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ABSTRACT 
In this paper, we explore the dynamics of a closed chain of coupled 
micromechanical resonators, where each resonator is coupled to its  
two nearest neighbors. The design of a three-resonator array that 
combines silicon cantilevers with piezoelectric actuation and 
electrostatic coupling is first introduced. The dynamic behavior of 
the array is then presented for two voltage schemes for coupling 
the resonators, demonstrating complex amplitude and frequency 
dependence that may be useful for sensing applications. Finally, it 
is shown that analog feedback can induce mode localization in the 
array and collapse two coupled modes into a single mode, which 
could provide high sensitivity to external perturbations.  
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INTRODUCTION 
Coupled micromechanical resonators have received significant 
attention over the last decade for both their ability to enhance 
measurement sensitivity in sensors and to demonstrate complex 
nonlinear behavior that may be useful for both classical and 
quantum computing [1-12]. Mode localization in coupled 
resonators has in particular been shown to be a powerful approach 
for improving the precision of microelectromechanical (MEMS) 
sensors, where the relative vibration amplitudes between 
resonators are used to measure external perturbations [1,2]. 
Sensing examples include accelerometers [3] and mass sensors [4], 
but mode localization can be used to measure any external signal 
capable of altering individual resonance frequencies and mode 
shapes of the coupled resonators. 
 From a more fundamental perspective, coupled resonators have 
been used to demonstrate multi-mode avoided crossings, similar to 
behavior found in atomic systems [5]. Parametric resonance and 
amplification have also been explored in coupled resonators, 
resulting in nonlinear frequency conversion and classical dynamics 
that are analogous to Rabi oscillations found in two-level quantum 
systems [6]. Finally, coupled nonlinear dynamics have been shown 
to yield complex bifurcations that can drive oscillations across 
large arrays including more than 100 resonators [7] and generate 
phononic frequency combs with fixed frequency spacing around a 
parametric resonance [8]. Due to this wide range of applications 
for coupled resonators, there is a continued need to develop new 
resonator geometries that can better leverage the dynamic 
behaviors described above. 
 Many different actuation, sensing, and coupling mechanisms 
have been used to realize coupled resonator arrays. The 
combination of electrostatic actuation and capacitive sensing have 
been the most commonly employed combination [1,3,4], but 
piezoelectric materials have also been used for actuation and 
sensing [6,8], often with greater sensitivity. Resonator coupling 
methods have largely been limited to mechanical coupling, such as 
a flexural linkage, and electrostatic coupling, which provides 
continuous tunability. The topology for the majority of coupled 
resonator arrays has been confined to series connectivity, where 
each resonator is coupled to the next resonator in a linear chain,  

 
Figure 1: (a) Diagram of a 3-resonator closed-chain array. Inset: 
Cross-section of device layers. (b) Optical micrograph of a 
fabricated array. Inset: Electrical connections for the drive and 
coupling voltages. 
 
with a few exceptions [9-11].  
 Here, we present a new design for resonator arrays that 
combines piezoelectric actuation and sensing with electrostatic 
coupling. This results in large vibration amplitudes that are 
transduced with high sensitivity while also having continuous 
coupling tunability. In addition, the array is coupled in a closed 
chain rather than a linear chain, where the last resonator in the 
chain is coupled back to the first resonator, as described in the next 
section. As a demonstration of the dynamic behavior of this array, 
two complementary schemes for tuning the coupling are 
implemented and the resulting amplitude and resonance frequency 
behaviors are presented. Finally, feedback control on an individual 
resonator is shown to be an effective approach for inducing mode 
localization and may be useful for optimizing the array’s 
sensitivity to external perturbations.       
 
RESONATOR ARRAY DESIGN 
The design of the closed-chain coupled resonator array is shown in 
Fig. 1. The array is composed of three cantilever resonators that 
are connected to the substrate at the base and coupled to each other 
at their free ends. The cantilevers have three material layers: a 



single-crystal silicon layer that is the primary structural element, an 
aluminum nitride (AlN) layer for piezoelectric actuation and 
sensing, and a gold layer for electrical contact. A sinusoidal drive 
voltage with tunable frequency is applied to the gold layer to 
actuate the cantilever (see Fig. 1b inset, V1p, V2p, and V3p). The tips 
for all cantilevers come together in the center of the array, where 
they are separated by a gap in the silicon layer. The coupling 
between each resonator is controlled by setting the DC voltage on 
the silicon layer for each resonator, V1s, V2s, and V3s, respectively 
(see Fig. 1b inset). In general, the electrostatic force between two 
cantilevers is highly nonlinear with respect to the relative heights 
of the cantilever tips compared to the substrate plane. However, for 
small cantilever displacements, the electrostatic force is a linear 
restoring force that results in a positive increase in stiffness. The 
combination of the three drive voltages and three coupling voltages 
provide a number of options for generating unique dynamic 
behavior. This closed-chain concept has previously been explored 
theoretically [9] and a closed chain of mechanically coupled tuning 
fork resonators has been presented previously [10]. However, to 
our knowledge, resonators with tunable electrostatic coupling in a 
closed chain has not been demonstrated experimentally to date. 
 A functional array is shown in Fig. 1b, which was fabricated 
using the MEMSCAP PiezoMUMPS multi-project wafer process 
[13]. The silicon layer has the <100> crystal plane oriented out of 
the plane of the substrate and is 10 μm thick, the AlN layer is 0.5 
μm thick, and the electrostatic gap between resonators is 2 μm 
wide, which is the minimum dimension allowed for the process. 
Custom fabrication of the array would allow for further 
optimization of the electrostatic coupling, and the stiffness and 
resonance frequencies of the resonators.   
 
RESULTS AND DISCUSSION 
To demonstrate some of the linear dynamic behaviors attainable 
with the closed-chain coupled resonator array, we explored two 
schemes for tuning the electrostatic coupling while driving a single 
resonator. A homodyne laser interferometer was used to measure 
the out-of-plane resonator motion in all presented results, where 
the photodetector voltage is used for resonator amplitude rather 
than converting to displacement. All measurements were 
performed under ambient conditions. 
 In the first coupling scheme, resonator 3 was driven with a 
sinusoidal (AC) signal, V3p, and was biased with a static DC 
voltage, V3s, set to 15 V while the electrostatic interactions 
between the three resonators were tuned with bias voltages V1s and 
V2s on resonators 1 and 2, respectively (see Fig. 2a). The frequency 
response of resonator 2 was measured with the interferometer over 
a frequency range that captures the first three modes of the array 
and for a range of values for V1s and V2s. A representative 
frequency response, including amplitude and phase, is shown in 
Fig. 2b, where the 2nd and 3rd modes are visible. These modes are 
largely due to resonators 2 and 3, although they are somewhat 
shifted from those found for the uncoupled resonators. These two 
resonators should have nearly the same Young’s modulus along 
their length due to their orientation in the silicon layer, resulting in 
similar resonance frequencies. The 1st mode is only barely 
detectable near 77 kHz in Fig. 2b. This mode is downshifted from 
the other two since resonator 1 sits in a different crystal plane. 
 The amplitudes for modes 2 and 3 for varying V1s and V2s are 
shown in Figs. 3a and 3c, respectively. Since the array is driven at 
resonator 3 and measured at resonator 2, only V2s has an effect on 
amplitude, where it acts like a gain between the input and output 
signals. However, the electrostatic coupling has a more interesting 
effect on the resonance frequencies. As V1s changes from positive 
to negative, the electrostatic coupling increases between resonators  

 
Figure 2: (a) First coupling scheme for the array. Resonator 3 is 
driven with an AC signal while a 15 V bias voltage is applied to its 
silicon layer. Varying bias voltages are applied on the silicon 
layers of resonators 1 and 2. (b) Representative amplitude and c) 
phase responses measured on resonator 2 with the interferometer 
(location indicated by the red cross in (a)). V1s = 0 V, V2s = 0 V. 

 

 
Figure 3: Experimental results for the coupling scheme in Fig. 2. 
(a) Amplitude and (b) frequency of mode 2. (c) Amplitude and (d) 
frequency of mode 3. V1s has no effect on amplitude but tunes the 
frequencies of modes 2 and 3 in opposite directions. V2s tunes both 
the amplitudes and frequencies for both modes in the same 
direction. Periodic artifacts in contour maps are computational 
and not representative of the data. 
 
1 and 3 and decreases between resonators 1 and 2. Therefore, the 
frequencies for modes 2 and 3 are detuned in opposite directions 
and are a nonlinear function of the two bias voltages, as indicated 
by the semi-circular pattern shown in Figs. 3b and 3d. This 
behavior could provide a useful sensing modality where 
perturbations of resonator 1 can be transduced by measuring the 
frequency difference between modes 2 and 3. Examples of 
measurable perturbations include in-plane motion of resonator 1 
and an induced voltage at V1s, similar to voltmeters based on mode 
localization [14]. Since this is a differential frequency 
measurement between modes 2 and 3, it may be insensitive to 
thermal drift in the Young’s modulus and coefficient of thermal 
expansion.  

In the second coupling scheme, the coupling between 
resonators 1 and 2 was set to zero by choosing V1s = V2s while V2s 
and V3s were varied (see Fig. 4a). A representative frequency 
response is shown in Fig. 4b, where the 1st mode is more 
pronounced than in the first scheme. This coupling scheme resulted 
in more linear behavior for the modal amplitudes and frequencies, 
as indicated by the linear gradients going from zero voltage to 
maximum voltage in the contour maps in Fig. 5. While this 
behavior is not particularly interesting on its own, it does point to 
the range of behaviors that can be achieved through small changes  



 
Figure 4: (a) Second coupling scheme for the array. Resonator 2 is 
driven with an AC signal while the same bias voltage is applied to 
the silicon layers of resonators 1 and 2. An independent voltage is 
applied to resonator 3. (b) Representative amplitude and c) phase 
responses measured on resonator 3 with the interferometer 
(location indicated by the red cross in (a)). V1s = 0 V, V2s = 0 V. 

 

 
Figure 5:  Experimental results for the coupling scheme in Fig. 4. 
(a,c,e) Amplitude and (b,d,f) frequency for modes 1, 2 and 3, 
respectively.  
 
to the coupling configuration, as indicated by the dramatic 
differences in the array dynamics when comparing Figs. 3 and 5. 
This may be useful for creating mechanical logic gates used in 
low-bandwidth computation, where the coupling voltages, V1s, V2s, 
and V3s, would be inputs to the logic gate and the resulting modal 
amplitude or frequency change would provide the computational 
output.  

Finally, we used the same coupling scheme shown in Fig. 4a to 
explore the use of feedback control on an individual resonator to 
induce mode localization. We applied a negative stiffness 
perturbation to resonator 3, as is often done in mode localization 
sensors. However, rather than using a passive electromechanical 
element, such as an electrostatic actuator, analog proportional 
control was applied, where the interferometer signal was the 
feedback signal used to reduce the stiffness of the resonator. As 
seen in Fig. 6, mode 3 is reduced in frequency for increasing 
proportional gain until modes 2 and 3 collapse into a single mode  

 
Figure 6: Modal overlap tuning with an analog proportional 
controller applied to resonator 3. (a) Amplitude and (b) phase of 
resonator 3 for varying proportional gain, which reduces the 
resonator stiffness. V2s = 15 V, V3s = -15 V.  
 
that goes through a 2π phase shift on resonance. Similar 
overlapping modes generated by electrostatic coupling have 
recently been shown to be highly sensitive to external 
perturbations by operating in the weak coupling regime [12]. Here, 
the feedback reduces the stiffness of resonator 3 without changing 
the coupling between the resonators, thereby causing the modes to 
overlap. The impact of this feedback approach on the sensitivity of 
the array to stiffness perturbations on resonator 3 is currently being 
investigated.   
 
CONCLUSION 
A new topology for coupled resonator arrays has been presented 
that uses a closed chain of piezoelectric cantilevers that are 
electrostatically coupled at their free ends. Two sets of experiments 
with different voltage tuning rules for electrostatic coupling show 
that the dynamic behavior of the array can change dramatically 
based on the relative coupling forces. Finally, we have 
demonstrated that feedback control can be used to modify the 
coupling in the array, which may be useful for optimizing the 
sensitivity of the array to external perturbations. Future research 
will focus on expanding these early experiments to better 
understand the collective dynamics and applying the array to 
sensing applications. 
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