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Abstract: Single crystals of a new ternary chalcogenide Cu3InSe4 were obtained by induction melting,
allowing for a complete investigation of the crystal structure by employing high-resolution single-
crystal synchrotron X-ray diffraction. Cu3InSe4 crystallizes in a cubic structure, space group P43m,
with lattice constant 5.7504(2) Å and a density of 5.426 g/cm3. There are three unique crystallo-
graphic sites in the unit cell, with each cation bonded to four Se atoms in a tetrahedral geometry.
Electron localization function calculations were employed in investigating the chemical bonding
nature and first-principle electronic structure calculations are also presented. The results are dis-
cussed in light of the ongoing interest in exploring the structural and electronic properties of new
chalcogenide materials.
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1. Introduction

Multinary metal chalcogenides consisting of primarily earth-abundant, low-cost, and
non-toxic constituents exhibit physical properties that can be tuned via composition, specific
bonding scheme, lattice defects or disorder, and have been investigated for a variety of
different applications of interest including thermoelectrics [1–6], photovoltaics [7–10],
superconductivity [11–13], and as potential topological insulators [14,15]. The interest in
ternary Cu-based compositions has recently intensified in pursuit of commercially viable
solar cells [16–18] and thermoelectrics [19–22]. The ternary Cu-In-Se system is of particular
interest [23], with a number of compounds possible along the Cu2Se-InSe3 tie-line [24,25]
such as CuInSe2 [26,27], Cu3In5Se9 [28], Cu7In19Se32 [23], CuIn5Se8 [25], Cu2In4Se7 [29] and
CuIn3Se5 [30]. The crystal structure of CuInSe2 was reported to be either tetragonal with
space group I42m [31,32] or cubic, F43m [23,33], where the latter structure can be considered
as two interpenetrating face-centered cubic sub-lattices. In the case of Cu3MSe4, where M
is V, Ta, Nb or Sb, both cubic [34,35] and tetragonal [36,37] structure types were reported.

To the best of our knowledge, the synthesis and crystal structure of Cu3InSe4 has
not been previously reported. Wei et al. [38] predicted Cu3InSe4 to be metallic, with
“holes in the valence band”, however structural information and details of the electronic
structure were not reported. Therefore, we have undertaken to synthesize and investigate
the crystal structure and electronic properties of Cu3InSe4. We employed high-resolution
single crystal synchrotron measurements to determine the structure of this previously
unascertained ternary compound. The structural features and bonding were investigated in
detail, including analyses of calculated electron localization, and the electronic properties
were obtained using density functional theory. Our results are compared to that of other
ternary chalcogenides.

2. Materials and Methods

Single crystals of Cu3InSe4 were initially obtained in an attempt to prepare CuFe2InSe4,
resulting in FeSe as well as the shiny metallic ternary chalcogenide crystals identified as
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Cu3InSe4. This procedure was repeated with a stoichiometric ratio of the starting high-
purity elements, Cu powder (99.9 % purity, Alfa Aesar, Thermo Fisher Scientific, Ward
Hill, MA, USA), In shot (99.99 % purity, Alfa Aesar, Thermo Fisher Scientific, Ward Hill,
MA, USA) and Se ingot (99.999 % purity, Alfa Aesar, Thermo Fisher Scientific, Ward
Hill, MA, USA) [39]. The elements were placed in a silica ampoule and vacuum-sealed
inside a quartz tube, then melted via a water-cooled 3-coil induction (Superior Induction,
SI-7KWHF) furnace resulting in an agglomeration of gray Cu3InSe4 crystals.

Single-crystal synchrotron measurements were carried out at NSF’s ChemMatCARS,
Sector 15 of the Advanced Photon Source, Argonne National Laboratory. Data were
collected using a Huber 3-circle diffractometer (Huber diffraction, Lancaster, CA, USA)
equipped with a Pilatus3X 2M detector (Dectris USA Inc., Philadelphia, PA, USA) using
an Oxford Cryojet (American Laboratory Trading, East Lyme, CT, USA). The ω-angle
was set at −180◦, κ-angle was set at 0◦ and 30◦, with φ-angle scanned over the range of
360◦ using the shutterless mode of the detector. Data integration was performed with the
Bruker APEX 3 suite software. The reduction of the data was obtained with the SAINT
v.8.38A and SADABS v.2016 programs (Bruker AXS Inc., Madison, WI, USA) that are
included in the APEX suite. The structure was solved directly and refined by the full-matrix
least-squares method.

Ab initio calculations based on density functional theory, plane-waves basis set, and
pseudopotentials were carried out using the Quantum Espresso software package [40].
Projector-augmented waves (PAW) pseudopotentials [41], the generalized gradient approx-
imation of Perdew-Burke-Ernzehof [42,43] plus Hubbard correction [44] (GGA-PBE + U)
exchange-correlation functional were applied. A U parameter of 4 eV for the cations was
used based on previous studies on Cu-based chalcogenide materials [45,46] that provide for
good agreement between calculated and experimental structure values. For the pseudopo-
tentials, Cu 3d104s1, In 4d105s25p1 and Se 4s24p4 valence configurations were considered.
For self-consistent field (SCF) calculations, a k-point mesh of 6 × 6 × 6 was applied to sam-
ple the Brillouin zone. The kinetic energy cutoff for wavefunctions and charge density was
set to 70 Ry and 300 Ry, respectively, and an energy convergence threshold of 10−7 eV was
utilized. The electron localization function (ELF) distribution was analyzed and visualized
using VESTA v.3.5.8 software [47].

CCDC 2172956 contains the supplementary crystallographic data. These data can be
obtained free of charge via https://www.ccdc.cam.ac.uk/structures/search?access=referee&
pid=ccdc:2172956&author=ng, accessed on 10 September 2022, (or from the CCDC, 12 Union
Road, Cambridge CB2 1EZ, UK; Fax: +44 1223 336033; E-mail: deposit@ccdc.cam.ac.uk).

3. Results

The crystallographic data and structural refinement results are shown in Table 1.
Cu3InSe4 crystallizes in the cubic space group P43m (No. 215) with cell parameter
a = 5.7504(2) Å, Z = 1 and density = 5.426 g/cm3. The atomic coordinates and equivalent
isotropic displacement parameters, Ueq, are shown in Table 2. The anisotropic displace-
ment parameters are presented in Table 3. As shown in Figure 1, the structure consists of
CuSe4 (Cu-Se distance of 2.4622(4) Å) and InSe4 (In-Se distance of 2.5775(13) Å) tetrahedra
connected by corner-sharing Se atoms. Selenium is surrounded by three Cu atoms and
by an In atom, as shown in Figure 1a. The CuSe4 and InSe4 tetrahedra are illustrated in
Figure 1b. The tetrahedron about the In site is a regular tetrahedron with Se-In-Se angles of
109.471(11)◦, while that of Cu is somewhat distorted with Se-Cu-Se angles ranging from
105.63(6)◦ to 111.42(3)◦. The Cu-Se distance (2.4622(4) Å) is similar to that reported for
sulvanite and adamantine compounds [36,48,49], while the In-Se distance (2.5775(13) Å)
is similar to that for CuInSe2 (2.591 Å) [49] and LiInSe2 (2.57 Å) [50]. It is important to
note that the structure of Cu3InSe4 is related to that of sulvanites Cu3XQ4 (X = V, Nb, Ta;
Q = S, Se, Te) [19,51,52]; however, the Cu atoms occupy different Wyckoff sites in these
two different ternary chalcogenides thus resulting in corner sharing and edge sharing
tetrahedra for Cu3InSe4 and Cu3XQ4, respectively.

https://www.ccdc.cam.ac.uk/structures/search?access=referee&pid=ccdc:2172956&author=ng
https://www.ccdc.cam.ac.uk/structures/search?access=referee&pid=ccdc:2172956&author=ng
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Table 1. Crystal data and structure refinement results.

Empirical formula Cu3InSe4
Formula weight 621.32
Temperature 100(2) K
Wavelength 0.49594 Å
Crystal system Cubic
Space group P43m (No. 215)
Unit cell dimension a = 5.7504(2)
Volume 190.15(2) Å3

Z 1
Density (calculated) 5.426 mg/m3

Absorption coefficient 11.36 mm−1

Crystal size 30 × 20 × 10 µm3

Theta range for data collection 2.283 to 26.223◦

Reflections collected 2237
Independent reflections 251 [R(int) = 0.0945]
Goodness-of-fit on F2 1.190
Final R indices [I > 2σ(I)] R1 = 0.0375, wR2 = 0.0886
R indices (all data) R1 = 0.0403, wR2 = 0.0908

Table 2. Atomic coordinates and equivalent isotropic displacement parameters (Å2). Ueq is defined
as one third of the trace of the orthogonalized Uij tensor.

Atom Site x y z Ueq

In 1b 1/2 1/2 1/2 0.009(1)
Se 4e 0.2412(1) 0.2412(1) 0.2412(1) 0.011(1)
Cu 3d 0 0 1/2 0.007(1)

Table 3. Anisotropic displacement parameters (Å2). The anisotropic displacement factor exponent
takes the form: −2π2[h2a*2U11 + . . . + 2hka*b*U12].

U11 U22 U33 U23 U13 U12

In 0.010(1) 0.010(1) 0.010(1) 0 0 0
Se 0.011(1) 0.011(1) 0.011(1) −0.002(1) −0.002(1) −0.002(1)
Cu 0.007(1) 0.007(1) 0.006(1) 0 0 0
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Figure 1. Schematic illustrating the crystal structure of Cu3InSe4 showing the (a) unit cell and (b)
stacking of the CuSe4 (red) and InSe4 (gray) tetrahedra.

The electron density distribution was investigated by calculating the ELF, revealing the
ionic nature of the bonding in Cu3InSe4, as shown in Figure 2. Figure 2 shows the calculated
ELF along the (110) plane. ELF values of 0.0, 0.5 and 1.0 represent fully delocalized, electron-
gas-like pair probability and perfect localization, respectively [53]. The atomic core regions
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of the cations have localization domains with ELF values close to unity and low ELF values
away from these regions. This suggests electrons transfer from both Cu and In atoms to
adjacent Se atoms, indicating ionic bonding. In comparing the Cu3XSe4 compounds [54]
with Cu3InSe4, the X-Se bonds in the former show a higher degree of covalency as compared
with the primarily ionic character for In-Se in Cu3InSe4.

Crystals 2022, 12, x FOR PEER REVIEW 4 of 8 
 

 

Table 3. Anisotropic displacement parameters (Å 2). The anisotropic displacement factor exponent 

takes the form: −2π2[ h2a*2U11 + … + 2hka*b*U12]. 

 U11 U22 U33 U23 U13 U12 

In 0.010(1)  0.010(1) 0.010(1)  0 0  0 

Se 0.011(1)  0.011(1) 0.011(1)  −0.002(1) −0.002(1)  −0.002(1) 

Cu 0.007(1)  0.007(1) 0.006(1)  0 0  0 

The electron density distribution was investigated by calculating the ELF, revealing 

the ionic nature of the bonding in Cu3InSe4, as shown in Figure 2. Figure 2 shows the 

calculated ELF along the (110) plane. ELF values of 0.0, 0.5 and 1.0 represent fully delocal-

ized, electron-gas-like pair probability and perfect localization, respectively [53]. The 

atomic core regions of the cations have localization domains with ELF values close to unity 

and low ELF values away from these regions. This suggests electrons transfer from both 

Cu and In atoms to adjacent Se atoms, indicating ionic bonding. In comparing the Cu3XSe4 

compounds [54] with Cu3InSe4, the X-Se bonds in the former show a higher degree of co-

valency as compared with the primarily ionic character for In-Se in Cu3InSe4. 

 

Figure 2. ELF calculated along the (110) plane. 

The oxidation states of Cu, In and Se are 1+, 3+ and 2−, respectively, resulting in 30 

electrons per formula unit, or two fewer than required for the tetrahedral bonds in 

Cu3InSe4 thus resulting in p-type metallic behavior. Our detailed structural analyses allow 

for an investigation of the electronic structure of Cu3InSe4 by calculating the energy band 

structure and density of states (DOS). As shown in Figure 3, the Fermi level, Ef, crosses 

the valence band in multiple regions, thus, Cu3InSe4 is a p-type metal [46,55], confirming 

the simple charge imbalance argument. This is also in agreement with the early conjecture 

[38], and corroborated by our room temperature conductivity measurements indicating 

metallic conduction [56]. The orbital-projected DOS indicates that the valence band max-

imum has contributions mainly from the Cu 3d and Se 4p orbitals, while the conduction 

band maximum is mainly composed of In 5s and Se 4p and minor contributions from Cu 

3d4s4p, In 5p and Se 4s orbitals. The orbital interactions between the CuSe4 tetrahedra 

therefore play a dominant role in the metallic conductivity of Cu3InSe4. It is instructive to 

compare the electronic structure of Cu3InSe4 to that of Cu3XSe4 in light of the fact that the 

crystal structure of Cu3InSe4 is not isostructural to that of the later compositions. Specifi-

cally, for the case of the Cu3XSe4 compositions [19,57,58], an energy gap opens between 

the valence and conduction bands in these materials. These compositions are therefore 

semiconductors and are being investigated for thermoelectric [19,20] and photovoltaic 

[59,60] applications, whereas in the case of Cu3InSe4 Ef falls relatively deep in the valence 

band and will therefore not be of interest for such applications. 

Figure 2. ELF calculated along the (110) plane.

The oxidation states of Cu, In and Se are 1+, 3+ and 2−, respectively, resulting in
30 electrons per formula unit, or two fewer than required for the tetrahedral bonds in
Cu3InSe4 thus resulting in p-type metallic behavior. Our detailed structural analyses allow
for an investigation of the electronic structure of Cu3InSe4 by calculating the energy band
structure and density of states (DOS). As shown in Figure 3, the Fermi level, Ef, crosses the
valence band in multiple regions, thus, Cu3InSe4 is a p-type metal [46,55], confirming the
simple charge imbalance argument. This is also in agreement with the early conjecture [38],
and corroborated by our room temperature conductivity measurements indicating metallic
conduction [56]. The orbital-projected DOS indicates that the valence band maximum
has contributions mainly from the Cu 3d and Se 4p orbitals, while the conduction band
maximum is mainly composed of In 5s and Se 4p and minor contributions from Cu 3d4s4p,
In 5p and Se 4s orbitals. The orbital interactions between the CuSe4 tetrahedra therefore
play a dominant role in the metallic conductivity of Cu3InSe4. It is instructive to compare
the electronic structure of Cu3InSe4 to that of Cu3XSe4 in light of the fact that the crystal
structure of Cu3InSe4 is not isostructural to that of the later compositions. Specifically, for
the case of the Cu3XSe4 compositions [19,57,58], an energy gap opens between the valence
and conduction bands in these materials. These compositions are therefore semiconductors
and are being investigated for thermoelectric [19,20] and photovoltaic [59,60] applications,
whereas in the case of Cu3InSe4 Ef falls relatively deep in the valence band and will
therefore not be of interest for such applications.
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4. Conclusions

Single crystals of a new ternary chalcogenide Cu3InSe4 were obtained by induction
melting, and the structural and electronic properties are reported for the first time. Cu3InSe4
forms in a cubic crystal structure that consists of CuSe4 and InSe4 tetrahedra connected
by corner sharing Se atoms. Electron localization function analyses indicated partially
ionic bonding between the cations and Se atoms, with highly delocalized electrons in the
regions between cation and selenium. Electronic structure calculations reveal this ternary
chalcogenide to be metallic. Given that ternary chalcogenide compounds are of interest
for potential thermoelectric and optoelectronic applications, our findings will be useful for
investigations on new materials for applications of interest. The results and analyses in
this work add to our understanding of the structural and electronic properties of ternary
chalcogenides.
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