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Abstract

It can be useful to register (or align) two sets of particle data measured from the same physical sample. However, if the two data sets were
collected at different translational or rotational offsets, finding the optimal registration can be a challenge. We will present an algorithm that
efficiently determines the rotation and translational offset that best registers (in a least-squares sense) the corresponding particles in two or
more data sets measured from the same sample. This algorithm can be used to merge two data sets that have been collected on overlapping
but otherwise distinct regions on the sample. Alternatively, it can be used to overlay data sets that have been collected on the same sample
area to compare replicate data for quality control and measurement efficiency purposes.
Key words: alignment, coordinate registration, optical microscopy, particle analysis, scanning electron microscopy

Introduction

Optical and electron microscopy of various types are often
used to study collections of particles. Examples include foren-
sic applications like gunshot residue and soil comparison and
industrial applications like additive manufacturing feed-stock
material studies or quality control on powder materials.
Usually, the particles are dispersed on a substrate and the sub-
strate is imaged. The particles are identified and the position,
size, morphology, and other properties of the particles are
measured. In this kind of an analysis, there is a ground truth
represented by the particles on the substrate and then there is
ameasurement of the sample. Ideally, themeasurementwill ac-
curately reflect the ground truth but there will be disparities
in position, size, and all the other measured properties.
Measuring the same sample multiple times can provide insight
into the characteristics of these disparities. However, to get a
really representative understanding of the disparities, it is often
necessary to treat each analysis of the sample as a distinctmeas-
urement. Often this means repeating each measurement as
though itwere a totally independent event by taking the sample
out of the instrument between measurements. As a result, the
orientation and translational offset will vary from analysis to
analysis. Often the measured data sets will differ not only in
the measured quantities but also in the particles identified.
This is particularly true if theparticle size approaches the detec-
tion limit or the stage is moved such that there are un-analyzed
strips bordering the analyzed stage fields.
It is useful therefore to be able to register two (or more)

measured particle data sets from the same sample by determin-
ing the optimal rotation and translational offsets that best
align the corresponding particles on each data set.
Computer science has identified a similar class of problems

which it groups under the heading of point cloud registration.
Two common applications of point cloud registration are (1)
registering separately acquired portions of a 3D scanned
object and (2) registering time sequential laser imaging,

detection, and ranging (LIDAR) views of an environment.
The second problem has seen particular interest as it serves
as a key component of many self-driving car systems.
Solutions must be both fast and robust to facilitate real-time
feedback. Similar algorithms are also used to register images
in a panorama. Visually similar points are identified on mul-
tiple images and these points are registered. A recent discus-
sion of point cloud registration algorithms and their
shortcoming can be found in Maiseli et al. (2017).
However, the class of point cloud registration problems is

similar but subtly different from our problem. The most sig-
nificant difference is that, in our problem, the two data sets
each represent separate views of the same underlying particle
distribution. In our problem, there is a baseline reality repre-
sented by the real positions of the particles, whereas with
LIDAR, for example, the measurement points are unlikely to
be placed on the same points on the measured surface between
data sets. While not all particles are represented in each data
set, we assume that a fraction (≫10%) is represented in
both. This allows us to potentially assign true one-to-one cor-
respondences between some of the points in both data sets. In
contrast, two LIDAR scans of a region are not likely to re-
present the same points, so there is no natural one-to-one cor-
respondence between points in the data sets. This one-to-one
correspondence is what makes our problem interesting and
unique. If we can figure out which particles correspond, then
we have additional data that is not available in generic point
cloud registration problems.
The classic algorithm for point cloud registration is the

iterative closest point (ICP) algorithm (Besl & McKay,
1992). ICP is frequently used to refine the alignment of multi-
dimensional data sets derived from LIDAR or other 3D scan-
ners. It uses a nearest-neighbor algorithm to identify
correspondences between close points in the two data sets
and singular value decomposition to compute a matrix that
transforms the points in one data set towards the points in
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the other. It can be readily implemented in massively parallel
systems like graphics processing units, making it suitable for
large data sets with real-time demands like with automated
driving systems.The ICPalgorithmhas beenused to align time-
sequential LIDAR views of the surrounding environment.
However, the ICP algorithm has a limited range of angular
and translational convergence and so must be seeded with a
good initial estimate of these parameters. Otherwise, it can
fall into a false, local minimum that does not reflect the desired
global minimum. A refinement of the ICP algorithm that uses a
Levenberg–Marquart nonlinear optimization (Moré, 1978)
has been proposed (Fitzgibbon, 2003). The ICP algorithm
has a weakness in that it will not necessarily converge to the
correct solution if the initial guess is too far from the optimal
result. Thus, the ICP algorithm is useful for refining pre-
existing solutions but not as useful for raw data sets with arbi-
trary transformations.
Our goal, therefore, is to develop an algorithm that will allow

us to assign likely one-to-one correspondences between particles
in the two data sets. The algorithm is implemented in the Julia1

language (Bezanson et al., 2017). Tomake this algorithm as gen-
erally applicable aspossible,wewould like touseonly theparticle
location data (stage coordinates) and not othermeasured particle
properties like size, morphology, or composition.We take as our
inspiration, the way that our eye can align point clouds by dis-
cerning distinct groupings of particles that it can identify in
both data sets. These distinct groupings are then used to sequen-
tially pindegrees-of-freedomuntilwehavedevelopeda global so-
lution. The key is the mathematical notion of invariants.

Algorithm

Invariants
An invariant is a property of a mathematical object that re-
mains unchanged when a certain operation is performed on
the object. Common types of invariants include rotational in-
variants, translational invariants, mirror reflection invariants,
and scale invariants. The key to performing the alignment is to
leverage properties of the measured data sets that we know are
invariant under the types of operations that have been per-
formed on the data, namely rotation and translation. These
properties can be compared between data sets to identify fea-
tures common to both data sets. These common features can
then be exploited to determine the optimal rotation and trans-
lation to bring the two data sets into registration.
Thefirst invariant property that is exploited is each particle’s

nearest neighbors. To be precise, by nearest neighbor,wemean
the particle with the smallest ℓ2-norm (Euclidean distance) be-
tween the centroid of the particles in two (ormore) dimensions.
A particle’s nearest neighbors do not change regardless of rota-
tion, translation, or even scaling of the entire data set. The
nearest neighbors of a particle are unique and can be ordered
by ℓ2-norm. If we examine the two nearest neighbors of each
particle, these neighbors define a unique triangle.
Because the particle search process is not 100% efficient, we

cannot assume that the measured data sets always accurately
reflect the true nearest neighbors for each particle. Some par-
ticles will be missed meaning that some nearest-neighbor as-
signments will be incorrect. However, so long as a fraction
of the nearest-neighbor groupings accurately reflects the

underlying reality, it should be possible to match up these
nearest-neighbor groupings. The algorithm only requires a
handful of matching groupings to work.
The second invariant property is the lengths of the edges of

the triangle defined by the nearest neighbors. The length of
the edges of a triangle defined (1) from the particle to the first
nearest neighbor; (2) from the first nearest neighbor to the se-
cond nearest neighbor; and (3) from the particle to the second
nearest neighbor is invariant under rotation and translation. In
two dimensions, these three points are defined by two coordi-
nates giving six degrees-of-freedom. We reduce the six
degrees-of-freedom by three when we insist on rotational
(one degree) and translational (two degrees) invariance, leav-
ing a remainder of three degrees-of-freedom. The triangle’s
three edge lengths fully capture these three degrees-of-freedom.
It is worth noting that the length of the edges is not rotationally
invariant if the scale of the axes is not equal.
The third invariant that we exploit is the invariance of the

center of mass. Once we have identified a grouping of corre-
sponding particles between data sets, the global center of
mass of the corresponding particles in each data set is invari-
ant to rotation. The difference in the centers of mass can be
used to determine the offset between the groupings regardless
of relative rotation.
The fourth invariant property is the distance between

groupings. This is to say that a pair of triangles of particles
whose center-of-mass are separated by a distance d in one par-
ticle data set will be separated by a distance d in a second—
even if the second data set has been rotated and translated.
Finally, we expect the relative angle between paired group-

ings between data sets to be translationally invariant. This is
the rotation angle between data sets.
This method is most similar to the class of graphmatching al-

gorithms (see, e.g.,Zheng&Doermann,2006).Graphmatching
algorithms frame the problem in the language of graph theory in
terms of vertices and edges. Similar to this algorithm, properties
of the vertices and edges are used to match particles in one data
set with the other. However, in our literature searches, we have
not discovered another algorithm quite like this one.

Implementation
Each particle data set is analyzed independently using the
KDTree algorithm (Arnaldi et al., 1987) to determine its
two nearest neighbors. The KDTree algorithm is frequently
used in ray-tracing and 3D graphics applications. We use the
Julia implementation provided by NearestNeighbors.jl
(Carlsson et al., 2021). This algorithm sequentially bifurcates
each coordinate axis to allow the identification of nearest
neighbors using O(N logN) operations rather than O(N2) op-
erations as the brute-force algorithm would. The KDTree is
used within a data set to identify each particle’s nearest two
neighbors, which in turn identifies a unique triangle. The
length of the three edges between the particles is computed
and stored in a structure addressed by the index of the seed
particle.
A second KDTree is constructed. This time the search is not

performed in real space but in triangle edge length space. The
KDTree is constructed from the edge lengths defined by the
nearest neighbor triplets constructed in the previous step.
The KDTree is evaluated against the other data set to discover
the best matching pairs of triangles between measured data
sets. Because the edge lengths are rotationally invariant, they

1 Disclaimer: Any mention of commercial products is for information
purposes only; it does not imply recommendation or endorsement by NIST.
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can be matched between data sets and thus used to identify
particles that are likely to represent the same particles in the
two data sets. However, because of uncertainties in the pos-
itional measurements of each particle, there is no guarantee
that all the triangles are good matches.
It should be noted that there is one ambiguity in the edge

length comparison. Mirror symmetric triangles will produce
equivalent edge lengths. This ambiguity can be eliminated
using the determinant of the edge vectors to introduce a
sign to distinguish clockwise and counter-clockwise aligned
triangles.
Second- and third-level filters are used to further eliminate

inferior matches. When we examine pairs of triangles between
samples, we expect two things to be invariant. First, the dis-
tance between the centers-of-mass of each triangle should
match between data sets. That is to say, the triangles are sep-
arated by some distance in the ground truth and should also be
similarly separated in the measured data sets. Thus, we filter
out pairs of triangles from both data sets for which the dis-
tance between each pair of groupings’ center-of-mass does
not match sufficiently well.

A third filter is applied by creating a histogram of angles de-
fined by the vectors between the triangle pairs in data set 1 and
data set 2. The rotation angle should be consistent for equiva-
lent triangle pairs between data sets. The angular bin with the
most counts is identified as the rough estimate of the rotation
angle between data sets. This estimate is further refined by
averaging the angle for triangle pairs with angles close to the
estimate. This angle is the algorithm’s best estimate of the an-
gle of rotation between the data sets.
Finally, we take all the triangle pairs which matched the

three filters and compute the center-of-mass of all the triangles
in each data set. The difference in center-of-mass equals the
offset between the particle data sets. Thus, we have deter-
mined both the rotation and translational offset necessary to
best register the two particle data sets.
We implemented the algorithm in the sourcefilealign.jl in

the Julia library NeXLParticle (https://github.com/usnistgov/
NeXLParticle.jl) that is part of the NeXL collection of X-ray
microanalysis libraries. Signatures and documentation for the
functions align(...) and correspondences(...) are
shown in Figure 1.

Fig. 1. The function signatures for the align(...), correspondences(...), and identify(...) functions in the NeXLParticle library that
implement the functionality described in this paper.

Fig. 2. The seven raw particle position data sets. The data sets are offset and translated relative to one another. You will also notice that there are no
particles measured below the −30mm line in the Y -dimension because of stage travel limitations.
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The code returns the result as two affine maps, where an af-
fine map is a mathematical object that combines a linear trans-
formation with a translation. The first affine map translates
data set 1 to place its center-of-mass at the origin. The second
affine map centers data set 2 at the origin and rotates the regis-
ter individual particles with a particle in data set 1. It is not
possible to align the data sets with the “ground truth” as there
is no way to define a canonical orientation or translation.
Overall, the algorithm has been demonstrated to align data

sets consisting of approximately 100,000 particles in a frac-
tion of a second.
This alignment is sufficiently accurate for many purposes.

However, it can be further refined using a nonlinear optimization
algorithm to minimize the distance between corresponding par-
ticles on data set 1 and data set 2 in a manner similar to
Fitzgibbon (2003) used a Jacobian-informed Marquardt–
Levenberg optimizer. This is implemented using the finealign=
true optional argument to the align(…) function.
Once aligned, two particle data sets can be compared based

on the transformed coordinates. Two particles, one in each
data set, are labeled as correspondences when the linear

distance between particles is less than a threshold.
The appropriate threshold is determined by the positional un-
certainty in each position measurement. The positional uncer-
tainty is due to stage positioning inaccuracies, orthogonality
imperfections between the stage axes, image magnification
calibration inaccuracies, image orthogonality inaccuracies,
and potentially other sources. While it is difficult to estimate
a priori, the uncertainty can be readily extracted by construct-
ing a histogram of the distances between nearest-neighbor par-
ticles in the aligned coordinate system.
The nearest-neighbor algorithm is used again to identify

correspondences. A KDTree is constructed from one particle
data set, and the closest particle meeting the distance threshold
is identified as the corresponding particle in the other data set.
The result is two equal length arrays of particle indices, one for
each data set. The ith index in each array corresponds to the
ith pair of corresponding particles. It is thus possible to iden-
tify particles have been measured twice, once in each analysis,
and particles were only measured in one or the other analysis.
The correspondences(...) method has an argument

invert which, when true, will produce the pair of indices
of all particles for which there are no correspondences—they
were only measured on one data set.
Finally, it is often useful to be able to track particle corre-

spondences across two or more analyses. The function
identify(...) takes a list of lists of particle coordinate
pairs. It aligns the second through last list of particle coordinate
pairs with the first list. It then uses correspondences to track
particles across all the data sets. It returns a DataFrame with
a row for each unique physical particle discovered in any of
the analyses. Each row has a column for each data set which ei-
ther contains the index of the particle in that data set or the val-
ue missing if that particle was not measured in that analysis.

Validation

EGOS, europium-doped gadolinium oxysulfide (Gd2O2S : Eu),
are a type of particle that can be imaged in a scanning electron

Fig. 3. The seven data sets registered using the algorithm described in this paper. In the plot, each subsequent data set has been offset by 0.1mm in both
the X and Y directions from the previous to help to visualize the overlap. As a result, corresponding particles in each data set appear to form a diagonal line.

Fig. 4. The histogram of distances when particle position data set r1 is
compared with data set r2. While the majority of nearest-neighbor
distances are less than 10 μm, there are a number that are much larger.
The larger values typically represent particles that were only measured in
one data set or the other. The histogram plots for the remaining data sets
look very similar. This suggests an excellent alignment of particles
whose position is measured to a few micrometer accuracy in each
dimension regardless of translation and rotation.
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microscope (SEM)and,when illuminated to inducefluorescence,
readily identified in an optical microscope. EGOS particles are
durable and immune tomanycommonsolvents.As such, they re-
present a useful proxymaterial for studying the efficiency of par-
ticle recovery from surfaces. The EGOS particles represent a
challenging sample because they vary in dimensions from ap-
proximately 2μm down to hundreds of nanometers. We expect
to detect the larger particles with close to 100% efficiency.
However, the smaller particles become more difficult to detect
consistently using typical SEM-base automated particle analysis
systems. The step size betweenpixels becomes comparable to the
particle size, and the decrease in mass thickness of the particle
causes the backscatter contrast and the X-ray signal to diminish.
As a result, particles are not detected when the beam misses the
particle, when the beam strikes the particle but the contrast is
too low to trigger the threshold, and when the X-ray signal con-
tains too few of the characteristic Gd and S X-rays. Project con-
straints mean that the sample area is necessarily large, the full
areaof a25.4mmdiameter siliconwafer.Themeanatomicnum-
ber of the silicon substrate is relatively high compared to an alter-
native likea carbon substrate.Asa result, theanalysis time is long
andwe cannot afford to spendmore time per sample tomeet our
throughput goals. Ultimately, the project goals require an accur-
ate estimate of the number of EGOS particles on the substrate.
The sample in this study was prepared using a Collison

nebulizer to disperse particles on a 25.4mm silicon wafer.
The sample was analyzed using the SEMantics extension
to DTSA-II to automate particle data acquisition on a

TESCAN MIRA3 scanning electron microscope at 20 keV or
15keV and 1 nA. The EGOS particles were distinguished
from surface contamination using the combined energy dis-
persive X-ray signal from three Pulsetor silicon drift detectors.
The spectra were quantified using measured standards, and
the normalized k-ratios were evaluated using a threshold-
based rule to identify EGOS. Only the EGOS particles were in-
cluded in the subsequent data analysis. The analysis area was
defined by three points on the perimeter of the wafer that de-
fines a circular region. The interior of the circular region was
tiled with 256 μm × 256 μm fields, which were scanned at 4 μs/
pixel and a dimension of 1024 pixels × 1024 pixels. The tiling
produced approximately 7,200 tiles/analysis over an area of
490mm2. One final analysis was performed using 128 μm ×
128 μm fields to improve sensitivity for the smallest particles
by decreasing the steps size between beam raster points. The
backscatter detector signal and a threshold-based algorithm
were used to discriminate particles. The backscatter detector
gain and contrast were set such that Si produced a signal of
16 on an 8-bit digitizer and Ge produced a signal of 225.
The sample was analyzed seven times at different transla-

tions and rotations. The first five at 20.0 keV, the last two ana-
lyses at 15.0 keV, and the final analysis was tiled with
128 μm × 128 μm fields. The total counts of EGOS particles
found in each analysis were 1,771, 1,799, 1,798, 1,850,
1,823, 1,740, and 2,035, respectively. This is interesting
in-and-of-itself. In particular, the final count of 2,035 when
the magnification was increased by a factor of 2 shows that
particles are being missed in the lower magnification analyses.
Figures 2 and 3 show the raw particle position data as col-
lected and the particle position data after registration. The
data sets have been incrementally offset in Figure 3 to allow
the overlapping particles to be visualized.
Once the data sets have been registered, it is now possible to

identify corresponding particles between the data sets. As each
particle is discovered during an analysis, it is assigned a se-
quential index to identify it within the data set. Once data
sets have been aligned, corresponding particles are likely to

Fig. 5. Corresponding particles between data sets r1 and r2. The particle coordinates of the r2 data set have been offset by 0.1mm on each axis to allow
the visualization of overlapping particles.

Fig. 6. Pairs of corresponding particles picked at random from r1 (top
row) and r2 (bottom row). While the particles are translated, rotated, and
not necessarily the most elegant images, they can be seen to represent
the same particles in each data set.
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have very similar transformed coordinates. The degree to
which this is true can be evaluated by plotting the histogram
of the ℓ2-norm between inter-data set nearest neighbors.
Well-aligned data sets will be dominated bymany correspond-
ences with a small ℓ2-norm. Figure 4 shows the histogram of
distances between nearest neighbor particles when data set
r1 is compared to data set r2.
Based on the results presented in Figure 4, a distance thresh-

old of 0.02mm was selected to determine corresponding par-
ticles between particle data sets. Figure 5 shows the
corresponding particles between data sets r1 and r2. To dem-
onstrate that the correspondences do in fact represent the same
particle measured in different analyses, we examined a

random selection of particle image pairs. Figure 6 shows cor-
responding pairs of particles picked at random from all corre-
sponding pairs in r1 and r2. The images may be rotated but
clearly represent the same particles measured in different ana-
lyses. Figure 7 shows the particles in data sets r1 and r2 that do
not have nearest neighbors in the other data set within the
threshold of 0.02mm.
Finally, we would like to be able to track the same particle

through multiple analyses. Identifying correspondences be-
tween data sets makes it possible to track individual particles
through all seven data sets. Table 1 shows a small subset of the
2,573 distinct particles identified in the seven analyses. Some
particles were measured many times during the seven analyses

Fig. 7. Particles in data sets r1 and r2 that do not have corresponding particles in the other data set. Three distinct classes of noncorresponding particles
are readily identified. The first class represents those particles below the −30mm extent of the stage motions (below -30 mm in Y). The second class
represents those particles around the perimeter of the sample which may have been excluded by the field tiling, which is designed to maximally fill the
circular analysis area without extending outside of the area. This means that subtle differences in the positioning of the three points that define the
perimeter of the circular analysis area can lead to regions around the perimeter that are unanalyzed. Finally, the final class represents those particles in the
interior for which other explanations are necessary. The particle may have been simply missed for one reason or another, or the particle may have moved
between analyses.

Table 1. Fourteen Examples of Tracking Individual Particles Selected from the 2,573 Distinct Particles Measured in the Seven Repeat Analyses Labeled r1
to r7.

r1 r2 r3 r4 r5 r6 r7 Reps Xtr Ytr

351 1 3.872 −23.891
459 1 0.385 −26.448

391 850 2 −3.775 −25.513
411 676 2 −1.310 −25.134
130 358 366 3 −0.246 −28.538
1,114 959 1,446 3 −3.642 −17.711

1,146 1,124 1,495 303 4 4.995 −23.345
1,494 264 486 1,203 4 0.512 −13.339
280 1,406 1,394 909 78 5 6.149 −26.421

363 786 252 843 951 5 4.145 −14.838
1,561 1,552 1,509 1,369 409 417 6 −0.094 −27.483

1,019 696 703 1,075 655 716 6 3.888 −18.647
321 1,533 1,522 1,009 1,730 1,019 1,171 7 −7.836 −26.223
1,369 340 357 812 187 819 904 7 4.864 −14.587

The table contains two examples of each number of repeat measurements from once through seven times selected at random from the distinct particles measured
in the seven analyses. The number in the rX column represents the index of the particle in that data set. The Xtr and Ytr columns represent the mean of the
translated coordinates from each data set in which the particle was measured.
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and somewere measured as few as once. Figure 8 gives a better
idea of in which analysis a particle was first seen and how
many times the particle was measured. Figure 9 shows that
the size of the particle is a strong predictor of being missed.
Many small particles were missed by the first six analyses
and only picked up by the seventh, in which the magnification
was increased by a factor of 2.

Conclusion

In this paper, we have reported an algorithm that is well suited
to aligning particle data sets such as are collected in electron
and optical microscopy. The algorithm depends upon the
fact that the measured data sets reflect an underlying distribu-
tion which permits one-to-one correspondences between
many of the data points in one data set with the other. This
one-to-one correspondence does not need to be initially

known but is determined by the algorithm. This is distinct
from the majority of the algorithms in the literature in which
the point clouds are determined from arbitrarily selected
points on a surface.
While this algorithm has been observed to work very well in

our laboratory, there are many subtle reasons it may fail. First,
the ideal sample will have small uncertainty relative to the dis-
tance to the nearest neighbor. This makes it likely that the par-
ticle triplets will be matched correctly between samples and
less likely that a particle triplet will be incorrectly matched.
Samples with more particles are typically easier to align than
samples with fewer because there are more opportunities for
matched pairs. This is true even when there may be false
matches because all true matches must undergo the same rota-
tion. Thus matched triplets with different rotations can be re-
jected as false matches. Once the rotation filter has been
applied, a second filter ensures that all the translations are
similar. These two filters are very efficient at rejecting false
matches which may occur more frequently in large particle
data sets. Second, the lengths of the two stage axes must be
equal. When they are not equal, rotations also introduce
changes in the nearest neighbor distances hindering the match
process. Third, particles must be measured with sufficient effi-
ciency that the two nearest neighbors frequently represent the
same particles. It is necessary that a particle and its two nearest
neighbors are measured on both samples. If the likelihood of
detection is P, then the likelihood that the two nearest neigh-
bors are detected is P2. Fortunately, only a relatively small
number of true matches need to be found for the algorithm
to work. Fourth, since themeasured particle position is a func-
tion of both stage and image calibrated coordinates, the stage
and image must have similar calibrated scales. There are often
two subtly incommensurate length scales in microscopy—the
scale defined by the optics and the scale defined by the stage.
Nominally, these are similar and can be calibrated to make
them equivalent. However, this is particularly challenging

Fig. 8. The left plot displays the first analysis in which a particle is measured. Most of the particles were seen in the first two analyses, but there were a
number of particles that were not seen until the sixth, in which the beam energy was reduced to 15 keV to reduce the excitation volume, and the seventh,
in which the beam energy was 15 keV and themagnificationwas increased by a factor of 2. The plot on the right shows the number of times a particle was
measured.

Fig. 9. This plot shows a histogram of the particle size for particles that
were first measured in r1, r3, r5, and r7. It shows that it is mostly the
smaller particles that were missed during early analyses and that a lot of
small particles were not picked up until the magnification was increased
by a factor of 2 in r7.
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with electron microscopy, where the magnification scale for
every beam energy and working distance must be computed
using models of the electron optics. Fifth, in electron micros-
copy, there is the additional complication of uncompensated
image field rotation caused by the precession of electrons in
the magnetic field of the objective lens. This can lead to image
fields that are not perfectly registered with the stage axes.
Commensurate scaling is particularly important when the

data sets are measured on different instruments. Since nearest-
neighbor matching is a local process (over short distances),
this is likely to be relatively unaffected by differences in axis
scaling of a few percent between instruments. However, since
the distance between particle triplets on opposites sides of the
sample may be much larger, the absolute registration accuracy
will suffer even when the scales between instruments only dif-
fer by a percent or two.
Experience with the algorithm suggests that it is highly

reliable for well dispersed collections of hundreds to
hundreds-of-thousands particles with measurement accuracy
of 1-part-in-100 of the mean nearest-neighbor distance. The
degradation of the algorithm with adverse measurement con-
ditions has not been extensively studied. To evaluate whether
it is likely to work on your data, it may be efficient to simulate
data sets with particle loadings similar to your samples meas-
ured on an instrument with realistic limitations. Apply the al-
gorithm to an ensemble of these simulated data sets to estimate
the algorithm’s reliability.
While the algorithm has been implemented for two-

dimensional data sets collected on instruments with commen-
surate equi-axis scales, a few obvious extensions suggest
themselves.

1. Different scales between data sets. It should be possible to
extend this algorithm to measurements of the same par-
ticle data set on instruments with different unknown
scales. This would reduce the information content in the
data by one additional degree of freedom. Instead of using
the three length of edges as a metric, two independent ra-
tios of lengths of edges or the angles between edges could
be used.

2. It could be useful in some cases to use more than two
nearest neighbors. Two nearest neighbors are defined by
three coordinates. Three nearest neighbors could be de-
fined by four coordinates defining three triangles.

3. It is possible to extend the algorithm to three or higher di-
mensions. Three dimensions would require extracting a
three-dimensional offset and two rotation angles, but

each nearest neighbor point would carry an additional co-
ordinate’s worth of data.

Finally, our example data sets demonstrate that counting
particles, particularly small particles near the detection thresh-
old, is difficult. Small changes in focus and random fluctua-
tions mean that the detection probability of small particles
drops precipitously after a certain parameter-dependent size.
Producing reproducible particle counts near this size is very
challenging.
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