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Abstract—Internet-of-Things (IoT)-based streaming applica-
tions are all around us. Currently, we are transitioning from
IoT processing being performed on the cloud to the edge. While
moving to the edge provides significant networking efficiency
benefits, IoT edge computing creates significant data privacy con-
cerns. We propose a methodology that can successfully privacy
protect the continual data streams generated by sensors on the
edge device. We implement local differential privacy on streaming
data and incorporate Bayesian inference and Gaussian process
to evaluate the privacy policy. We demonstrate our methodology
on a real-world smart meter testbed and identify the optimal
privacy protection settings.

Index Terms—privacy, edge, Bayesian, algorithms, streaming
data, IoT, Gaussian process

I. INTRODUCTION

We live in the era of Internet-of-Things (IoT). Their benefits

are well understood across a wide range of applications

including healthcare monitoring [19], smart homes [26], and

grid systems [14]. Still, their vulnerabilities and the importance

of data privacy are not taken seriously [28].

The rapid increase of connected devices has created multi-

ple targets for attackers (e.g., security cameras, smart TVs,

connected printers, smart bulbs, coffee machines, internet-

connected gas stations). Furthermore, recent scandals of user

monitoring demonstrate avenues for privacy breach of user

personal information [1]. While the benefit of the vast amount

of data availability is undeniable [15], a better mechanism for

privacy protections is needed.

Usually, security practices are established with passwords

and access point permissions. But, the need to secure data stor-

age, transfer and communicate securely is mainly addressed

by cryptography and other formal approaches [30]. Although

cryptography offers security, it requires a significant amount of

computation which makes it challenging for IoT-based systems

with limited resources to process encrypted data efficiently.

Additionally, there is a risk that unauthorized users could gain

access to the data after it has been decrypted, giving them full

access to the sensitive details [24]. Privacy algorithms pro-

vide a solution for overcoming these challenges. Additionally,

cryptography’s weakness is that it does not protect endless data

streams or as the data arrives. In contrast, privacy approaches
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provide mechanisms for protecting the sensitive information

within the data, as soon as the data is generated and without

a key to discover the original raw data.
In the context of IoT-based systems, the data is constantly

streaming. The aim is to privacy protect the streaming data as it

is generated and as close to the source as possible and before

it is sent to the cloud [20]. When privacy mechanisms are

implemented, they will increase trust in the systems and enable

more users to use the systems with confidence. Some works

that have investigated privacy policy on the edge are [13], [11],

[25], [16], [27]. These studies demonstrate implementation on

mobile or simulated environment and quantify performance

with common error measurement metrics (see Subsection

IV-B).
This work explores differential privacy (DP) algorithms

[17] for streaming applications and their performance on the

edge-based system. An algorithm is DP if an observer cannot

tell if an individual’s sensitive information was used in the

computation. Particularly the focus is on local differential

privacy [12] (e.g., distribution-based techniques) and design

their adaptation for streaming data. We then also develop a

Bayesian inference algorithm to measure the ricks of these

privacy policies under cyber-attack. In particular, we quantify

the ability for a bad actor to identify the privacy policy

and parameters. Knowledge of the privacy policy and its

parameters can be used to extract knowledge of the privacy

protected data. For instance, through the use of a heteroscedas-

tic regression algorithm which employs knowledge of the noise

to better identify data patterns. Policies that are more difficult

to identify from original data can then be deployed.
These techniques were demonstrated on a real-world power

system testbed (see Subsection IV-A) consisting of a smart

meter monitoring real-time power generation, data that can

be retrieved by a utility company while monitoring customer

power usage. This presents a privacy issue as others have

shown that energy data can reveal sensitive information about

residents and their daily activities [22].
The main contributions of the paper are summarized as

follows.

• Adaptation of local differential privacy (LDP) techniques

for edge-based systems.

• Comparison analysis of LDP techniques for streaming

data on edge.

• Bayesian Inference methodology for detecting privacy

policy and parameters.
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• Deployment of methodology on real-world, edge-based

power system testbed.

The outline of the paper is organized as follows. First,

we describe edge systems in Section II and the streaming

algorithms in Section III-C. We explain the testbed and present

the results in Section IV-C3. Finally we conclude in Section V.

II. EDGE COMPUTING

Edge computing is a computing pattern that brings data

processing closer to the source or where it is created [9]. It is

a decentralized topology based on keeping data local, at the

edge of the network, as close to the source as possible. Using

the edge directly on or near the source increases the efficiency

and speed of data use and reduces unnecessary network burden

and data traffic waste. The aim is to bring cloud capabilities

closer to the user.

Similar paradigms are fog computing and cloudlets, and

the difference is where the computing power and intelligence

power are placed. In architecture settings, the edge is between

the cloud and devices. The edge collects the data from

local sensors and performs an analysis. Depending on how

computing-intensive the tasks are, the edge can be categorized

as micro, thin, and thick [4].

Edge computing offers a more efficient approach to pro-

cessing data and not overloading the cloud with all processing

steps. In cases when data needs to be transferred over the

network, privacy guarantee is necessary to ensure trustful data

transfer. Integrating privacy algorithms at the edge can provide

confidence in protecting sensitive information and using edge-

based systems.

III. ALGORITHMS

A. Data Streaming Characteristics

Streaming data is generated by video platforms, music plat-

forms, intelligent virtual assistants, and any IoT-based system.

The data type can be video, audio, text, or numerical format.

It is characterized by continuous data generation, dynamic

evolving data, heterogeneous data types, and near real-time

processing.

B. Local Differential Privacy (LDP)

The goal of privacy algorithms is to protect the sensitive

information in the dataset and guarantee the desired level of

privacy. In LDP [12], the data is perturbed first before sending

it to an aggregator for analysis (Fig. 1). The advantage of LDP

is that there is no need for a trusted data aggregator.

Definition: A randomized algorithm A satisfies (ε, δ)-LDP

where ε ≥ 0 and (0 ≤ δ ≤ 1), if and only if any pair of input

values v, v′ ∈ S and S ⊆ Range(A)

Pr[A(v) ∈ S] ≤ eεPr[A(v′) ∈ S] (1)

where Range(K) denotes the set of all possible outputs of

the algorithm A. If δ = 0, the algorithm satisfies pure (strict)

local differential privacy (pure LDP), namely, -LDP. If δ > 0,

Fig. 1. Local differential privacy (LDP)

the algorithm satisfies approximate (relaxed) local differential

privacy (approximate LDP), namely, (ε, δ)-LDP [29].

There are a few types of LDP algorithms [10]. We focus

on distribution-based techniques and test their performance on

an edge system. We apply four well-known distribution-based

noise mechanisms (e.g., Laplace, Gaussian, Exponential, and

Gamma) [2].

The Laplace distribution with the probability distribution

function:

p(x) =
1

2b
exp(−|x− μ|

b
) (2)

where, b is the scale and μ the mean.

The Gaussian distribution with the probability distribution

function:

p(x) =
1√
2πσ2

exp(− (x− μ)2

2σ2
) (3)

where, σ is the scale parameter and μ is the mean.

The Exponential distribution with the probability distribu-

tion function:

p(x) =
1

b
exp(−x

b
) (4)

The Gamma distribution with the probability distribution

function:

p(x) = xk−1 exp(−x
θ )

θkΓ(k)
(5)

where, k is the shape, θ is the scale and Γ is the Gamma

function.

In our case, the raw data of every reading is perturbed by

adding random noise generated from different distributions.

In the experiments, the scale of the noise (e.g., sensitivity) is

determined by the maximum allowed noise from the utility

(i.e., lower MAE value) and user (see Eq. 8 and Eq. 9).

C. Bayesian Inference

Bayesian inference is a statistical method for determining

the probability of a hypothesis through the use of Bayes’

theorem. [23]. A common application for Bayesian inference

is using observed data Y to determine the parameter values

of the data generating model M(θ), where θ is the set of

model parameters. Here we wish to infer likely values for

the parameters θ. This challenge can be solved by employing

Bayes’ theorem. Prior belief for the value of the parameters
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θ is given by the probability density function p(θ) (or the

probability mass function P (θ) if the parameters θ take on

discrete values.) The probability of observing data Y given

particular values for the parameters is given by p(Y |M(θ)).
Through the use of Bayes’ theorem, this probability combined

with the prior over θ can be combined to determine the

probability of different values of θ given the observed Y .

This probability is also called the posterior and is represented

by p(M(θ)|Y ). Bayesian inference allows one to employ

prior knowledge over possible values of the parameters θ
and prior knowledge of the relationship between the observed

variable and model (given by p(Y |M(θ))) to statistically infer

a distribution over the unknown parameters.

In this work, we use Bayesian inference to determine the

accuracy with which a malevolent actor can identify the

privacy policy parameters employed from a compromised data

stream. Then we investigate how well the actor can utilize this

information to estimate originating raw data for other privacy

protected data.

IV. DEMONSTRATION

A. Our Testbed

For our testbed, we decided to focus on a power systems

example. Traditionally, power flows from large power genera-

tion facilities down to consumers. However, with the rise of the

smart grid [18] and renewable energy technologies, the flow of

power has become a two-way exchange. This means the grid

must be able to adapt to not only variable power needs but also

variable power production from the top and bottom. This is

being solved with smart grid technologies such as a two-way

communication infrastructure that allows utility companies to

collect real-time data from customers.

One example of a two-way communication is advanced

metering infrastructure (AMI) described in [21]. AMI includes

a number of technologies, one of which is the collection of

data from smart meters attached to homes and buildings. These

smart meters monitor real-time power usage data that can

be retrieved by the utility company as often as desired. This

presents a privacy issue as others have shown that energy data

can reveal sensitive information about residents and their daily

activities [22].

As such, we designed our test bed to include a smart meter

attached to a group of solar panels. The meter records power

generation of the solar panels when it is being consumed by

the local power grid, as power is generated on demand. The

power usage data is retrieved by a controller at a regular,

configurable interval which records it for operators to view

from a human-machine interface (HMI). In our case, all of

these devices are on a local network, but in a real world

environment, a centralized monitoring station would collect

the data from many controllers remotely across the Internet.

This makes the controller a target for cyber attacks that could

compromise the privacy of customers if the data was stolen.

To introduce a privacy protection algorithm, we installed a

Raspberry Pi with two network interfaces in between the meter

and the controller as shown in Fig. 2. Requests from the con-

troller are forwarded to the meter, while responses are parsed

by the proxy device and passed to the algorithm. The result

is reformed into a response packet and sent to the controller.

Because the proxy device is the only direct connection to the

smart meter, all traffic is handled appropriately, and the total

amount of traffic is low enough that a Raspberry Pi is easily

capable of processing it within a manageable amount of time

as discussed in Section IV-C.

Fig. 2. A Raspberry Pi acts as a proxy device in between the meter and the
controller to perform the privacy algorithm before responses are sent to the
controller.

B. Metrics

Metrics for LDP are grouped as error-based and

information-theoretical metrics [29].

Error-based metrics describe the error between the private

observation and the original (real) observation. Typically, mean

absolute error (MAE) is used (see Eq. 6). Here, x is denoted

as the expected original value, y is denoted as the observed

private value and n is the total number of samples.

MAE =

∑n
i=1 |yi − xi|

n
(6)

Information-theoretical metrics are adopted to quantify

the error between the original data and private data. Typi-

cally, Kullback–Leibler divergence is used (see Eq. 7). The

Kullback–Leibler divergence (KL divergence) is commonly

adopted to measure the similarity between distributions. The

KL divergence between X and Y is

Dkl(X||Y ) =
∫ ∞

−∞
p(x)log(

p(x)

q(x)
)dx (7)

where X and Y denote the original distribution and private

distribution [5].
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C. Results and Discussion

Privacy algorithms were implemented using Python 3.7

with standard python packages [8] and the SciPy [7] library.

Bayesian inference was implemented with Python 3.7 and with

the Pyro package [6] using the NUTS solver and 5,000 steps.

Gaussian process was implemented using GPy library [3]. All

experiments are repeated 5 times and the average reported.

The dataset generated by our testbed represents the power

being generated by the solar panels measured in watts at 1, 5,

10, 15, and 20 seconds.

1) Measuring the Impact of Algorithm Type: We evaluate

the distribution-based techniques to measure their performance

for the edge device. In Fig. 3, we present the impact of

different noise-based distributions varying the privacy loss.

Results show that Gamma distribution shows comparatively

lower relative error, and Exponential distribution shows a

higher relative error under different ε. This was shown by

using the KL metric with Gamma being close to zero and

other distributions between ten and thousand.

Fig. 3. Comparison of different distribution based noise varying privacy
parameter.

When we look closer into the results per distribution, it

shows that changing the value of δ and ε changes the error

level as well, as expected due to the inverse relationship

between the parameter values and the generating additive noise

standard deviation σ, see Figure 4.

We observe the expected result that a higher value of δ
results in higher utility (lower MAE), and a lower value of δ
results in a higher level of privacy.

2) Measuring the Impact of Streaming Properties: We

performed two sets of experiments based on data streaming

properties.

a) Impact of data collection frequency These experiments

evaluate the difference in performance when configuring the

rate at which data is collected from the smart meter. We tested

what we determined to be reasonable collection frequencies of

1, 5, 10, 15, and 20 seconds.

In our settings, we noticed that the data frequency impacts

the algorithm performance (see Fig. 5). Results show that

when data is collected every second, the relative error is

highest.

b) Impact of time window We ran experiments when the

privacy algorithm is not processing the data as it comes, but

instead collects it and processes it periodically (e.g., every 1,

5, 10, 15, 20 seconds).

Fig. 4. Gaussian noise label varying delta and epsilon.

Fig. 5. Evaluation of Laplacian approach with different frequencies.

Fig. 6. Evaluation of Laplacian approach varying different time window
processing.

The results show that the time window does not impact the

results significantly. The time window of 5 seconds is slightly

better for 0.1 and 0.25.

3) Investigating Privacy Risks: We performed Bayesian

inference experiments to determine the privacy policy and its

parameters used for privacy protection.

We assume that the target data stream is privacy protected

using the equation: yi = yi + ni with data index i and noise
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ni given by either the Gaussian or Laplacian distribution with

mean of zero and scale (or standard deviation) given by the

following equations:

σ =

√
2 ∗ log(1.25

δ
) ∗ sensitivity

ε
(8)

sensitivity =

√
MaxAE2

2
(9)

where MaxAE is maximum allowed error calculated based on

original raw data signal divided by maximum allowed noise

by utility and user.

The malevolent actor is able to obtain data samples prior

to privacy protection (e.g., through compromising the data

source) along with the same data after privacy protection. This

data can be obtained in a few ways including by placing

a sensor on the electrical system or near the solar array.

Alternatively the actor can obtain data from a similar home

without privacy protection. These methods and others can be

used to compromise energy generation data for the purpose of

reverse engineering the privacy policy. Knowledge of the pri-

vacy policy can then be used to extract true energy generation

(and consumption) data from privacy protected data gathered

before the measurement systems were placed. Using Bayesian

inference and analysis, the actor attempts to determine which

of the two privacy policies is employed and the value of the

policy parameters. Here the actor targets parameters ε and δ.

a) Parameters determination: We evaluate the impact of

different Bayesian inference settings and number of compro-

mised data samples on discovering the privacy parameters δ
and ε.

The results show (see Figures 7 and 8), that as expected,

with a greater number of data points, one can better identify

the generating model parameter values of ε and δ. As variance

of the added noise is dependent on the data point intensities,

it is likely that inference performance will increase as the

analyzed data becomes more representative of the full range

of data stream values.

Fig. 7. Bayesian inference on Gaussian approach with 10 samples.

Using equation (8) and the expected value for ε and δ,

computed from the posterior, we can then estimate the noise

variance at each timestamp. Here we use the noisy data

as an approximation for the original data in computing the

sensitivity. Knowing the noise variance, we can then apply a

heteroscedastic Gaussian process to estimate the value of the

Fig. 8. Bayesian inference on Gaussian approach with 50 samples.

data prior to privacy protection for new privacy protected data.

In Figure 9 the data prior to privacy protection (black dots)

and the data after privacy protection (black crosses) are shown.

The Gaussian process model properly identifies the trend in

the originating data as shown by the Gaussian process mean

(blue line).

Fig. 9. Determining pattern of original data.

b) Model determination: In this demonstration, model

determination succeeds in both cases - when the privacy policy

is Gaussian or Laplacian, as shown by the log likelihood values

in Table I. Interestingly the log likelihood values are quite

similar for the Gaussian and Laplacian model hypotheses when

the data is generated with the Gaussian model. This suggests

possible difficulty in differentiating between privacy models

for additive Gaussian noise. This is positive as it serves to

confound a potential malevolent actor. Success and failure

may depend on the particular parameter values chosen and

the range of data point values used in the study.

Data/Model likelihood Gaussian data (a.u.) Laplacian data (a.u.)
Gaussian model -5.29 -4.83
Laplacian model -5.39 -3.78

TABLE I
COMPARISON BETWEEN BAYESIAN MODEL LIKELIHOODS UNDER

GAUSSIAN AND LAPLACIAN PRIVATE DATASETS. LIKELIHOOD MEASURED

WITH ARBITRARY UNITS (A.U.)
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V. CONCLUSION AND FUTURE WORK

The importance of data privacy integration for internet-

connected systems is clear and is slowly becoming an integral

part of system software. In this work, we presented algorithms

that can be used for privacy protecting streaming data on

the edge and demonstrated their capabilities in real-world

testbed settings. Results show that data frequency impacts

the results while time window impact is not significant. We

also demonstrated the use of Bayesian inference to determine

the vulnerability of the distribution techniques. We show that

Bayesian inference can be used to identify privacy policies

that are more resilient to cyber attacks.

We believe that the methods developed in this work can

be extended to other edge-based IoT systems with scalar

based data streams that require privacy protection. We aim

to also extend the capabilities of the described methodology

to support a wider range of privacy algorithms and data types.
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