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We propose to simulate bosonic pair creation using large arrays of long-lived dipoles with multilevel
internal structure coupled to an undriven optical cavity. Entanglement between the atoms, generated by the
exchange of virtual photons through a common cavity mode, grows exponentially fast and is described by
two-mode squeezing of effective bosonic quadratures. The mapping between an effective bosonic model
and the natural spin description of the dipoles allows us to realize the analog of optical homodyne
measurements via straightforward global rotations and population measurements of the electronic states,
and we propose to exploit this for quantum-enhanced sensing of an optical phase (common and differential
between two ensembles). We discuss a specific implementation based on Sr atoms and show that our
sensing protocol is robust to sources of decoherence intrinsic to cavity platforms. Our proposal can open
unique opportunities for next-generation optical atomic clocks.
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The generation of robust and scalable quantum squeezing
on an optical transition has the potential to vastly improve
optical frequency standards in state-of-the-art atomic clocks
and significantly advance capabilities in a variety of fields
ranging from gravimetry [1] to fundamental physics [2–9].
Despite this promise, experiments have not yet used
squeezing to make any practical improvements to optical
frequency standards in state-of-the-art clocks beyond proof-
of-principle experiments [10,11], due to a variety of
physical and technical challenges. As a result, the develop-
ment and theoretical study of new proposals to generate
scalable, robust entangled states that simultaneously min-
imize experimental complexity and respect technical con-
straints are a crucial task to make concrete progress in the
field of quantum-enhanced metrology [1,12–19].
In this Letter, we introduce two-mode squeezing (TMS)

of atoms in a cavity-QED platform as a feasible path to
quantum-enhancement of state-of-the-art clocks. TMS is
realized as the result of a process that produces entangled
pairs of particles. Prior realizations of TMS in photonic
systems generated entangled photons via, e.g., four-wave
mixing (FWM) of optical fields in a nonlinear medium [20].
Complementary efforts in ultracold bosonic gases have
used the intrinsic nonlinearity provided by contact inter-
actions [12,21–26], including spinor Bose-Einstein con-
densates (BECs) [27–33], wherein spin-changing collisions
between atoms of different internal spin states simulate
pair production analogous to degenerate FWM of optical
fields [34]. Experiments have also generated TMS via

quantum non-demolition (QND) measurements of thermal
gases [35–40]. However, these experiments have all been
challenged by a variety of factors—short interaction times in
photonics, finite detection efficiency in QND measure-
ments, and complex spatial dynamics in spinor BECs that
limits their scalability [41,42].
We propose to simulate a pair production process

through light-mediated interactions between atoms con-
fined in an undriven optical cavity and exploit it for
quantum-enhanced metrology. Pairs of entangled excita-
tions are generated by the exchange of virtual photons
between a quartet of internal spin states coupled to a
common, far-detuned cavity mode, in a process analogous
to FWM. The pinning of the atoms in a deep optical lattice
supported by the cavity, in combination with the global
range of the effective interaction [43], avoids undesirable
motional decoherence and can enable the study of large
systems. The exploitation of light-mediated unitary
exchange interactions realized by coupling an optical
transition to an undriven cavity complements prior work
involving Raman transitions [16,44], and avoids potential
sources of technical noise introduced by driving the cavity
with an external field, such as fluctuations in the drive
intensity or detuning. Nevertheless, our proposal can in
principle be extended to these systems.
TMS states are well known to have excess quantum

fluctuations in the phase and amplitude quadratures of each
bosonic mode, but suppressed fluctuations of combined
quadratures of the two modes. We demonstrate that, despite
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the complexity of our underlying physical system, the
generated quadrature squeezing can be readily accessed
and exploited for quantum-enhanced sensing by a sequence
of rotations and population measurements that are straight-
forward to implement and shown to be equivalent to a
standard Ramsey sequence. Moreover, engineering TMS
on two distinct long-lived optical transitions lets us design
protocols to sense both differential and sum phases
imprinted on the atoms. This is a distinct advantage of
our scheme compared to, e.g., atomic homodyne tech-
niques that have been developed in spinor BECs but require
simultaneous mixing of multiple internal states [27,45,46],
or alternatively nonlinear readout protocols to exploit the
correlated noise [47]. We verify that our protocol is robust
to typical sources of decoherence in cavity-QED realiza-
tions and thus can be immediately relevant for state-of-the-
art time and frequency standards.
Engineered FWM.—We consider an ensemble of atoms

trapped by a deep one-dimensional magic optical lattice
within an optical cavity, such that the spatial dynamics are
effectively frozen. A single cavity mode, with angular
frequency ωc and power decay linewidth κ, couples to a
long-lived optical transition, with angular frequency ωa and
natural decay rate γ ≪ κ, between a manifold of ground (g)
and excited (e) states with single-photon Rabi frequency
2g0 [see Fig. 1(a)]. We focus on the far-detuned limit,
jΔj ¼ jωc − ωaj ≫ g0

ffiffiffiffi

N
p

; κ, for N atoms, where the
dynamics is near unitary. The cavity field can be adiabati-
cally eliminated and serves only to mediate effective
interactions between the atoms [48]. For concreteness of
the following, we consider a system based on the Zeeman
levels of the 1S0 (g) and 3P0 (e) electronic states in 87Sr with
F ¼ 9=2, which are separated by an optical transition
frequency forming the basis of state-of-the-art optical
lattice clocks [49]. However, our discussion can be gen-
eralized to alternative implementations using, e.g., spatially
divided ensembles to emulate the multiple internal tran-
sitions [44,50].
We assume the atomic ensemble is prepared with an

equal population of atoms in the electronic states
jg;m ¼ −9=2i and je;m ¼ 9=2i, where m labels the spin
projection of the Zeeman sublevel along the quantization
axis set to be perpendicular to the cavity axis (e.g., by an
external magnetic field). This initial state can be prepared
using a combination of optical pumping and state-
resolved transitions, as explained in [51]. Therein [see
also Fig. 1(b)], we also verify that under this initial
condition, the full atomic spin Hamiltonian involving
all 20 levels in 87Sr dominantly drives cavity-mediated
dynamics only in the quartet of states, jg;m ¼ �9=2i and
je;m ¼ �9=2i, as the population of other Zeeman sub-
levels is suppressed by a combination of collective effects
and favorable Clebsch-Gordan coefficients [51,55]. The
atomic evolution is then described by the effective spin
Hamiltonian [48,51],

Ĥ ¼ ℏχ

�

ŜþA þ ŜþB

��

Ŝ−A þ Ŝ−B

�

þ ℏδ

�

ŜzB − ŜzA

�

: ð1Þ

Hereafter, we denote the m ¼ −9=2ð9=2Þ manifold as the
AðBÞ ensemble. We have introduced collective operators
ŜþA ¼ P

N
i¼1 je; Aiihg; Aji, ŜþB ¼ −

P

i je; Biihg; Bji, and
Ŝzα ¼ 1=2

P

i ðje; αiihe; αji − jg; αiihg; αjiÞ for α ¼ A, B,
where the summation runs over all N atoms. The sign
convention for the B ensemble accounts for the differing
sign of Clebsch-Gordan coefficients for the relevant
transitions in each ensemble, which we absorb in the
raising and lowering operators rather than Hamiltonian
definition for convenience. The cavity detuningΔ controls
the strength of the interaction, χ ≈ −g2F=Δ where the
adjusted Rabi frequency 2gF ¼ 2g0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F=ðF þ 1Þp

includes
an additional factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F=ðF þ 1Þp

arising from Clebsch-
Gordan coefficients [51]. A relative Zeeman shift, ∝ δ,
splits the energies of the two ensembles.
The first term of Eq. (1) is a flip-flop process that

includes (i) an exchange of an excitation between the A and

(a) (b)

(c) (d)

FIG. 1. (a) Schematic of cavity implementation: interactions
(χ) between multilevel atoms (internal structure shown in inset)
are mediated by exchange of virtual photons through a common
cavity mode of angular frequency ωc ¼ ωa þ Δ where Δ is
the detuning and ωa is the atomic transition angular frequency.
The cavity leaks photons through the mirrors at rate κ and the
atoms undergo spontaneous emission at rate γ. A magnetic
field perpendicular to the cavity axis provides a Zeeman shift,
and sets the quantization direction. (b) Possible exchange
processes (blue) and self-interactions (red) caused by cavity-
mediated interactions. (c) Visualization of the spin squeezing
generated during the dynamics, in the combined basis of
the A and B manifolds. Blue arrows label the Bloch vector.
(d) Squeezing, quantified by the normalized variance
ξ2 ¼ ð4=NÞðΔS1;−Þ2 ¼ ð4=NÞðΔS2;þÞ2, for δ ¼ Nχ=2 and dif-
ferent atom numbers N. The UPA prediction (dashed line)
agrees with TWA calculations (solid lines) until corrections
beyond UPA become important (see text). The minimum
squeezing is ξ2min ≈ 0.88=

ffiffiffiffi

N
p

as shown in the inset.
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B ensembles, e.g., ŜþA Ŝ
−
B þ H:c:, and (ii) a self-interaction

ŜþA Ŝ
−
A þ ŜþB Ŝ

−
B. Both can be understood as the simultaneous

destruction of a pair of particles in two atomic levels and
subsequent creation of a pair in two levels, which is
analogous to the process of FWM familiar from quantum
and atom optics. We rigorize this analogy by defining
Schwinger boson operators âg;α and âe;α via Ŝþα ¼ â†e;αâg;α
to rewrite the spin Hamiltonian as

ĤFWM ¼ ℏχ

�

â†e;Aâg;A þ â†e;Bâg;B

��

â†g;Aâe;A þ â†g;Bâe;B

�

þ ℏδ
2

�

â†g;Aâg;A þ â†e;Bâe;B − â†e;Aâe;A − â†g;Bâg;B

�

;

ð2Þ

where the first line describes a set of FWM processes. The
Hamiltonian (2) is closely related to that realized via spin-
changing interactions in spin-1 BECs [51] under the
assumption that all atoms are restricted to a single common
spatial mode. This assumption is not required in cavity-
QED implementations [43,44,48] wherein the infinite-
range interactions are generated by a uniform atomic
coupling to a single common cavity mode, achieved by
selective loading of the atoms in the spatial lattice or by
adopting a ring cavity configuration.
Dynamics of pair creation.—In quantum optics it is

common to make an undepleted pump approximation
(UPA) [56] to study FWM, corresponding to replacing
âg;A; âe;B ∼

ffiffiffiffiffiffiffiffiffi

N=2
p

in ĤFWM. For simplicity, we have
assumed that the two pump modes are equally populated
and treat the general case with unequal pump populations
in [51]. Further assuming δ ¼ Nχ=2 to effectively remove
the mean-field interaction shift due to the self-interaction
terms χðŜþA Ŝ−A þ ŜþB Ŝ

−
BÞ [51] we obtain

ĤTMS ¼
Nℏχ
2

�

â†e;Aâ
†
g;B þ H:c:

�

: ð3Þ

This final form elucidates a resonant production of pairs of
bosons, or equivalently the correlated transfer of atom
pairs to the internal levels je; Ai and jg; Bi. Using ĤTMS,
the number of entangled particles is n̄ðtÞ ¼ hâ†e;Aâe;A þ
â†g;Bâg;Bi ¼ 2sinh2ðNχt=2Þ [32,57]. We benchmark the pair
production and other predictions by Eq. (3) against the
exact dynamics produced by Eq. (1) in [51].
Two-mode squeezing for enhanced metrology with an

optical transition.—It is well established in quantum optics
that the Hamiltonian Eq. (3) generates squeezing of
combined two-mode quadrature fluctuations [58].
Considering χ > 0 without loss of generality, within the
UPA Ĥ produces squeezing along two bosonic quadratures
labeled Yþ and X− and antisqueezing along conjugate
quadratures Xþ and Y− [51], with exponentially fast

suppression or growth of the associated quantum noise
ðΔX�Þ2 ¼ 1

2
e�Nχt and ðΔY�Þ2 ¼ 1

2
e∓Nχt. In our proposal,

the two-mode quadrature squeezing can be observed in
collective spin operators that act on our four-level system.
Specifically, the squeezed quadratures can be directly
mapped to a combination of spin operators,

ffiffiffiffiffiffiffiffiffiffiffiffiffiðN=2Þp

X̂−¼
Ŝ1;−≡ ŜxB− ŜyA and

ffiffiffiffiffiffiffiffiffiffiffiffiffiðN=2Þp

Ŷþ¼ Ŝ2;þ≡ ŜyBþ ŜxA. Corres-
pondingly, the antisqueezed quadratures are

ffiffiffiffiffiffiffiffiffiffiffiffiffiðN=2Þp

Ŷ−¼
Ŝ2;−≡ ŜyB− ŜxA and

ffiffiffiffiffiffiffiffiffiffiffiffiffiðN=2Þp

X̂þ ¼ Ŝ1;þ ≡ ŜxB þ ŜyA.
We can visualize the squeezed quantum noise of the

combined spin state corresponding to the A and B tran-
sitions on a pair of coupled Bloch spheres defined by axes
ðS1;−;S2;−;S3;−Þ and ðS1;þ;S2;þ;S3;−Þ that share a
common vertical component S3;− ¼ SzB − SzA and for which
the corresponding operators obey standard SU(2) commu-
tation relations [51]. As shown in Fig. 1(c), the state is
squeezed in both Bloch spheres, ðΔS1;−Þ2 ¼ ðΔS2;þÞ2 ¼
Ne−Nχt=4, relative to the level of the initial separable state.
The UPA prediction for the squeezing, ðΔS1;−Þ2 and

ðΔS2;þÞ2, is verified in Fig. 1(d) by comparing to a
calculation of the variances based on a numerical simu-
lation of the full multilevel cavity implementation, and we
find excellent agreement up to n̄ ∼ 0.76

ffiffiffiffi

N
p

. The multilevel
cavity dynamics are obtained using a truncated Wigner
approximation (TWA), which approximates the quantum
dynamics by averaging over an ensemble of classical
trajectories with initial conditions chosen to reproduce
the quantum fluctuations of the initial state [59–63]. We
include all possible exchange processes between the
complete set of 4F þ 2 ground and excited atomic levels
in our TWA simulation, including, e.g., those mediated by
photons with polarization perpendicular to the quantization
axis [51,64].
A Ramsey protocol [65] that uses only collective rota-

tions and population measurements of the spins encoded in
the A and B manifolds can be used to take advantage of the
squeezing in the Bloch sphere for enhanced sensing of
phase shifts imprinted on the optical transition. The protocol
is analogous to optical homodyne techniques in quantum
optics, as well as atomic homodyne [45,66] or measure-
ments of squeezing in spin-1 BECs [46,67]. However, as
our atomic realization is based on four internal levels, as
opposed to three in spin-1 BECs, we do not require any
coherent mixing of the F ¼ �9=2 manifolds. This also
distinguishes our approach from prior demonstrations of
interferometry with Dicke-like states realized in spin-1
BECs [28], which treat the mF ¼ �1 modes as the two
internal levels of a collective spin-1=2 system and uses a
Holland-Burnett-type protocol [68]. Such an approach is
sensitive to decoherence [69] and readout errors [19], while
in our system it would also add the complex requirement of
engineering a coupling between the F ¼ �9=2 states.
Here, we present Ramsey protocols for measuring sum

and difference optical phases imprinted on the atoms,
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illustrated in Fig. 2. Measuring differential phases has
several applications including gravimetry [70], measuring
gravitational redshifts [71–74], and detecting gravitational
waves [75,76] and dark matter [77]. Measuring the sum
phase is useful for improving state-of-the-art optical
atomic clocks.
To measure a differential phase imprinted by a rotation

about SzB − SzA, we begin our protocol with a π=2 pulse that
rotates atoms in the A ensemble about Sx and those in the B
ensemble by Sy, i.e., implements exp½−iðπ=2ÞŜ2;þ�. Next,
we accumulate a relative phase shift by a rotation of ϕ about
−SzA and S

z
B (i.e., S3;−), and finally apply a second π=2 pulse

which rotates atoms in the A and B ensembles about Sy and
Sx, i.e., implements exp½−iðπ=2ÞŜ1;þ�. The action of this
pulse sequenceon the state is best visualizedby looking at the
spin distribution on the Bloch spheres, as shown in Fig. 2(a),
where the initial spin distribution is to that of the lower Bloch
sphere in Fig. 1(c). The final pulse converts the rotation Ûϕ

into a change in the difference in atomic inversions

hŜzB − ŜzAi ¼
N
2
sinϕ: ð4Þ

This Ramsey sequence does not imprint any information
about the differential phase on the upper Bloch sphere in
Fig. 1(c) [51].

The sum phase, imprinted by a collective rotation around
S3;þ ≡ SzA þ SzB, is similarly inferred by another Ramsey
protocol shown in Fig. 2(b). Note that neither Bloch sphere
in Fig. 1(c) has S3;þ as an axis. Therefore, the first pulse in
this Ramsey protocol, implementing exp½−iðπ=2ÞŜ2;−�, is
chosen such that it rotates the axes in the Bloch sphere from
ðS1;þ;S2;þ;S3;−Þ to ð−S3;þ;S2;þ;S1;−Þ, thus introducing
S3;þ into relevance. The remainder of the sequence
proceeds analogously to that for the differential phase.
The sensitivity of both protocols, computed within the

UPA, is

ðΔϕÞ2 ≡ ðΔOÞ2
ðdhÔi=dϕÞ2 ¼

e−Nχt

N
þ n̄ðn̄þ 2Þ

4N2
tan2ϕ; ð5Þ

where Ô is the observable measured. Equation (5) predicts
an advantage relative to the standard quantum limit (SQL),
ðΔϕÞ2 ¼ 1=N, which sets the optimal resolution achievable
with uncorrelated particles, for any n̄ > 0 and a wide
dynamic range of ϕ, j tanϕj < 2

ffiffiffiffi

N
p

=n̄, which can beOð1Þ.
The sensitivity [Eq. (5)] can be degraded by other effects

not included in the ideal analysis, including (i) corrections
beyond the UPA, (ii) decoherence, and (iii) fluctuations in
the total and relative populations of the A and B ensembles.
We discuss (i) and (ii) below, and leave the discussion on
(iii) to [51]. There, we show that number fluctuations at the
level of shot noise provide a comparable degradation of the
sensitivity to that generated by (i) and (ii).
The leading corrections to ĤTMS can be captured by

iteratively modifying the UPA to include depletion of the
pump states jg; Ai and je; Bi by n̄=2. This is achieved by
setting âg;A;âe;B≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ðN− n̄Þ=2�p

where n̄ ¼ 2sinh2ðNχt=2Þ
is taken to be the original UPA result as a first approxi-
mation. Making this correction has two physical conse-
quences [51]: (i) the effective nonlinearity χðN − n̄Þ=2
driving pair production is reduced relative to the UPA, and
(ii) the pair production is no longer resonant as the Zeeman
shift δ ¼ χN=2 is static and does not completely cancel the
mean-field shift introduced by the self-interaction terms in
Eq. (2). For 1 ≪ n̄ ≪ N we then obtain the beyond-UPA
sensitivity [51]

ðΔϕÞ2 ≈ 1

2Nn̄
þ n̄3

2N3
þ n̄ðn̄þ 2Þ

4N2
tan2 ϕ: ð6Þ

The optimal sensitivity remains enhanced relative to the
SQL, with a lower bound of ðΔϕÞ2 ¼ 2=ð33=4N3=2Þ that
occurs for n̄ ¼ ffiffiffiffi

N
p

=31=4, in agreement with TWA results.
Decoherence.—Dissipative noise in our system intrinsi-

cally arises from superradiant decay, at a rate Γ ≈ g2Fκ=Δ2,
due to leakage of the photons that mediate the effective
atom-atom interaction from the cavity, and single particle
spontaneous emission into free space at the rate γ. While
both are deleterious for sensing, we show that our protocol

(a)

(b)

FIG. 2. (a) Ramsey sequence to measure a differential clock
phase shift imprinted on the atoms. A first π=2 pulse rotates the
Bloch vector to the equator. Next, a phase accumulation rotates the
Bloch vector about SzB − SzA by an angle ϕ, before a final π=2 pulse
rotates the Bloch vector for readout via measuring ŜzB − ŜzA.
(b) Ramsey sequence to measure the sum phase imprinted on
the atoms. The first π=2 pulse defines the squeezed distribution
on a joint Bloch sphere of A and B defined by the axes
ðS1;−;S2;þ;S3;þÞ. After phase accumulation about SzB þ SzA, the
final pulse again rotates the Bloch vector for readout via measuring
ŜzB þ ŜzA. In both cases, dashed blue arrows mark the Bloch vector
at each stage. The subscript xðyÞ for the pulses denote the axis of
rotation SxðSyÞ, and the degree 0°ð90°Þ in the subscript conveys the
same information via the phase of the laser pulse.
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can achieve sub-SQL sensitivity even with these sources of
decoherence.
Collective decay is treated by solving a Lindblad master

equation with jump operator L̂¼ ffiffiffi

Γ
p ðŜ−Aþ Ŝ−BÞ, which cap-

tures the dominant process where an emitted photon polar-
ized along the quantization axis is lost from the cavity [51].
Spontaneous emission is included through jump operators
L̂i ¼ ffiffiffi

γ
p ðσ̂−A;i þ σ̂−B;iÞ, where σ−α;i is the spin-lowering oper-

ator in the α ¼ A; B manifold for the ith atom.
In Fig. 3(a) we plot the scaled sensitivity

ffiffiffiffi

N
p

Δϕ as a
function of time in the presence of decoherence for a range
of cavity detunings. It decreases from the initial SQL to a
minimum value at an optimum time that depends on the
detuning. This optimum time balances the gain obtained by
reaching a higher n̄ versus the loss in squeezing due to
decoherence. Optimizing this interplay via Δ (thus tuning χ
relative to Γ and γ), we obtain a best achievable sensitivity
[see Fig. 3(b) and [51] ]

ðΔϕÞ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 lnð2NCÞp

N3=2
ffiffiffiffi

C
p ; ð7Þ

for Δ¼½κ ffiffiffiffiffiffiffi

NC
p

=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnð2NCÞp �, with C¼4g2F=κγ the single-
atom cooperativity. Current experimental setups [43,55],
with κ=2π ∼ 150 kHz and g=2π ∼ 4 Hz, can reach a
collective cooperativity NC ¼ 4 × 105 with N ¼ 106

atoms, and NC ¼ 107 is within reach. The sensitivity in
Eq. (7) is only slightly degraded from the ideal case [see
Fig. 1(d) and Eq. (6)] and is competitive with the best
sensitivities achievable with the paradigmatic approach
of one-axis twisting when decoherence is incorporated
[1,13,78].
Outlook.—Our proposal offers new opportunities to

study and exploit the exponentially rapid generation of
entanglement in atomic systems, driven by connections to
well established concepts in quantum optics. Moreover, our
proposal highlights new possibilities for the realization and
investigation of diverse models of bosonic pair production
in highly tunable quantum simulators featuring spin-spin
interactions.
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