero-day attack detection techniques that use
supervised learning or hybrid learning, which is the combination of
supervised and unsupervised learning.

3.1. Evaluation of supervised machine learning classifiers for zero-day
attack detection

In [7], Zhou and Pezaros inspect the effectiveness of six popular
and well known machine learning classification models for zero-Day
attacks detection. They are Random forest classifier, Gaussian naive
Bayes classifier, Decision tree classifier, Multi-layer Perceptron (MLP)
classifier, K-nearest neighbors classifier, and Quadratic discriminant
analysis classifier. Since these classifiers have been studied extensively,
we will not introduce them in detail here.

The training data set is CSE-CIC-IDS2018 Data Set [34] (it is called
CIC-AWS-2018 in the paper). The data set contains six different intru-
sion types, Brute-force, Botnet, DoS, DDoS, Web attacks, and infiltration
of the network from inside, with a total of 14 different intrusions,
namely, Botnet attack, FTP-BruteForce, SSH-BruteForce, BruteForce-
Web, BruteForce-XSS, SQL Injection, DDoS-HOIC attack, DDoS-LOIC-
UDP attack, DDoS-LOIC-HTTP attacks, Infiltration, DoS-Hulk attack,
DoS-SlowHTTPTest attack, DoS-GoldenEye attack, and DoS-Slowloris
attack. The data are collected from real networks. The benign data
are collected for a week from a typical research network. The traffic
include routine daily activities such as emailing, searching, news, video
streaming, etc. All attacks and benign traffic are labeled and are used
for training the detection models. The data set has 80 bi-directional
178
flow features. To reduce the computation expense, the authors pre-
processed the data and removed the features deemed to be ‘‘noisy",
i.e., the features that does not show significant difference between the
benign and the malicious traffic. The leftover 25 features are used in
the detection (see Table 1 in [7]).

To simulate the zero-day attack, eight new attacks that are not
included in the training CSE-CIC-IDS2018 data set are collected from
real-life attacks. These zero-day attacks include Bitcoin miner, Drowor
worm, nuclear ransomware, false content injection, ponmocup tro-
jan, DDoS Bot’a Darkness, Google doc macadocs, and ZeroAccess (see
Table 2 in [7]).

The evaluation consists of two steps. In the first step, six Machine
Learning models are evaluated using the CSE-CIC-IDS2018 Data Set and
the most effective model is selected. In the second step, the selected
model is evaluated against the zero-day attacks. All attacks are treated
as ‘‘malicious", and the models are trained to classify the traffic as either
‘‘benign" or ‘‘malicious".

Extensive cross validation is run on the labeled CSE-CIC-IDS2018
data to validate the fitness of each machine learning model. True
positive rate (recall), false positive rate, F1 metric, and running time
are performance metrics used in the comparison. While all models
are effective against some attack types (e.g., DDoS-LOIC-UDP, SSH-
BruteForce, or FTP-BruteForce, with true positive rate close to 100%
and near zero false positive rate) some of the other attacks (e.g., Infil-
tration and SQL Injection) are difficult to detect correctly. For instance,
using K-nearest neighbors model, the true positive rate for infiltration
attacks runs as low as 28% with the false positive rate of 16%. It turns
out the decision tree model is the best performer and is chosen to detect
the zero-day attacks.

The authors apply the decision tree model to the zero-day attack
data at last. The zero-day attacks are mixed with the benign data.
The true-positive rate achieves the best at 96% when the maximum
tree depth is 5, and slightly deteriorates to 92% and 90% when the
maximum tree depth reduces to 3 and 4. The false-positive rate is
lowest at 5% when the maximum depth is 3 and 4, and deteriorates
to about 10% when the maximum depth is either lower or higher than
2 or 5, respectively.

3.2. Integrating supervised and unsupervised learning for zero-day malware
detection

Malware is a malicious software program that is deployed by attack-
ers to compromise a computer system. Malware, e.g., botnets, spyware,
keystroke loggers, and trojans, can disrupt the normal operations of the
system, give the attackers unauthorized access to the system resources,
or allow them to gather information from users without their consent.
Malware is one of the most damaging security threats facing the
Internet today.

In addition to newly developed malwares, the existing malwares
also evolve, either by automatically reprogramming themselves when
being distributed or propagated (so called metamorphic malwares), or
by self-mutating or being encrypted to avoid being detected (so called
polymorphic malwares). The signature-based approach is, thus, not
effective in detecting such zero-day malwares.

In [8], Comar et al. developed a two-level, supervised and unsuper-
vised hybrid learning method for zero-day malware detection. Fig. 4
depicts the detection framework, which consists of the top macro-level
classifier and the bottom micro-level multiple classifiers. The macro-
level employs a random forest classifier to determine if an incoming
flow is malicious or not. If deemed to be malicious, the incoming flow
is passed on to the micro-level classifier to check if it belongs to one of
the known malwares in the training set, or a zero-day malware.

The macro-level classifier employs a binary random forest model/
classifier. The micro-level classifier employs a multi-class Support Vec-
tor Machine (SVM) model developed in [35]. The micro-level classifier
is made up of multiple single-class SVMs, where each single-class SVM
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Fig. 4. Two-level hybrid learning-based zero-day malware detection framework.

odel specializes in categorizing instances from a specific malware
lass. Collectively, the micro-level classifiers are able to distinguish
ero-day malware from those that are already known.1

A single-class classifier consists of two concentric hyperspheres. The
hyperspheres for class 𝑘 are constructed by first labeling the instances
belonging to class 𝑘 as +1 and those that belong to other classes as
-1. Two concentric hyperspheres are constructed such that the inner
sphere encloses as many instances from class 𝑘 as possible. The outer
sphere is constructed so that instances that do not belong to class 𝑘
lie outside of it. The radial distance between the two hyperspheres is
called the classifier’s margin, which defines the objective function to
be optimized by the single-class SVM learning algorithm:

min
𝑅𝑘 ,𝑎𝑘 ,𝑑𝑘 ,𝜉𝑖 ,𝜉𝑙

𝑅2
𝑘 −𝑀𝑑2𝑘 +

𝐶
𝑁𝑘

∑

𝑖∶𝑦𝑖=𝑘
𝜉𝑖 +

𝐶
𝑁�̄�

∑

𝑙∶𝑦𝑙≠𝑘
𝜉𝑙 (5)

subject to ‖𝑥𝑖 − 𝑎𝑘‖2 ≤ 𝑅2
𝑘 + 𝜉𝑖, ∀𝑖 ∶ 𝑦𝑖 = 𝑘

‖𝑥𝑙 − 𝑎𝑘‖2 ≥ 𝑅2
𝑘 + 𝑑

2
𝑘 − 𝜉𝑙 , ∀𝑙 ∶ 𝑦𝑙 ≠ 𝑘

𝜉𝑖 ≥ 0, ∀𝑖 ∶ 𝑦𝑖 = 𝑘
𝜉𝑙 ≥ 0, ∀𝑙 ∶ 𝑦𝑙 ≠ 𝑘

(6)

here 𝑎𝑘 and 𝑅𝑘 represent the center and radius of the inner hy-
ersphere for the 𝑘-th class. The value of 𝑑𝑘 represents the margin
etween inner and outer hyperspheres. Specifically, the radius of outer
ypersphere is

√

𝑅2
𝑘 + 𝑑

2
𝑘 . 𝐶 and 𝑀 are parameters that penalizes

misclassification errors and control the trade-offs between 𝑅2
𝑘 and 𝑑2𝑘 .

he values of 𝑁𝑘 and 𝑁�̄� are the number of instances that belong to
he 𝑘-th class and its complement. 𝜉𝑖 and 𝜉𝑙 are the slack variables. The

above optimization problem is solved using the dual approach [8].
∙ Zero-day malware detection. If a new malware’s flow-based

features are significantly different from those of the trained malware,
the test instance lies outside the hyperspheres for all the single-class
SVM models. This instance is predicted to be a zero-day malware.

On the other hand, a zero-day malware may be a variant of existing
malware, and, thus, be identified as the malware by one or multiple
single-class SVM models. In such cases, a probabilistic class-based
profiling is developed for zero-day malware detection. Let the inner
hypersphere of the 𝑘-th single-class SVM model be defined by (𝑎𝑘, 𝑅𝑘),

here 𝑎𝑘 is the center and 𝑅𝑘 is the radius of the hypersphere. Further
ssume that the radial distances for all training instances follow a
aussian distribution with mean 𝜇𝑘 and standard deviation 𝜎𝑘. The
alues of 𝜇𝑘 and 𝜎𝑘 are estimated using the training examples. The
robability 𝑝𝑘 of a test instance belonging to the class 𝑘 is estimated
sing its radical distance and the corresponding Gaussian model. A final
core is computed based on the probability vector [𝑝1, 𝑝2,… , 𝑝𝑀 ]. If the

1 Note that the single-class SVM is different from one-class SVM as de-
cribed in Section 2.1. The single-class SVM is a special case of multi-class
VM and is trained using labeled data. The one-class SVM is trained using
nlabeled data.
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Fig. 5. Zero-day malware detection using labeled and unlabeled data.

final score is greater than a preset threshold, the test instance is deemed
to be a zero-day malware.

∙ Data sets and evaluations. The scheme is evaluated using a
rivate data set from an Internet service provider. The 108 network
low-level features, such as bytes per second, packets per flow, packet
nter-arrival times, etc., are used as the features. The class labels are
btained by analyzing network traffic’s corresponding payload using a
ommercial IDS/IPS system. 38 different types of malicious flows are
dentified. The flows that were unlabeled by the IDS system are labeled
s benign traffic.

The data are partitioned into training set and test set. To simulate
ero-day malware, some of the malware classes were withheld from
he training set and appear only in the test set. Specifically, twelve
ost prevalent malware classes, e.g., Sality, Conficker (Downadup),
idserv, and Trojans, are selected as known malware and are included

n the training set (together with an equal number of benign flows).
he remainder of the network flows were assigned to the test set that

ncludes all 38 malware flows.
The random forest model based macro-level binary classifier is able

o detect all known malware and 88.54% of the zero-day malware,
ith the F-1 score of 90.96% on the malicious classes. For micro-level

lassification, the AUC score (the total area underneath the ROC curve)
eaches 91% to detect the zero-day malware. However, the F1 score of
ero-day attack detection is only 0.50.

.3. Hybrid learning using available unlabeled data for zero-day malware
etection

In [9], a hybrid learning approach is proposed that automatically
ntegrates the knowledge of the unknown malware from available
nlabeled data into the detection system. Fig. 5 depicts the proposed
cheme. First, the files, both labeled and unlabeled, are executed in a
andbox where dynamic run-time logs are collected. The collected logs
re processed to extract features—the frequencies of API calls. Then the
eature vectors of both labeled and unlabeled data sets are merged and
ed into a 𝑘-mean cluster, where multiple clusters are formed (since the
lustering is unsupervised learning, the labels are not used in this step).
he centroids of individual clusters are computed, and the geometric
istance from a labeled sample to the clustering centroids are calculated
s the augmented features. Finally, the labeled samples with the run-
ime features and the augmented geometric features are used as the
raining data to train the supervised classifier, such as Random Forest,
VM, etc. The main intuition of the design is that the unlabeled data
et may already contain the zero-day malware. Thus, the augmented
eometric distance shall reflect the patterns of zero-day malware.
∙ Data sets and evaluations. The experiments use the data from CA

echnologies VET Zoo and two other publicly available data sources.
nfortunately all of these data sets are no longer available currently.
esides the clean files, the data set contains three malware types,
rojan, worms, and viruses, and twenty malware families. The training
ata set contains all malware families except emerleox, a virus family
hat is left out as the zero-day attacker. A total of 907 examples are in
he training set while 506 examples are in the testing set.
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All the data from both the training and test sets are merged into one
et for unsupervised clustering. A global k-means algorithm is used to
luster the data into three groups. The cluster centroids are calculated
nd the distances of the examples to the cluster centroids are computed.
he geometric distances are considered as the knowledge from unla-
eled data. For the purpose of comparison, SVM, decision trees(J48),
aive Bayes, instance-based (IB) classifiers, and Random forest are
sed as the binary classifiers. True positive rate, false positive rate,
UC, and accuracy are used as the accuracy metrics. The experiments
how that using run-time analysis and malware API frequency as the
eature vector (but without augmented geometric distances), Random
orest achieves the highest accuracy of 98.5348%, and true positive
ate of 0.985, false positive rate of 0.001, and AUC of 0.998. With the
ugmented geometric distances, both SVM and Random forest achieve
erfect detection results—true positive rate (1), false positive rate (0),
UC (1), and accuracy (100%).

.4. Generative adversarial networks (GAN)-based zero-day malware de-
ection

In [10], Kim et al. proposed a Generative Adversarial Networks
GAN)-based zero-day malware detector. Generative Adversarial Net-
orks (GAN) consists of a discriminator and a generator that interacts
dversely and are trained together. The generator takes uniform ran-
om variable 𝑧 as the input and generates fake data that are statistically
imilar to the training data. The discriminator is a classifier that is
rained to differentiate the generated data from the real data. The
AN is trained using the malware data. After a successful training, the
AN’s discriminator shall be able to classify a testing sample either as
malware or a benign software.

Below we describe the working mechanism of a GAN neural net-
ork. Eqn (7) is the objective function of a GAN, where 𝑝𝑑𝑎𝑡𝑎(𝑥) is the

probability distribution of the real/training data. 𝐺(𝑧) is the generated
data by the generator 𝐺 driven a random variable 𝑧, where 𝑧 follows
a probability distribution of 𝑝(𝑧). The discriminator 𝐷 is trained to
maximize 𝑉 (𝐷,𝐺), i.e., it strives to classify the real data 𝑥 to be one
(𝐷(𝑥) = 1), and classifies the generated data to be zero (𝐷(𝐺(𝑧)) = 0).
In contrast, 𝐺 is trained to minimize 𝑉 (𝐷,𝐺) such that 𝐷(𝐺(𝑧)) is one,
i.e., the discriminator 𝐷 cannot distinguish 𝐺(𝑧) from real training data
𝑥.
min
𝐺

max
𝐷

𝑉 (𝐷,𝐺) =E𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)
[

log𝐷(𝑥)
]

+ E𝑧∼𝑝𝑧(𝑧)
[

log(1 −𝐷(𝐺(𝑧)))
]

(7)

When the GAN training converges, the distribution of the data gener-
ated by the generator 𝐺 becomes the same as the distribution of real
data. The discriminator 𝐷 is able to distinguish the data different from
the real data distribution accurately. In other words, the discriminator
can serve as a zero-day malware detector to classify the malware from
the normal data.

One issue with the GAN training is its instability in training con-
vergence. The authors proposed to train a autoencoder first using the
entire training data set. As described in 2.2, the encoder compresses the
input into latent vector, while the decoder reconstruct the output. The
trained decoder is transferred to the GAN as the preliminary generator.
The GAN is trained using the malware samples in the training data
set. Finally, the trained GAN discriminator is used as the detector. In
addition, since the malware code is represented as an image, and the
deep-convolutional neural network is effective in image generation and
detection, the deep-convolution technique is used in both autoencoder
and GAN. For example, the Deep Convolutional GAN (DCGAN), an
extension of the GAN architecture using deep convolutional neural
networks for both the generator and discriminator models, is employed
in [10].

∙ Data sets and evaluations. The malware data set used in train-
ing and testing is from the Kaggle Microsoft Malware Classification

Challenge [36]. The data in the form of binary codes are used and
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are converted into the image. Because sizes of images are too large,
the images were reduced to 0.1 times of their original sizes. The zero-
day attacks are generated by introducing noise into existing malware.
Specifically, the zero-day attack is produced by combining two malware
images using Structural Similarity Index (SSIM) method.

The proposed method is compared with other ML-based detection
methods such as SVM, random forest, decision tree, naive Bayes, etc.
The results show that the proposed GAN discriminator-based detec-
tor consistently out-performs other models. For zero-day attacks, the
proposed scheme achieves greater than 98% detection accuracy and
is robust against the zero-day attacks generated with different noise
levels.

4. Transfer learning (TL)-based zero-day attack detection

Traditional Machine Learning assumes that the collected training
data and future data share the same features and have the same
distribution. The machine learning models are trained on the training
data and make predictions on the future data. Transfer learning, in con-
trast, allows the feature space, data distribution, and label prediction
tasks to be different. In a real world, human beings can intelligently
apply knowledge learned in previous tasks to solve a new problem
faster and better, which motives the development of transfer learning
techniques [37,38].

Formally, a domain  is defined as the tuple of { , 𝑃 (𝑋)}, where
 is the feature space and 𝑃 (𝑋) is the probability distribution of 𝑋,
where 𝑋 = {𝑥1,… , 𝑥𝑛} ∈  . A task  consists of a label space  and
a predictive function 𝑓 (⋅), i.e.,  = { , 𝑓 (⋅)}. The predictive function
𝑓 (⋅) is expected to be learned from the domain data of {(𝑥𝑖, 𝑦𝑖)}, where
𝑖 ∈ 𝑋 and 𝑦𝑖 either belongs to  or not available. In a later case
𝑥𝑖, 𝑦𝑖) is a non-labeled data. The function 𝑓 can be used to predict the
orresponding label 𝑓 (𝑥) of a new instance 𝑥.

Consider a source domain 𝑆 and learning task 𝑆 , and a target
omain 𝑇 and learning task 𝑇 , transfer learning aims to help improve

the learning of the target predictive function 𝑓𝑇 using the knowledge
in 𝑆 and 𝑆 , where 𝑆 ≠ 𝑇 or 𝑆 ≠ 𝑇 . If the source and target
domain are the same, i.e., 𝑆 = 𝑇 , and their learning tasks are the
same, i.e., 𝑆 = 𝑇 , the learning problem becomes a traditional machine
learning problem.

The transfer learning (TL) techniques can be categorized into dif-
ferent categories based on either the TL settings or the TL approaches.
Based on TL settings, there are three types of TL: Inductive TL, Trans-
ductive TL, and Unsupervised TL:

• Inductive TL: the source and target tasks are different but related.
The source and target domains may or may not be the same. Some
labeled data in the target domain are required for the purpose of
induction.

• Transductive TL: the source and target tasks are the same, but
the source and target domains are different. A lot of labeled data
in the source domain are available while no labeled data in the
target domain are available.

• Unsupervised TL: similar to the inductive TL, the target task is
different from the source task. The labels are not available in both
source domain and target domain. Unsupervised TL focuses on
solving unsupervised learning tasks in the target domain such as
clustering or dimensionality reduction.

In the zero-day attack detection, the source and target tasks are the
same, i.e., to detect the attacks. The labeled data in the target domain,
i.e., the labels for zero-day attacks, are typically not available. Hence,
the transductive TL is most suitable for the zero-day attack detection.
In Section 4.2, Transductive TL-based domain adaption method is
described for zero-day attack detection.

Based on different TL approaches, TL techniques can be categorized
into four categories: Instance-based TL, Feature-based TL, Parameter-
based TL, and Relational knowledge-based TL:
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Fig. 6. Feature-based TL for zero-day attack detection using labeled source domain
data and unlabeled target domain data.

• Instance-based TL: The Instance-based TL re-weights some labeled
data in the source domain for the use in the target domain.

• Feature-based TL: In the Feature-based TL, a good feature rep-
resentation is found so as to reduce the difference between the
source and target domains and, thus, improve the prediction
accuracy in the target domain.

• Parameter-based TL: The parameter-based TL discovers shared
parameters or priors between the source and target domain to
improve the transfer learning.

• Relational knowledge-based TL: Relational knowledge-based TL
builds the mapping of relational knowledge between the source
domain and the target domain.

The feature-based TL has been explored in the zero-day attack detec-
tion as described in Section 4.1. Feather-based TL can adapt features in
a target domain with deficient/no labeled data by transferring learned
knowledge from a related source domain. The intuition behind this is
that a human’s transitive inference ability can extend what has been
learned in one domain to a new similar domain. Zero-day attacks often
belong to variants of known attack families and share common traits
in feature spaces, which suggested a good fit for applying transfer
learning.

4.1. Feature-based transfer learning for zero-day network attack detection
using spectral transformation

In feature-based transfer learning, a new feature representation is
learned from the source and the target domain and is used to transfer
knowledge across domains. Let the source domain training examples be
𝑆 = {𝑥𝑖}, 𝑥𝑖 ∈ 𝑅𝑚, and labels be 𝐿𝑆 = 𝑦𝑖. The target domain data are
𝑇 = {𝑢𝑗}, 𝑢𝑗 ∈ 𝑅𝑛, and the target domain does not have labels. The
source and target domain samples have different feature dimension, 𝑚
and 𝑛 respectively. The goal is to accurately predict the labels on the
target domain 𝑇 .

In [11,12], the authors proposed the spectral transformation-based
approach that transforms the source and target data onto a common
latent feature space (see Fig. 6). After the transformation, a Machine
Learning-based classifier is trained using the transformed source do-
main data and their labels. The same classifier can then be used to
classify the transformed target samples for the zero-day network attack
detection. We next described how the feature transformation is done.

Given source data 𝑆 and target data 𝑇 , an optimal projection of 𝑆
and 𝑇 onto an optimal subspace 𝑉𝑆 and 𝑉𝑇 with the feature size of 𝑘
is conducted according to the following optimization objective:

min
𝑉𝑆 ,𝑉𝑇

𝑙(𝑉𝑆 , 𝑆) + 𝑙(𝑉𝑇 , 𝑇 ) + 𝛽𝐷(𝑉𝑆 , 𝑉𝑇 ), (8)

where 𝑙(⋅, ⋅) is a distortion function that evaluates the difference be-
tween the original data and the projected data. 𝐷(𝑉𝑆 , 𝑉𝑇 ) denotes the
difference between the projected source data and the projected target
data. The parameter 𝛽 controls the trade-off between 𝑙(𝑉𝑆 , 𝑆) + 𝑙(𝑉𝑇 , 𝑇 )
and 𝐷(𝑉𝑆 , 𝑉𝑇 ). The function 𝑙(⋅, ⋅) and 𝐷(⋅) are defined as:

2
𝐷(𝑉𝑆 , 𝑉𝑇 ) = ||𝑉𝑇 − 𝑉𝑆 || , (9)
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𝑙(𝑉𝑆 , 𝑆) = ||𝑆 − 𝑉𝑆𝑃𝑆 ||
2, 𝑙(𝑉𝑇 , 𝑇 ) = ||𝑇 − 𝑉𝑇 𝑃𝑇 ||

2, (10)

where 𝑉𝑆 and 𝑉𝑇 are linearly transformed back to original domain and
target space by matrix 𝑃𝑆 ∈ 𝑅𝑘×𝑚 and 𝑃𝑇 ∈ 𝑅𝑘×𝑛, respectively. || ⋅ ||2 is
the Frobenius norm that can also be expressed as a matrix trace norm.

Substituting (9) and (10) into (8), we obtain the following optimiza-
tion objective to minimize with regard to 𝑉𝑆 , 𝑉𝑇 , 𝑃𝑆 and 𝑃𝑇 as follows:

min𝐺(𝑉𝑆 , 𝑉𝑇 ,𝑃𝑆 , 𝑃𝑇 ) = 𝑚𝑖𝑛
(

||𝑆 − 𝑉𝑆𝑃𝑆 ||
2

+ ||𝑇 − 𝑉𝑇 𝑃𝑇 ||
2 + 𝛽 ⋅ ||𝑉𝑇 − 𝑉𝑆 ||

2) (11)

In [11], a gradient method, called HeTL, is employed to obtain the
global minimums. However, the performance of the algorithm depends
on the choice of 𝛽 value as well as the row order of the data samples
in 𝑆 and 𝑇 , which affects the results of 𝐷(𝑉𝑆 , 𝑉𝑇 ). Practically, we
know little about the new attack in 𝑇 , so the transformation process in
(11) could be misleading. In [12], a clustering enhanced hierarchical
transfer learning is proposed to mitigate the issue.

∙ Data sets and evaluation. NSL-KDD data set [26] is used in the
evaluation. NSL-KDD contains network features extracted from a series
of TCP connections captured from a local area network. The data set
has 41 network features and 22 different types of attack, which can
be grouped into four main categories: DoS, R2L, Probe, and User to
root (U2R). The portion of U2R is small and, thus, is not used in the
evaluation.

The zero-day attacks are simulated by assuming attacks in the target
data have no labels and differ from attacks in the source domain.
One main attack category, e.g., DoS, R2l, or Probe, and normal exam-
ples form the source domain; a different attack type combined with
normal samples from the target domain. Three source–target domain
pairs are constructed: DoS → Probe, DoS → R2L and Probe → R2L.
The experiments are repeated ten times, and the average results are
reported.

The authors argue that different feature sets may be used to detect
different attacks. For example, traffic feature is more distinguishable
for DoS attack, while the content feature is more distinguishable for the
R2L attack. In the experiments, the most relative features are selected
for the source and target domains using information gain, resulting in
unequal feature dimensions. The final selected features are included
in the Appendix in [12]. For the purpose of comparison, the baseline
approach always uses the features selected for the source domain and
apply the traditional classifiers.

The C4.5 decision tree (CART), linear SVM, and KNN are chosen
as the classifiers for baselines and TL-based approaches. The accu-
racy, F1 score, and ROC curve are used as the performance metrics.
The results show that the baseline models performed poorly, with
accuracy of 0.47–0.74 and F1 score of 0.1–0.65. The proposed TL-
based approaches, HeTL and CeHTL, significantly outperformed the
baselines, obtained over 0.70 accuracy and 0.75 F1 score. CeHTL also
outperformed HeTL in all experiments.

∙ Discussion. The proposed feature-based TL methods require that
the data sets from both the source and target domains are available
when computing the optimal feature vectors in the latent space. Thus,
the methods will not work in the real-time zero-day attack detection. In
addition, the feature vector of the target domain is set to be the same
as that of the source domain in the baseline experiments, i.e., not all
features are used in the baseline experiments, which may contribute
to the low accuracy and F1 scores. A fairer approach is to use the
entire set of available features in the baseline experiments. As shown
in Section 2.3, the results of accuracy and F1 score are much better
using the entire feature set. It will be interesting to see if TL-based
approaches can still outperform the baseline methods using the entire
feature set.
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4.2. Domain adaptation-based zero-day attack detection using manifold
alignment

Manifold alignment-based domain adaptation assumes there are 𝐾
data sets, where the data instances belong to 𝑐 different classes (labels).
Let 𝑋𝑘 = (𝑥1𝑘,… , 𝑥𝑚𝑘𝑘 ) represent the 𝑘-th input data set with 𝑝𝑘 features.
𝑋𝑘 can be viewed as a matrix of size 𝑝𝑘 × 𝑚𝑘. Some data points in a
data set are labeled, while others are not. When 𝑋𝑘 corresponds to a
source domain, the number of labeled data is usually large; when 𝑋𝑘
corresponds to a target domain, the number of labeled data is small.

Manifold alignment-based domain adaption is introduced in [39].
It treats each input domain as a manifold. The goal is to construct 𝐾
mapping functions 𝑓1,… , 𝑓𝐾 to project the input domains to a new
lower-dimension latent space while preserving the topology of each
domain, i.e., the instances with the same labels become neighbors, the
instances with different labels are separated, and the topology of each
set is preserved. The resulting feature space is a common underlying
space shared by all the input domains, and can be directly used for
knowledge transfer across domains.

Define similarity matrix 𝑊𝑠 and dissimilarity matrix 𝑊𝑑 as follows:

𝑊𝑠 =
⎛

⎜

⎜

⎝

𝑊 1,1
𝑠 ⋯ 𝑊 1,𝐾

𝑠
⋯ ⋯ ⋯

𝑊 𝐾,1
𝑠 ⋯ 𝑊 𝐾,𝐾

𝑠

⎞

⎟

⎟

⎠

(12)

𝑊𝑑 =
⎛

⎜

⎜

⎝

𝑊 1,1
𝑑 ⋯ 𝑊 1,𝐾

𝑑
⋯ ⋯ ⋯

𝑊 𝐾,1
𝑑 ⋯ 𝑊 𝐾,𝐾

𝑑

⎞

⎟

⎟

⎠

(13)

Both 𝑊𝑠 and 𝑊𝑑 are (𝑚1 +⋯ + 𝑚𝐾 ) × (𝑚1 +⋯ + 𝑚𝐾 ) matrix, where
𝑊 𝑎,𝑏
𝑠 and 𝑊 𝑎,𝑏

𝑑 are 𝑚𝑎 × 𝑚𝑏 matrix. 𝑊 𝑎,𝑏
𝑠 (𝑖, 𝑗) = 1 if 𝑥𝑖𝑎 and 𝑥𝑗𝑏 have

the same label; 𝑊 𝑎,𝑏
𝑠 (𝑖, 𝑗) = 0 otherwise (including the case when the

label is not available). 𝑊 𝑎,𝑏
𝑑 (𝑖, 𝑗) = 1 if 𝑥𝑖𝑎 and 𝑥𝑗𝑏 have different labels;

𝑊 𝑎,𝑏
𝑑 (𝑖, 𝑗) = 0 otherwise (including the case when the label is not

available). Finally define 𝑊𝑘(𝑖, 𝑗) = 𝑒−||𝑥
𝑖
𝑘−𝑥

𝑗
𝑘||

2
. The mapping function

𝑓1,… , 𝑓𝐾 are obtained by minimizing the cost function:

𝐶(𝑓1,… , 𝑓𝐾 ) = (𝐴 + 𝐶)∕𝐵, (14)

where

𝐴 = 0.5
𝐾
∑

𝑎=1

𝐾
∑

𝑏=1

𝑚𝑎
∑

𝑖=1

𝑚𝑏
∑

𝑗=1
||𝑓𝑇𝑎 𝑥

𝑖
𝑎 − 𝑓

𝑇
𝑏 𝑥

𝑗
𝑏||

2𝑊 𝑎,𝑏
𝑠 (𝑖, 𝑗), (15)

𝐵 = 0.5
𝐾
∑

𝑎=1

𝐾
∑

𝑏=1

𝑚𝑎
∑

𝑖=1

𝑚𝑏
∑

𝑗=1
||𝑓𝑇𝑎 𝑥

𝑖
𝑎 − 𝑓

𝑇
𝑏 𝑥

𝑗
𝑏||

2𝑊 𝑎,𝑏
𝑑 (𝑖, 𝑗), (16)

𝐶 = 0.5𝜇
𝐾
∑

𝑘=1

𝑚𝑘
∑

𝑖=1

𝑚𝑘
∑

𝑗=1
||𝑓𝑇𝑘 𝑥

𝑖
𝑘 − 𝑓

𝑇
𝑘 𝑥

𝑗
𝑘||

2𝑊𝑘(𝑖, 𝑗). (17)

Minimizing 𝐴 encourages the instances from the same class to be pro-
jected to similar locations in the new space. Maximizing 𝐵 encourages
the instances from different classes to be separated in the new space.
Finally, minimizing 𝐶 preserves topology of each given domain, where
𝜇 is a weight parameter.

∙ Domain Adaptation-based zero-day attack detection using
manifold alignment. The authors in [13,40] proposed modified do-
main adaptation-based zero-day attack detection method using mani-
fold alignment. The method assumes there are one source domain and
one target domain, where only the data points in the source domain
are labeled as either normal or malicious. In order to overcome the
lack of labels in the target domain, the authors employed clustering
method to construct similarity and dissimilarity matrices as required
by the manifold alignment method. The methods developed in [13,40]
differ in how the similarity and dissimilarity matrices are constructed.
Since [13] is a newer work, we focus on its description below.

The source domain is first clustered into 𝑘 clusters using 𝑘-medoid
clustering method. The value of 𝑘 is selected so as to minimize the
cluster purity value. The target domain is also clustered into 𝑘 clusters.
182
In each domain, clusters are sorted in the ascending order of their
respective distance from the cluster mean to the domain global mean.
For instance, the highest rank (rank one) is assigned to the cluster that
is closest to the global mean.

The cluster rankings are used to decide the similarity and dissim-
ilarity values. The rationale is that the neighboring clusters are more
similar to each other than the clusters that are far apart; and the 𝑖-th
cluster of one domain may have correspondence with the 𝑖-th cluster
as well as its nearby clusters (𝑖-1-th and 𝑖+1-th)of the other domain.
Hence, the similarity value among the 𝑖-th cluster of one domain and
the corresponding 𝑖-th cluster of the other domain is set to be one.
The similarity value among the 𝑖-th cluster and the 𝑖-1-th and 𝑖+1-th
clusters is set to be 0.5, others are set to be zero. Similarly, in case of
constructing the dissimilarity matrix, the dissimilarity value among the
𝑖-th cluster and the corresponding 𝑖-th cluster of the domain is set to
be zero. The dissimilarity value among the 𝑖-th cluster and the 𝑖-1-th
and 𝑖+1-th clusters is set to be 0.5, and others are set to be one. The
manifold alignment algorithm is then applied to obtain the mapping
functions for all clusters.

To increase the number of available labels, the authors [13] also
proposed the soft label generation method for target domain, using
the rational similar to assign the similarity and dissimilarity values.
See [13] for details.

Once the data are mapped to the latent space, a Machine Learning
classifier, such as Deep Neural Network, SVM, etc., is trained using
the labeled data. The trained classifier is used as the zero-day attack
detector.

∙ Data sets and evaluation. The NSL-KDD data set [26] is used for
the evaluation. The zero-day attack is simulated by hiding an attack’s
labels. The Transfer Learning tasks of DoS → R2L and DoS → Probe are
evaluated. Each data set contains the specific attack instances and some
normal instances. In addition, another cloud intrusion detection data
set, namely CIDD [41], is used as the zero-day attacks and the NSL_DoS
→ CIDD is also evaluated. Multiple Machine Learning classifiers, such
as Deep Neural Network, SVM, K-Nearest Neighbors, Random Forrest,
and Decision Tree, are used in the experiment, and the Deep Neural
Network offers the best results.

In the DoS → R2L transfer learning task, the accuracy reaches
0.9183 and the false positive rate is 0.0423. The similar accuracy
(0.9175) and the false positive rate (0.0822) for the DoS → Probe
task. However, the accuracy is only 0.7885 in the NSL_DoS → CIDD
task, with the false positive rate of zero. The authors also compare
the performance of manifold alignment-based scheme with that of
CeHTL [12], HeTL [11], PCA-based TL [42], and the transfer learning-
based approach as described in [40], the manifold alignment-based
scheme out-performs the aforementioned approaches.

5. Comparisons, challenges and future directions

Table 1 compares different ML-based zero-attack detection tech-
niques in terms of ML model employed, training data set, zero-day
testing data set, evaluation results, and main challenges and issues.
Among nine zero-day detection schemes reviewed by this paper, seven
schemes use a total of five publicly available data sets for the model
training. The rest two schemes make use of a test-bed and private
data sets, respectively. In addition, these five public data sets are from
several different domains, e.g., malware, network attacks, etc., and
differ in the features space.

The reviewed schemes in the Table 1 show promise in accurately
detecting zero-day attack using Machine Learning models. However,
the proposed detection schemes often exhibit large variation in detec-
tion accuracy against different types of attacks. In addition, quantitative
head-to-head comparison of different schemes is difficult as the evalu-
ation data sets, evaluation metrics, and comparison schemes are often
different. The training/testing data sets are limited and siloed and a
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Table 1
Summary of Machine Learning (ML)-based zero-day attack detection methods.
Detector Name ML model Training data set Zero-day Testing data set Evaluation results Challenges & Issues

Outlier detector [5] One-class SVM CIC-IDS2017, NSL-KDD
(benign traffic only)

Attacks withheld from training
and used in testing

Recall varies from 27% to
99% based on attack types

Varying accuracy,
inconsistency
against different
attacks

Outlier detector [5] Autoencoder CIC-IDS2017, NSL-KDD
(benign traffic only)

Attacks withheld from training
and used in testing

Out-perform One-class SVM
for complex attacks

Varying accuracy,
inconsistency
against different
attacks

Kitsune [6] An ensemble of
autoencoders

IP camera video surveillance
test-bed (benign traffic only)

Emulated attacks on test-bed Out-perform offline
algorithms; vary greatly based
on attack types

Varying accuracy,
limited test cases

Comparison of six
Supervised ML detectors
[7]

Random forest, Gaussian
naive Bayes, Decision tree,
MLP, K-nearest neighbors,
Quadratic discriminant
analysis

CSE-CIC-IDS2018 Eight new attacks collected in
real networks, including
Bitcoin miner, Drowor worm,
nuclear ransomware, false
content injection, etc.

Vary greatly based on attack
types; decision tree model is
the best performer;
true-positive rate bests at 96%
and false-positive rate gets
lowest at 5%

Varying accuracy,
inconsistency
against different
attacks

Two-level supervised and
unsupervised learning
method [8]

Binary random forrest
model and SVM

Private data set from an
Internet service provider

Attacks withheld from training
and used in testing

At top-level, 88.54% of
zero-day attacks detected; at
the second-level, AUC score
reaches 91% with F1 score of
0.50

Evaluated using
private data,
difficult to compare,
limited test cases

Hybrid learning method
[9]

k-mean cluster, Random
Forrest, SVM, etc.

Data from CA Technologies
VET Zoo and two other data
sets; unlabeled testing data
used in training as well

Attack labels withheld in
training and used in testing

Perfect detection is
achieved—true positive rate
(1), false positive rate (0),
AUC (1), and accuracy (100%)

Limited test cases,
data sets not public
available anymore,
difficult to compare

Generative Adversarial
Networks (GAN)-based
detector [10]

GAN, autoencoder Kaggle Microsoft Malware
Classification Challenge;
binary codes are converted
into the images

Generated by introducing
noise to existing malware

> 98% detection accuracy
against zero-day attacks;
robust against zero-day attacks
generated with different noise
levels

Limited test cases

Feature-based Transfer
Learning (TL) detector
[11,12]

Spectral
transformation-based
approach, decision tree,
SVM, KNN

NSL-KDD; three source–target
domain pairs used in training;
unlabeled testing data as
target domain

Attack labels withheld in
training and used in testing

Achieve 70% accuracy and
0.75 F1 score

Low detection
accuracy, limited
test cases

Domain adaptation-based
Transfer Learning (TL)
detector [13]

Manifold alignment-based
domain adaptation

Two source–target domain
pairs from NSL-KDD data set;
the third source–target domain
pair uses NSL-KDD as source
domain and CIDD data set as
target domain

Attack labels from NSL-KDD
withheld in training and used
in testing; CIDD data set is
also used as zero-day attacks

Vary according to different
source domain and target
domain pairs; Out-perform
feature-based Transfer
Learning detector

Varying accuracy,
limited test cases
large scale, representative data set is lacking. Different schemes are of-
ten evaluated using different set of performance metrics. Due to the sig-
nificant effort needed to implement comparison schemes, the proposed
schemes are often compared to a small number of competing schemes
and draw the conclusions. The combination of non-representative data
sets and limited model comparisons make the outcome inconclusive
and sometimes questionable.

The zero-day detection schemes in the Table 1 fall into three cat-
egories: unsupervised learning-based zero-day attack detection, super-
vised and hybrid learning-based zero-day attack detection, and transfer
learning-based zero-day attack detection. Outlier detectors [5,6] em-
ploy the unsupervised learning method. Unsupervised learning is a type
of ML algorithms that learns patterns from unlabeled data. The zero-day
attack detection model seeks to learn a compressed representation of
normal data to detect zero-day attacks. The outlier detection methods
do not require zero-day attack data for the training purpose. This is a
great advantage since the zero-day attack data is typically not available
at the model training phase.

Supervised and hybrid learning-based zero-day attack detection
methods [7,9,9,10] use the supervised learning or the combination
of supervised and unsupervised learning method. With representative
training data sets, supervised and hybrid learning-based zero-day attack
detectors can perform accurate detection. Unfortunately, the data set
for zero-day detection typically lacks the representation of zero-day

attacks. The detection schemes need to assume that the zero-day attacks
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behave similarly to the known attacks, an assumption that has not been
validated so far.

Transfer learning-based zero-day attack detection methods [11–13]
transfer knowledge across domains. Transfer learning seeks to leverage
unlabeled and limited data in the target task or domain to the most
effect. Given limited or no zero-data attack data, transfer learning is a
promising method for zero-day attack detection.

Training and detection speed is another important factor for ML-
based zero-day attack detection. While training often takes longer time
than detection, and different methods vary in training/detection speed,
all the reviewed methods are able to complete training/detection in
reasonable time.

5.1. Future directions

Multi-front efforts are required to address the challenges in design-
ing effective ML-based zero-day attack detection schemes. For instance,
to address the issue of lacking zero-day attack information in the
training data set, honeypot [43] can be used to collect the zero-day
attack data before the attacks become known.

Conducting effective feature engineering with domain expertise is
another way to improve detection accuracy. Attackers may circumvent
the detection if the attack features are similar to legitimate ones. It
is important to integrate domain experts’ knowledge into the pro-
cess of feature engineering to ensure that the new attacks will reveal

themselves in the designated feature space.
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ML technique evolves quickly. Taking advantage of the latest ad-
ancement in ML and adopting the new ML models is another way to
efend against zero-day attacks. For example, Reinforcement Learning
RL) is another type of machine learning techniques that enables an
gent, or decision maker, to learn in an interactive environment by
rial and error using feedback from its own actions and experiences.
he agent only needs to access induced feedbacks but is not required
o know all the factors that determine feedbacks. So RL is particularly
ell suited to zero-day attack problems where the vulnerabilities and
ttack targets are not known in advance.

In [44], RL is explored to defend the system against zero-day attacks
ithout actually detecting them. The reinforcement learning based

chemes are able to defeat three classes of zero-day attacks: strategic
ero-day attacks where the interactions between an attacker and a
efender are modeled as a non-cooperative game; non-strategic random
ero-day attacks where the attacker chooses its actions by following

predetermined probability distribution; and zero-day attacks that
ollow the Bayesian attack graphs. We look forward to new zero-day
ttack defense methods that take advantage of novel ML models.

Finally, the development of a ML-based zero-day attack detection
enchmark shall address many hurdles that hinder the progress of
esearch and development. A benchmark suite with rich and stan-
ardized data sets, a plethora of representative models and automated
esting-and-evaluation capability will greatly expedite the development
f ML-based zero-day attack detection tools.

. Conclusions

Zero-day attacks happen often (an ‘‘in the wild’’ zero-day attack
s discovered every 17 days [2]), last for a long time (a typical zero-
ay attack lasts 312 days on average before being detected [1]) and
ause grave consequences (the average incurred cost amounting to 1.2
illion dollars per attack [3]). Machine Learning (ML)-based detection

epresents the most promising and effective method to detect zero-day
ttacks.

In this paper, a comprehensive review is conducted on the ML-based
ero-day attack detection methods based on the types of employed
L models, from unsupervised learning, supervised learning, to hybrid

earning and transfer learning. By comparing and contrasting different
pproaches, key challenges are identified. The ML-based zero-day de-
ection faces the fundamental challenge in lacking the zero-day attack
epresentation in the data sets. The limited and siloed data sets and
ncomprehensive feature space also makes the proposed models not as
ccurate, robust, and reliable as desired.

Moving forward, we recommend continuing leveraging the latest
dvancement in the ML research, and better incorporating domain
xperts’ knowledge into the ML model development. In addition, de-
eloping a data-rich, standardized benchmark shall help tremendously
o continuously improve ML-based zero-day attack detection models.
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