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he vexing error of excess variance in measurements of nanoparticle size distributions degrades accuracy in 
applications ranging from quality control of nanoparticle products to hazard assessment of nanoplastic 
byproducts. The particular importance of lipid nanoparticles for vaccine and medicine delivery motivates 

this Letter to the Editor, which concerns a publication1 in ACS Nano and also presents original research. In ref 1, the 
benchmark measurements of a nanoparticle standard manifest large errors of the size distribution that contradict the 
claim of validation. In subsequent applications of the method to measure lipid nanoparticles, potential errors could 
bias the correlation of fluorescence intensity as an optical proxy for molecular loading and give misleading insights 
from power-law models of intensity–size trends. Looking forward, measurement error models may address this issue. 

A brief review provides helpful context. Heterogeneous sizes and properties of colloidal nanoparticles are 
challenging to measure. Measurements of nanoparticle ensembles often cannot resolve size and property distributions, 
providing only estimates of means―ordinarily arithmetic means but occasionally harmonic means―and variances. 
For example, photon correlation spectroscopy or dynamic light scattering,2 which is in common use and abuse for 
measuring these values,3 as well as fluorescence correlation spectroscopy,4 which contends with focal volume 
artifacts,5 rearrange the Stokes–Einstein–Sutherland6, 7 equation to infer hydrodynamic diameter from ensemble 
diffusivity. Ensemble measurements can output some information about the molecular loading of lipid nanoparticles 
if size distributions are available as additional inputs,8 but measurements of single nanoparticles can be more 
informative and less dependent on model assumptions. Nanoparticle tracking analysis,9 which is the basis of the 
method in Ref 1, infers the hydrodynamic diameters of single nanoparticles from optical microscopy of diffusive 
trajectories, and also yields estimates of optical properties such as fluorescence intensity for correlation. However, 
short trajectories through the focal volume of an optical microscope limit sizing resolution, motivating Bayesian 
statistical analyses to improve accuracy10 and fluidic devices to confine nanoparticles, prolong tracking, and improve 
sizing resolution.11  

Measurement function. A consequence of fluidic confinement is a reduction of nanoparticle diffusivity through 
hydrodynamic interactions, requiring a correction for this systematic effect. In the simplest case of a confining slit, 
the resulting measurement function is 
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where 𝑑𝑑h is the hydrodynamic diameter of a single nanoparticle, kB is the Boltzmann constant, 𝑇𝑇 is the absolute 
temperature of the dispersion fluid, 𝜂𝜂 is the kinematic viscosity of the dispersion fluid, 𝐶𝐶 is a hydrodynamic correction, 
and 𝐷𝐷|| is the diffusivity parallel to the slit surfaces (Table S1). In ref 1 
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where 𝑑𝑑s is the slit depth.12, 13 
Input quantities. The measurement function in eq 1 has multiple input quantities that require consideration and 

that can introduce systematic effects, whereas ref 1 reports only nominal values of 𝑑𝑑s and apparent values of 𝐷𝐷||. 
Regarding 𝑇𝑇 𝜂𝜂⁄ , quantitation of fluid temperature and viscosity, and validation of temperature stability and fluid 
quiescence, are all necessary but absent from ref 1. Regarding 𝐶𝐶 𝐷𝐷||⁄ , the hydrodynamic correction12, 13 applies only at 
the midplane of a slit and deviates significantly from the results of careful measurements of microparticle diffusion 
near the surface of a slit,14 and a mean correction neglects the varying diameters of single nanoparticles. Further, the 
analysis in ref 1 extracts 𝐷𝐷|| from a model of diffusion in two dimensions in a confining circle,15 whereas 𝐶𝐶 corrects 
the parallel component of diffusion in three dimensions in a confining slit. Neither aspect matches the experimental 
scheme of diffusion in a confining cylinder, and a representative model fit systematically underestimates the 
experimental data at short lag times (Figure 1D of ref 1). As well, optical microscopy throughout a wide16 and deep17 
focal volume requires calibration of scale factor and aberration artifacts such as distortion and defocus to correct 
apparent trajectories that are the source data for 𝐷𝐷||. Finally, a formal measurement requires accurate estimates of not 
only input quantities but also input uncertainties, and their propagation through the measurement function to an output 
quantity and output uncertainty,18 which is incomplete in ref 1. 
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Nanoparticle standard. Even after a complete evaluation of uncertainty, independent validation is necessary. 
The effort to validate in ref 1 involves tests of a nanoparticle standard, consisting of polystyrene spheres loaded with 
hydrophobic fluorophores, in cylindrical microwells of five depths (Table 1 of this Letter). The choice of the standard 
nominally matches the sizes of lipid nanoparticles in ref 1. Validation would require agreement of the test results with 
at least two reference values of the diameter distribution―a mean of 47.8 ± 0.3 nm and a root variance or standard 
deviation of 6.3 ± 0.2 nm.19 These uncertainties are 68 % coverage intervals of sampling variability only, neglecting 
potential uncertainty from other sources. Moreover, the experimental method of ref 1 yields a hydrodynamic size, 
diverging from the reference method of transmission electron microscopy,19, 20 which yields a steric size. Setting aside 
this divergence, this key comparison suffices to critically evaluate the foundational claim of ref 1―validation of the 
measurement method by agreement with the expected size within ± 1 nm. 

Fitting analysis. Reference 1 involves sizing of single nanoparticles but also aspects of ensemble analysis. 
Reference 1 claims that the histograms in Figure 1F show the collapse of different diffusivity distributions onto the 
same size distribution after hydrodynamic correction, excluding data from the shallowest device. Yet, the analysis in 
ref 1 calculates the mean diffusivity for each microwell depth and fits the hydrodynamic correction to all of the data, 
including data from the shallowest device, reporting a peak diameter of 49 ± 6 nm. This value of fit uncertainty is 
distinct from the reference value of standard deviation―the two values are only coincidentally equal, as the following 
subsection on distributional errors shows. The fitting analysis in ref 1, or alternatively combining the diameter 
histograms after hydrodynamic correction, could cause random effects to cancel, as would occur for replicate 
measurements. However, several of the systematic effects depend on microwell depth, and an assumption that they 
should cancel would be questionable. 

Independent analysis. This issue motivates a new analysis for each microwell depth independently (Table 1 of 
this Letter), which assumes nothing of the correctness of fitting or combining all of the data, and yields two root-
mean-square errors as conventional metrics of accuracy. This analysis involves data from all five microwell depths, 
matching the effort to validate, as well as one of the three applications of the method to lipid nanoparticles in ref 1. 
The analysis begins with calculation of the harmonic mean, arithmetic mean, and standard deviation of each diameter 
histogram in Figure 1F of ref 1 (Supporting Information, Tables S2-S7 and Notes S1-S3 of this Letter).21, 22 The 
nanoparticle sizes from mean diffusivity in Table 2 of ref 1 and the harmonic mean diameters agree within uncertainty, 
which is consistent with the inverse proportionality of arithmetic mean diffusivity and harmonic mean diameter in the 
Stokes–Einstein–Sutherland equation. A similar effect results from ensemble averaging in dynamic light scattering,3 
building confidence in the new analysis. However, the analysis in ref 1 overlooks this relation, resulting in a critical 
inconsistency―the key comparison to the reference values requires the arithmetic means, rather than the harmonic 
means, as well as the standard deviations of the diameter distributions.  

Distributional errors. All of the arithmetic mean diameters exceed the reference value of 47.8 ± 0.3 nm (Figure 
1a of this Letter), yielding a root-mean-square error of 12.0 nm or 25.1%. This error is an order of magnitude greater 
than the corresponding claim of ref 1, confirming the presence of systematic effects. The standard deviations of 
diameter are even more problematic. Reference 1 acknowledges excess variance due to short trajectories from 
fluorescence photobleaching but avoids quantifying the distribution widths. All of the standard deviations of diameter 
exceed the reference value of 6.3 ± 0.2 nm (Figure 1a of this Letter), yielding a root-mean square error of 15.6 nm or 
247%. This large error corresponds to diameter histograms that are several times wider than the reference diameter 
distribution, showing low resolution for sizing single nanoparticles. On this basis, the claim of validation of the 
measurement method by agreement with the expected size within ± 1 nm lacks substantiation. 

Experimental disconnect. In the subsequent applications of the method in ref 1, a different objective lens and 
imaging conditions prolong the tracking analysis from 600 to 2000 images. Although longer trajectories could reduce 
the error of the standard deviation11 by up to a factor of �2000 600⁄ = 1.83 ≈ 2, different systematic effects could 
also be present due to scale factor and aberration artifacts intrinsic to objective lenses.16, 17 As well, ref 1 notes potential 
errors due to a hard sphere analysis of soft lipid nanoparticles with complex diffusive behavior. This mismatch of 
experimental conditions and potential errors disconnects the efforts to validate and apply the method. 

Table 1. Data from Table 2 of Reference 1 and Figure 1F of Reference 1. 
property source quantity (nm) 
Microwell depth Table 2 200 350 500 800 1200 
Particle size from mean diffusivity Table 2 62 ± 2 45 ± 2 47 ± 1 48 ± 2 43 ± 1 
Harmonic mean diameter Figure 1F 61.3 ± 2.5 46.8 ± 1.0 48.6 ± 0.7 48.2 ± 0.8 45.3 ± 1.2 
Arithmetic mean diameter Figure 1F 73.1 ± 3.2 52.9 ± 1.0  52.8 ± 0.8 52.2 ± 0.8 50.8 ± 1.3 
Standard deviation of diameter  Figure 1F 33.9 ± 3.6 18.6 ± 0.7 15.9 ± 0.6 14.7 ± 0.6 18.3 ± 1.0 
Bold text indicates data reported in Table 2 of Reference 1. Black text indicates new analysis of Figure 1F of Reference 1. Uncertainties therein 
are 68 % coverage intervals of digitizing errors and sampling variability (Supporting Information, Notes S1-S3 of this Letter). 
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Figure 1. (a) Scatter plot showing diameter distribution errors from the benchmark measurements of a nanoparticle standard in Reference 
1. Vertical bars are 68 % coverage intervals of digitizing errors and sampling variability (Supporting Information of this Letter). (b) 
Histograms showing representative diameter distributions of (gray) the nanoparticle standard, (orange) Reference 1, for the corresponding 
orange data marker in (a), and (cyan) an error simulation. (c) Marginal histograms and scatter plots showing a representative negative 
bias that is evident as a slope suppression in a linear model of ln (intensity) versus ln (radius). (c-i, iii) (Solid gray with black outline) 
Marginal histograms showing reference data without measurement errors. (Hatch gray with gray outline) Marginal histograms showing 
data with ln (intensity) errors only. (Solid cyan) Marginal histograms showing data with both ln (intensity) and ln (radius) errors. (c-ii) 
Scatter plots showing ln (intensity) versus ln (radius) data (black data markers) without measurement errors, (gray data markers) with 
ln (intensity) errors, and (cyan data markers) with both ln (intensity) and ln (radius) errors. (Dash gray) Line showing least-squares fit to 
gray data markers. (Solid cyan) Line showing least-squares fit to cyan data markers. (c-i, v) Scatter plot and marginal histograms showing 
residual values of ln (intensity) from the fits in (c-ii), with approximately normal distributions around means of zero. (d-i, ii) Contour plot 
and (dash section) line plot showing errors of the power-law exponent for a true exponent with a mean of 3.0 in a factorial analysis as a 
function of diameter distribution errors. The five data markers in (d-i) correspond to the five microwell depths in (a). Uncertainty of the 
error of the power-law exponent in (d-ii) is smaller than the orange data marker. The black arrow and open circle correspond to a 
hypothetical halving of a representative error of the standard deviation between the efforts to validate and apply the method. 
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Potential bias. This disconnect results in uncertain sizing errors in applications of the method. However, even 
allowing for a hypothetical halving of the error of the standard deviation, a potential bias23 raises a question about the 
reliability of the results. A major goal of ref 1 is to use power-law models of the dependence of fluorescence intensity 
on hydrodynamic size to study the loading of fluorophores into lipid nanoparticles. In ordinary least-squares fits of 
such data, unrecognized errors of the independent variable of size can bias estimated parameters of models of the 
dependent variable of intensity.23 The potential bias depends on the widths of both the true and measurement error 
distributions of the independent variable24 and becomes critical in comparisons of expected and observed power-law 
exponents, which guide interpretation of the results in ref 1. Reference 1 omits such analysis for the standard, which 
presents another opportunity to test expectations against observations, given sufficient sizing resolution.25, 26 

Size simulations. Monte-Carlo simulations elucidate the potential bias for the reference diameter and sizing error 
distributions in ref 1 (Supporting Information, Notes S4 of this Letter), whereas both distributions are uncertain for 
the lipid nanoparticles. Without access to a reference diameter histogram for the nanoparticle standard, the reference 
mean and standard deviation parameterize a lognormal distribution of diameter, 𝑑𝑑. This common model allows 
characteristic asymmetry of nanoparticle size distributions.27, 28 A symmetric normal distribution yields similar results 
(Supporting Information of this Letter). Skew-normal distributions of diameter errors approximate unknown 
combinations of random and systematic effects in ref 1, with model parameters resulting from deconvolution of the 
experimental histograms in Figure 1 of ref 1 with the reference diameter distribution. This new analysis yields 
synthetic histograms that closely match the experimental histograms in Figure 1F of ref 1 (Figure 1b, Supporting 
Information, Figure S1 of this Letter). Per the choice of the standard, these histograms at least resemble if not match 
the diameter histograms of lipid nanoparticles in Figures 2, 3, and 6 of ref 1. 

Intensity simulations. A power law then constrains fluorescence intensity, 𝐼𝐼, by the model, 𝐼𝐼 = 𝛾𝛾𝑟𝑟𝛽𝛽, with a 
coefficient, 𝛾𝛾, an exponent, 𝛽𝛽, and changing the independent variable from diameter 𝑑𝑑 to radius 𝑟𝑟, as in ref 1. A 
transformation of this model by the natural logarithm, ln(𝐼𝐼) = 𝛽𝛽 ln(𝑟𝑟) +  ln(𝛾𝛾), serves three purposes. First, this 
transformation facilitates modeling of ln (intensity) errors by a normal distribution with a mean of zero and a range of 
standard deviations that approximate the vertical scatter of ln (intensity) values at the central radii in Figures 2, 3, and 
6 of ref 1, capturing both measurement variability and sample heterogeneity (Figure 1c, Supporting Information, 
Figure S2, and Table S8 of this Letter). Second, this transformation enables ordinary least-squares fits of linear models 
to the ln (intensity) versus ln (radius) data, with the slope 𝛽𝛽 equaling the power-law exponent, as in Figure 6 of ref 1. 
Third, this transformation facilitates a comparison to the canonical example of slope suppression that motivates a 
measurement error model.23 

Slope suppression. A factorial study shows that the predominant effect is a suppression of the slope by the error 
of the standard deviation of the diameter distribution (Figure 1c, Supporting Information, Figures S2 and S3 of this 
Letter). This study considers true slopes ranging from 1.5 to 3.5, with a value of 3.0 matching the upper limit expected 
in ref 1. This negative bias has an intuitive explanation―excess variance increases the run of ln (radius) for a constant 
rise of ln (intensity), reducing the slope of the trend. This slope, which is equivalent to the exponent of a power-law 
model, nominally gives physical or chemical insight, such as by the proportionality of fluorophore count to loading 
processes that depend on area or volume. Accordingly, this bias of the power-law exponent can give misleading 
insights, potentially confounding intensity–size correlation in ref 1. For the range of distributional errors in the effort 
to validate in ref 1, errors of the arithmetic mean that are much larger than errors of the standard deviation can cancel 
this bias (Figure 1d of this Letter). However, the distributional errors in the effort to validate have the opposite relation, 
indicating that the results lie outside of this cancellation band, even allowing for a hypothetical halving of the error of 
the standard deviation between efforts to validate and apply the method (Figure 1d of this Letter). Moreover, even if 
a cancellation of errors were to occur in subsequent applications of the method, this would constitute an unreliable 
basis for an accurate measurement, substantiating the question of reliability.  

Conclusion. The scope of ref 1 is ambitious, the experiments are challenging, and the effort of the authors is 
commendable. However, a distributional validation is necessary to fairly compare and reliably apply methods to 
measure single nanoparticles. Agreement of both the mean and the standard deviation of a nanoparticle size 
distribution near the scale of 1 nm requires comprehensive calibration and reveals the potential for unexpectedly high 
power-law exponents modeling intensity–size trends, even for the common standards benchmarked in ref 1.25, 26 An 
answer to the question of the reliability of the power-law exponents in ref 1 would require quantitative analysis of 
both the true and sizing error distributions of lipid nanoparticle diameters. However, the susceptibility of such 
exponents to suppression by sizing errors of the standard deviation presents a surprising possibility―observation of 
an expected exponent, which would ordinarily build confidence, could instead result from a biased measurement of 
an unexpectedly high exponent. For this reason, accurate measurements, rather than hypothetical expectations of 
fluorophore loading trends that neglect the full scope of interactions of light with dielectric nanostructures, are 
necessary to support reliable studies of lipid nanoparticles for vaccine and medicine delivery, as well as studies that 
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involve nanoplastic standards for hazard assessment. Even so, in these25, 26 and other29, 30 studies, any sizing error is 
of concern. This Letter to the Editor not only elucidates this problem but also proposes a potential solution by the 
deconvolution of experimental histograms with reference histograms to inform measurement error models.23 Future 
studies may benefit from the use of such models to avoid biases in property correlation and parameter estimation. 
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Table S1. Terminology 
term definition 
𝑑𝑑h Hydrodynamic diameter of a single nanoparticle 
kB Boltzmann constant 
𝑇𝑇 Absolute temperature of the dispersion fluid 
𝜂𝜂 Kinematic viscosity of the dispersion fluid  
𝐶𝐶 Hydrodynamic correction of nanoparticle diffusivity 
𝐷𝐷|| Diffusivity parallel to confining slit surfaces 
𝑑𝑑s Slit depth or microwell depth 
𝑑𝑑h𝑖𝑖 Bin center 𝑖𝑖 of hydrodynamic diameter histogram 
𝑤𝑤𝑖𝑖 Bin weight 𝑖𝑖 of hydrodynamic diameter histogram 
�̅�𝑑hH Harmonic mean of hydrodynamic diameter distribution 
�̅�𝑑hA Arithmetic mean of hydrodynamic diameter distribution 
𝜎𝜎𝑑𝑑h  Standard deviation of hydrodynamic diameter distribution 
𝒩𝒩 Normal distribution 
ℳ Multinomial distribution 
𝑆𝑆𝑑𝑑𝑗𝑗 Random variable representing diameter scale factor of simulation 𝑗𝑗 
𝜇𝜇𝑆𝑆𝑑𝑑 Mean scale factor of diameter axis of hydrodynamic diameter histogram 
𝜖𝜖𝑆𝑆𝑑𝑑 Relative standard error of mean scale factor of hydrodynamic diameter histogram 
𝐵𝐵𝑑𝑑𝑗𝑗 Random variable representing diameter bin width of simulation 𝑗𝑗 
𝜇𝜇𝛿𝛿𝑑𝑑 Mean bin width of hydrodynamic diameter histogram 
𝜖𝜖𝛿𝛿𝑑𝑑 Standard error of the mean bin width of hydrodynamic diameter histogram 
𝑑𝑑𝑖𝑖,𝑗𝑗 Random variable representing the central diameter of bin 𝑖𝑖 and simulation 𝑗𝑗 of hydrodynamic diameter histogram 
𝑑𝑑𝜉𝜉𝑖𝑖 Left edge of bin 𝑖𝑖 of hydrodynamic diameter histogram 
𝜎𝜎𝜉𝜉𝑑𝑑 Standard deviation of left edge of bin value, corresponding to diameter, of hydrodynamic diameter histogram 
𝑆𝑆𝑤𝑤𝑗𝑗 Random variable representing weight scale factor of simulation 𝑗𝑗 of hydrodynamic diameter histogram 
𝜇𝜇s𝑤𝑤 Mean scale factor of weight axis of hydrodynamic diameter histogram 
𝜖𝜖𝑆𝑆𝑤𝑤 Relative standard error of mean scale factor of weight axis of hydrodynamic diameter histogram 
𝜎𝜎𝜉𝜉𝑤𝑤 Standard deviation of top edge of bin value, corresponding to weight, of hydrodynamic diameter histogram 
𝑾𝑾𝑗𝑗 Random vector of weights of simulation 𝑗𝑗 of hydrodynamic diameter histogram 
𝑊𝑊𝑖𝑖,𝑗𝑗 Components of 𝑾𝑾𝑗𝑗 of hydrodynamic diameter histogram 
𝒘𝒘𝜉𝜉 Mean vector of weights from the top edges of bins of hydrodynamic diameter histogram 
𝑤𝑤𝜉𝜉𝑖𝑖 Components of 𝒘𝒘𝜉𝜉 from the top edges of bins of hydrodynamic diameter histogram 
𝑑𝑑 Independent variable of diameter, setting aside the divergence of hydrodynamic and steric sizes 
𝑑𝑑ref Random variable representing the reference diameter distribution 
𝜖𝜖𝑑𝑑 Random variable representing an error distribution of diameter measurements 
𝑀𝑀𝑑𝑑 Random variable representing a measurement distribution of diameters 
ℒ𝒩𝒩 Lognormal distribution 
𝜇𝜇𝑑𝑑ref Mean of the reference diameter distribution 
𝜎𝜎𝑑𝑑ref Standard deviation of the reference diameter distribution 
𝜇𝜇ref Mean of the natural logarithm of the reference diameter distribution 
𝜎𝜎ref Standard deviation of the natural logarithm of the reference diameter distribution 
𝒮𝒮𝒩𝒩 Skew-normal distribution 
𝜖𝜖𝜇𝜇𝑑𝑑 Error of the mean of the reference diameter distribution 
𝜖𝜖𝜎𝜎𝑑𝑑  Error of the standard deviation of the reference diameter distribution 
𝜉𝜉 Location parameter of the skew-normal distribution of diameter errors 
𝜔𝜔 Scale parameter of the skew-normal distribution of diameter errors 
𝛼𝛼 Shape parameter of the skew-normal distribution of diameter errors 
𝛿𝛿 Simplifying expression of the shape parameter of the skew-normal distribution of diameter errors 
𝑟𝑟 Independent variable of radius, 𝑑𝑑 2⁄ , setting aside the divergence of hydrodynamic and steric sizes  
𝑟𝑟ref Random variable representing the reference radius distribution 
𝐼𝐼 Fluorescence intensity and dependent variable of power-law model 
𝛾𝛾 True scaling coefficient of power-law model 

ln(𝛾𝛾) True intercept of linear model of ln (intensity) versus ln (radius) 
𝛽𝛽 True slope of linear model of ln (intensity) versus ln (radius) and true exponent of power-law model of intensity versus radius 
𝜖𝜖𝐼𝐼 Random variable representing errors of ln (intensity) 
𝜎𝜎𝐼𝐼 Standard deviation of errors of ln (intensity) 
𝛽𝛽fit Apparent 𝛽𝛽 for fits of the linear model to erroneous ln (intensity) versus ln (radius) data 

ln(𝛾𝛾)fit Apparent ln(𝛾𝛾) for fits of the linear model to erroneous ln (intensity) versus ln (radius) data 
𝜖𝜖𝛽𝛽 Errors of 𝛽𝛽 due to measurement errors of radius and intensity, 𝛽𝛽fit −  𝛽𝛽 
𝜖𝜖ln(𝛾𝛾) Errors of ln(𝛾𝛾) due to measurement errors of radius and intensity, ln(𝛾𝛾)fit −  ln(𝛾𝛾) 
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Note S1. Arithmetic and harmonic means 
For a colloidal nanoparticle in a confining slit, a variant of the Stokes–Einstein–Sutherland equation expresses the 
inverse proportionality between diffusivity parallel to the slit surfaces and hydrodynamic diameter: 

 𝐷𝐷|| =
kB
3π

⋅
𝑇𝑇
𝜂𝜂
⋅
𝐶𝐶
𝑑𝑑h

 (S1) 

A distributional validation of a method to size single nanoparticles using eq S1 would require agreement of a 
sample diameter distribution with two reference values of the nanoparticle standard—an arithmetic mean and a 
standard deviation. The most straightforward approach to make this comparison would be to convert diffusivity to 
diameter for single nanoparticles and calculate the arithmetic mean and standard deviation of the sample diameters. 

Implicit in ref 1 is an alternate calculation of the arithmetic mean of 𝐷𝐷|| for 𝑁𝑁 single nanoparticles: 

 𝐷𝐷�||A
=

1
𝑁𝑁
�𝐷𝐷||𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (S2) 

where (… )�����
A denotes an arithmetic mean. Substituting eq S1 into eq S2 and solving for the corresponding mean 

diameter yields: 

 �̅�𝑑ℎ =
kB
3π

⋅
𝑇𝑇
𝜂𝜂
⋅
𝐶𝐶
𝐷𝐷�||A

=
𝑁𝑁

∑ 1
𝑑𝑑h𝑖𝑖

𝑁𝑁
𝑖𝑖=1

 (S3) 

The corresponding mean diameter is the harmonic mean diameter, which can differ from the arithmetic mean diameter: 

 
𝑁𝑁

∑ 1
𝑑𝑑h𝑖𝑖

𝑁𝑁
𝑖𝑖=1

= �̅�𝑑hH ≢ �̅�𝑑hA =
1
𝑁𝑁
�𝑑𝑑h𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (S4) 

where (… )�����
H denotes a harmonic mean. Without access to a reference diameter histogram, the harmonic mean diameter 

lacks a certain value for comparison and validation. 
 
 
Note S2. Diameter histograms 
Access to the data underlying the diameter histograms of Figure 1F of ref 1 would enable direct calculation of the 
harmonic mean, arithmetic mean, and standard deviation of the nanoparticle sample diameters. Lacking access to the 
underlying data, independent analysis of the histogram plots provides close approximations of these three values. 
Digitization of the histogram plots, using software2 that previous studies have validated,3 allows extraction of the bin 
data (Note S3 of this Letter). Each histogram has 𝑁𝑁 bins with index 𝑖𝑖. The center of each bin is a hydrodynamic 
diameter, 𝑑𝑑h𝑖𝑖 , in units of nanometers. The top edge of each bin is a weight, 𝑤𝑤𝑖𝑖 , in units of counts, which can be a non-
integer due to the averaging of histogram bins from at least two to three experiments. For each diameter histogram, 
the harmonic mean is: 

 �̅�𝑑hH = ∑ 𝑤𝑤𝑖𝑖
𝑁𝑁
𝑖𝑖=1

∑
𝑤𝑤𝑖𝑖
𝑑𝑑h𝑖𝑖

𝑁𝑁
𝑖𝑖=1

  (S5) 

the arithmetic mean is: 

 �̅�𝑑hA =
∑ 𝑤𝑤𝑖𝑖𝑑𝑑h𝑖𝑖
𝑁𝑁
𝑖𝑖=1

∑ 𝑤𝑤𝑖𝑖𝑁𝑁
𝑖𝑖=1

  (S6) 

and the standard deviation is: 

 𝜎𝜎𝑑𝑑h = �
∑ 𝑤𝑤𝑖𝑖𝑁𝑁
𝑖𝑖=1 �𝑑𝑑h𝑖𝑖−𝑑𝑑

�hA�
2

𝑁𝑁′−1
𝑁𝑁′

∑ 𝑤𝑤𝑖𝑖𝑁𝑁
𝑖𝑖=1

  (S7) 

where 𝑁𝑁′ is the number of bins with non-zero weights. 
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Note S3. Histogram digitization 
The extraction of bin data from histogram plots is a microcosm of a measurement involving image analysis and 
requiring uncertainty evaluation. Errors of diameter and weight result from digitizing the diameter histogram plots, 
while intrinsic variability of weight results from finite sampling of the diameter distributions. Monte-Carlo simulations 
propagate input distributions from digitizing error and sampling variability to output distributions of harmonic means, 
arithmetic means, and standard deviations. Normal distributions approximate digitization errors and the multinomial 
distribution accounts for sampling variability. The output distributions manifest measurement uncertainty and are 
approximately normal, having standard deviations that correspond to the 68% coverage intervals in Table 1 of the 
main text of this Letter. 

This analysis begins with the calibration of scale factors. For each axis of each histogram plot, at least 30 replicate 
measurements of the distance between two tick marks yields a ratio of axis units to plot pixels, providing a mean and 
standard deviation of scale factor for each axis. The relative standard errors of the mean scale factors provide relative 
uncertainties of the scale conversion that occurs within the digitizing software.2 The diameter scale factor and relative 
uncertainty are the same for the five histogram plots, whereas the weight scale factor and relative uncertainty differ 
for each histogram plot (Table S2 of this Letter). 

 
Table S2. Digitization uncertainty 

microwell 
depth 
𝑑𝑑s 

(nm) 

diameter scale- 
factor uncertainty 

𝜖𝜖𝑆𝑆𝑑𝑑  
(%) 

diameter bin-width 
uncertainty 
𝜖𝜖𝛿𝛿𝑑𝑑  
(nm) 

diameter single- 
bin uncertainty  

𝜎𝜎𝜉𝜉𝑑𝑑  
(nm) 

weight scale-factor 
uncertainty 
𝜖𝜖𝑆𝑆𝑤𝑤   
(%) 

weight single- 
bin uncertainty  

𝜎𝜎𝜉𝜉𝑤𝑤   
(counts) 

200 0.018 0.03 0.10 0.16 0.08 
350 0.018 0.03 0.10 0.22 0.53 
500 0.018 0.03 0.10 0.16 0.75 
800 0.018 0.03 0.10 0.16 0.29 
1200 0.018 0.03 0.10 0.24 0.19 

 
The analysis continues to the measurement of single bins. For each non-zero bin that is visible outside of the inset 

plot in Figure 1F, extraction of the plot coordinates at the corner of the left and top edges of the bin yields a diameter 
and weight (Tables S3–S7 of this Letter). Subtraction of the left edges of adjacent bins yields a bin width with an 
arithmetic mean of 5.0 nm and a standard error of 0.03 nm. The left edges of the bins evidently correspond to nominal 
values of 10.0, 15.0, 20.0 nm, and so on. Addition of half of the bin width to the left edges of the bins yields the center 
positions of the bins, which lack data markers but are near to the nominal values of 12.5, 17.5, 22.5 nm, and so on. To 
evaluate diameter uncertainties, at least 30 replicate measurements along the vertical weight axis, with a diameter 
coordinate of 0 nm, yield a standard deviation of 0.10 nm. To evaluate weight uncertainties, at least 30 replicate 
measurements along the horizontal diameter axis, with a weight coordinate of 0 counts, yield a standard deviation 
ranging from 0.08 to 0.75 counts, depending on the weight scale factor (Table S2 of this Letter).  

To evaluate sampling variability, a bootstrap algorithm resamples the histograms by drawing replicate bin weights 
from a multinomial distribution. This distribution models the random sampling of a nanoparticle from a histogram 
with varying bin probabilities and for a constant number of samples. The probability for each bin is the ratio of the 
bin weight resulting from the digitization of the plot data to the sum of all bin weights from the histogram. The sum 
of all bin weights from the histogram, rounded to the nearest integer, defines the sample size. 

The following equations summarize the sampling process of 2.5×104 Monte-Carlo simulations for each diameter 
histogram plot of Figure 1F of ref 1. These simulations involve the normal distribution 𝒩𝒩 and the multinomial 
distribution ℳ. The 𝑗𝑗th simulation of the centers of diameter bins 𝑑𝑑h𝑖𝑖,𝑗𝑗  is: 

 𝑆𝑆𝑑𝑑𝑗𝑗~ 𝒩𝒩�𝜇𝜇𝑆𝑆𝑑𝑑 , 𝜖𝜖𝑆𝑆𝑑𝑑
2 �  (S8) 

 𝐵𝐵𝑑𝑑𝑗𝑗  ~ 𝒩𝒩(𝜇𝜇𝛿𝛿𝑑𝑑 , 𝜖𝜖𝛿𝛿𝑑𝑑
2 )  (S9) 

 𝑑𝑑𝑖𝑖,𝑗𝑗|𝐵𝐵𝑑𝑑𝑗𝑗  ~ 𝒩𝒩(𝑑𝑑𝜉𝜉𝑖𝑖 +
𝐵𝐵𝑑𝑑𝑗𝑗
2

,𝜎𝜎𝜉𝜉𝑑𝑑
2 )  (S10) 

 𝑑𝑑h𝑖𝑖,𝑗𝑗 = 𝑆𝑆𝑑𝑑𝑗𝑗𝑑𝑑𝑖𝑖,𝑗𝑗  (S11) 
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where 𝑆𝑆𝑑𝑑𝑗𝑗 is a random variable representing the diameter scale factor, which has an arithmetic mean of 𝜇𝜇𝑆𝑆𝑑𝑑 = 1 after 
normalization and a standard deviation equal to a relative standard error of 𝜖𝜖𝑆𝑆𝑑𝑑 = 0.018%; 𝐵𝐵𝑑𝑑𝑗𝑗  is a random variable 
representing the diameter bin width, which has an arithmetic mean of 𝜇𝜇𝛿𝛿𝑑𝑑 = 5.0 nm and a standard deviation equal to 
𝜖𝜖𝛿𝛿𝑑𝑑 = 0.03 nm; and 𝑑𝑑𝑖𝑖,𝑗𝑗, which is conditional on 𝐵𝐵𝑑𝑑𝑗𝑗 , is a random variable representing the central diameter of bin 𝑖𝑖, 
which has an arithmetic mean equal to the sum of the left edge of the bin 𝑑𝑑ξ𝑖𝑖

 and half the bin width, and a standard 
deviation of single-bin measurements of diameter of 𝜎𝜎𝜉𝜉𝑑𝑑 = 0.10 nm. The 𝑗𝑗th simulation of the vector of weights of 
the diameter bins 𝒘𝒘𝑗𝑗 is: 
 

 𝑆𝑆𝑤𝑤𝑗𝑗  ~ 𝒩𝒩�𝜇𝜇𝑆𝑆𝑤𝑤 , 𝜖𝜖𝑆𝑆𝑤𝑤
2  �  (S12) 

 𝑊𝑊𝑖𝑖,𝑗𝑗 ~ 𝒩𝒩�𝑤𝑤𝜉𝜉𝑖𝑖 ,𝜎𝜎𝜉𝜉𝑤𝑤
2 �  (S13) 

 𝑾𝑾𝑗𝑗 =  �
𝑊𝑊1,𝑗𝑗
⋮

𝑊𝑊𝑁𝑁,𝑗𝑗

�  (S14) 

 𝒘𝒘𝑗𝑗|𝑆𝑆𝑤𝑤𝑗𝑗 ,𝑾𝑾𝑗𝑗  ~ ℳ�𝑆𝑆𝑤𝑤𝑗𝑗 ∑ 𝑊𝑊𝑖𝑖,𝑗𝑗
𝑁𝑁
𝑖𝑖=1 ,

𝑆𝑆𝑤𝑤𝑗𝑗𝑾𝑾𝑗𝑗

𝑆𝑆𝑤𝑤𝑗𝑗 ∑ 𝑊𝑊𝑖𝑖,𝑗𝑗
𝑁𝑁
𝑖𝑖=1

�  (S15) 

 𝒘𝒘𝑗𝑗 =  �
𝑤𝑤1,𝑗𝑗
⋮

𝑤𝑤𝑁𝑁,𝑗𝑗

� (S16) 

where 𝑆𝑆𝑤𝑤𝑗𝑗 is a random variable representing the weight scale factor, which has an arithmetic mean of 𝜇𝜇s𝑤𝑤 = 1 after 
normalization, and a standard deviation equal to a relative standard error 𝜖𝜖𝑠𝑠𝑤𝑤  ranging from 0.16 to 0.24%; and 𝑾𝑾𝑗𝑗 is 
a random vector of weights, which has components 𝑊𝑊𝑖𝑖,𝑗𝑗, an arithmetic mean 𝒘𝒘𝜉𝜉  from the vector of the top edges of 
all of the bins, and a standard deviation of single-bin measurements of weight 𝜎𝜎𝜉𝜉𝑤𝑤  ranging from 0.08 to 0.75 counts. 
In this way, eqs S11 and S16 resample the diameters and weights, respectively, of the histogram plots. 
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Table S3. Bin data for a microwell depth of 200 nm 
diameter, 𝑑𝑑𝜉𝜉𝑖𝑖  

(nm) 
weight, 𝑤𝑤𝜉𝜉𝑖𝑖 

(counts) 
20.1 0.5 
25.1 3.9 
30.0 5.3 
35.1 3.0 
40.1 4.8 
45.0 9.0 
50.0 10.5 
55.0 11.4 
60.1 7.5 
65.0 14.4 
70.1 8.9 
75.0 6.4 
80.0 7.5 
85.1 4.5 
90.1 4.0 
95.0 2.3 

100.0 1.8 
105.0 3.3 
110.1 1.0 
115.0 2.3 
120.1 1.1 
130.0 0.5 
135.0 0.8 
140.0 0.5 
145.0 2.3 
155.0 0.5 
160.0 0.8 
170.0 0.6 
175.1 0.9 
185.0 0.8 
205.0 0.5 
215.1 0.6 

 
  



7 

Table S4. Bin data for a microwell depth of 350 nm 
diameter, 𝑑𝑑𝜉𝜉𝑖𝑖  

(nm) 
weight, 𝑤𝑤𝜉𝜉𝑖𝑖 

(counts) 
10.1 3.3 
15.1 4.3 
20.1 19.3 
25.0 47.5 
30.0 81.9 
35.0 96.9 
40.0 124.1 
45.1 123.6 
50.1 109.5 
55.1 99.3 
60.1 81.3 
65.0 65.7 
70.0 42.4 
75.0 30.7 
80.0 23.4 
85.0 16.6 
90.1 12.2 
95.1 9.2 

100.1 8.7 
105.0 8.7 
110.0 4.8 

 
 
 
Table S5. Bin data for a microwell depth of 500 nm 

diameter, 𝑑𝑑𝜉𝜉𝑖𝑖  
(nm) 

weight, 𝑤𝑤𝜉𝜉𝑖𝑖 
(counts) 

20.0 7.8 
25.1 24.9 
30.0 84.9 
35.0 139.2 
40.0 154.1 
45.0 184.8 
50.0 150.5 
55.5 132.7 
60.0 101.9 
65.0 59.1 
70.1 53.3 
75.1 38.3 
80.0 30.4 
85.0 19.7 
90.0 6.8 
95.0 11.1 

100.0 5.4 
105.1 3.2 
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Table S6. Bin data for a microwell depth of 800 nm 
diameter, 𝑑𝑑𝜉𝜉𝑖𝑖  

(nm) 
weight, 𝑤𝑤𝜉𝜉𝑖𝑖 

(counts) 
15.0 2.9 
20.0 5.8 
25.1 13.4 
30.0 33.9 
35.1 69.7 
40.1 78.3 
45.0 88.5 
50.0 93.9 
55.0 67.5 
60.2 55.2 
65.1 39.0 
70.1 26.4 
75.1 18.8 
80.1 10.1 
85.1 5.8 
90.1 3.2 
95.0 2.5 

100.0 1.1 
105.0 1.1 

 
 
 
Table S7. Bin data for a microwell depth of 1200 nm 

diameter, 𝑑𝑑𝜉𝜉𝑖𝑖  
(nm) 

weight, 𝑤𝑤𝜉𝜉𝑖𝑖 
(counts) 

15.0 2.4 
20.0 7.7 
25.1 26.5 
30.0 44.0 
35.0 58.8 
40.1 68.6 
45.1 53.0 
50.1 45.0 
55.1 45.6 
60.1 24.4 
65.0 18.1 
70.0 19.1 
75.0 14.4 
80.0 10.4 
85.0 6.5 
90.1 6.7 
95.0 4.4 

100.0 3.6 
110.0 3.6 
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Note S4. Error modeling and simulation 
Monte-Carlo simulations elucidate the effects of the measurement errors that are relatively certain in ref 1 on intensity–
size trends. This analysis sets aside the divergence of measurements of hydrodynamic diameter by convex lens-
induced confinement microscopy and of steric diameter by transmission electron microscopy. This simplification also 
occurs in ref 1, separately from the ensemble measurements by dynamic light scattering therein, and allows a 
quantitative study of measurement errors. 

Starting with diameter errors, random and systematic effects are evident in the benchmark measurements of the 
nanoparticle standard in ref 1 (Figure 1a of this Letter). A statistical model equates the measurement result for the 
apparent diameter of a single nanoparticle, 𝑀𝑀𝑑𝑑, to the sum of the true diameter, 𝑑𝑑ref, which is a random variable 
representing the reference diameter distribution, and a measurement error, 𝜖𝜖𝑑𝑑, which is a random variable representing 
an error distribution: 

 𝑀𝑀𝑑𝑑 = 𝑑𝑑ref + 𝜖𝜖𝑑𝑑 (S17) 

The lognormal distribution, ℒ𝒩𝒩, provides a characteristic approximation of the reference diameter distribution. 
The arithmetic mean, 𝜇𝜇𝑑𝑑ref, and variance, 𝜎𝜎𝑑𝑑ref

2 , of the reference diameter distribution parameterize the mean, 𝜇𝜇ref, and 
variance, 𝜎𝜎ref

2 , of the lognormal distribution: 

 𝑑𝑑ref ~ ℒ𝒩𝒩(𝜇𝜇ref,𝜎𝜎ref
2 ) (S18) 

 𝜇𝜇ref = ln�
𝜇𝜇𝑑𝑑ref
2

�𝜇𝜇𝑑𝑑ref
2 +𝜎𝜎𝑑𝑑ref

2
�  (S19) 

 𝜎𝜎ref
2 = ln�1 +

𝜎𝜎𝑑𝑑ref
2

𝜇𝜇𝑑𝑑ref
2 �  (S20) 

The skew-normal distribution, 𝒮𝒮𝒩𝒩, provides an empirical approximation of the error distributions of the diameter 
measurements in ref 1. The mean of an error distribution, 𝜖𝜖𝜇𝜇𝑑𝑑, is the difference between the mean of the reference 
diameter distribution and the arithmetic mean of a diameter histogram of Figure 1F of ref 1. The variance of an error 
distribution is the difference between a variance of a diameter histogram in Figure 1F in ref 1, �𝜎𝜎𝑑𝑑ref + 𝜖𝜖𝜎𝜎𝑑𝑑�

2, and the 
variance of the reference diameter distribution, 𝜎𝜎𝑑𝑑ref

2 , where 𝜖𝜖𝜎𝜎𝑑𝑑 is the difference between the standard deviation of the 
reference diameter distribution and the standard deviation of a diameter histogram of Figure 1f of ref 1. In addition to 
the diameter distribution errors 𝜖𝜖𝜇𝜇𝑑𝑑 and 𝜖𝜖𝜎𝜎𝑑𝑑, the shape parameter, 𝛼𝛼, influences both the location parameter, 𝜉𝜉, and 
scale parameter, 𝜔𝜔, of an error distribution: 

 𝜖𝜖𝑑𝑑  ~ 𝒮𝒮𝒩𝒩(𝜉𝜉,𝜔𝜔2,𝛼𝛼) (S21) 

 𝛿𝛿 = 𝛼𝛼
√1+𝛼𝛼

  (S22) 

 𝜉𝜉 = 𝜖𝜖𝜇𝜇𝑑𝑑 − 𝜔𝜔𝛿𝛿�2
𝜋𝜋
  (S23) 

 𝜔𝜔 = �
�𝜎𝜎𝑑𝑑ref+𝜖𝜖𝜎𝜎𝑑𝑑�

2
− 𝜎𝜎𝑑𝑑ref

2

1−2𝛿𝛿
2

𝜋𝜋

  (S24) 

Computational deconvolution of the diameter histograms in Figure 1f of ref 1 with the reference diameter 
distribution assumes certain values of 𝜖𝜖𝜇𝜇𝑑𝑑 and 𝜖𝜖𝜎𝜎𝑑𝑑 and adjusts 𝛼𝛼 to minimize the Kolmogorov–Smirnov distance 
between the empirical distribution functions from ref 1 and the empirical distribution functions from Monte-Carlo 
simulations of 𝑀𝑀𝑑𝑑. The resulting values of 𝛼𝛼 range from 9.5 to 12.5 (Figure S1 of this Letter). An alternative selection 
of a normal distribution, rather than a lognormal distribution, of reference diameters 𝑑𝑑ref for the nanoparticle standard 
increases the arithmetic mean of 𝛼𝛼 only slightly from 10.5 to 10.7, with the remainder of the main results remaining 
approximately the same (not shown). 
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Figure S1. Computational deconvolution. (a, d, g, j, m) Histograms showing the (gray) diameter distributions of the 
nanoparticle standard with the reference values parameterizing a lognormal distribution. (b, e, h, k, n) Histograms 
showing (magenta) skew-normal error distributions resulting from computational deconvolution. (c, f, i, l, o) 
Histograms showing (orange) experimental results for the diameter measurements in ref 1 and (cyan) simulation 
results from convolution of the lognormal reference diameter distributions in (a, d, g, j, m) with the skew-normal error 
distributions in (b, e, h, k, n). Histograms correspond to microwell depths of (a-c) 200 nm, (d-f) 350 nm, (g-i) 500 nm, 
(j-l) 800 nm, and (m-o) 1200 nm. For clear visualization, histograms of the nanoparticle standard, error distributions, 
and simulations consist of 1×106 samples. The orange histogram in (c) shows significant sampling variability from a 
relatively low count of single nanoparticles in ref 1. 

 
To calculate a true intensity–radius trend, changing the independent variable from diameter to radius as in ref 1, 

a power law constrains intensity, 𝐼𝐼, to depend on reference radius, 𝑟𝑟ref, by the model, 𝐼𝐼 = 𝛾𝛾𝑟𝑟ref
𝛽𝛽 , with a coefficient, 𝛾𝛾, 

and an exponent, 𝛽𝛽. After transformation by the natural logarithm, the corresponding linear model has a slope, 𝛽𝛽, and 
intercept, ln(𝛾𝛾). 

Unknown combinations of measurement variability and sample heterogeneity are evident in intensity 
measurements of lipid nanoparticles in Figures 2, 3, and 6 of ref 1. Building on the power-law model in the main text 
of this Letter, a normal distribution, 𝒩𝒩, provides an empirical approximation of the distribution of ln (intensity) errors 
with an arithmetic mean of zero and a corresponding range of variance, 𝜎𝜎𝐼𝐼2: 

 ln(𝐼𝐼) = 𝛽𝛽 ln(𝑟𝑟ref) +  ln(𝛾𝛾) + 𝜖𝜖𝐼𝐼 (S25) 
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 𝜖𝜖𝐼𝐼 ~ 𝒩𝒩(0,𝜎𝜎𝐼𝐼2) (S26) 

Ordinary least-squares fits of linear models to the synthetic measurement results for the independent variable of 
ln (radius), ln 𝑟𝑟 = ln[ℳ𝑑𝑑 2⁄ ], versus the dependent variable of ln (intensity), yield apparent values of the slope, 𝛽𝛽fit, 
and intercept, ln(𝛾𝛾)fit, which may differ from the true values in each simulation. The simulations yield errors of the 
slope, 𝜖𝜖𝛽𝛽, and intercept, 𝜖𝜖ln(𝛾𝛾), as the differences between the parameters in fits of models and the corresponding true 
values of input parameters: 

 𝜖𝜖𝛽𝛽 = 𝛽𝛽fit −  𝛽𝛽 (S27) 

 𝜖𝜖ln(𝛾𝛾) = ln(𝛾𝛾)fit −  ln(𝛾𝛾) (S28) 

To implement a factorial study, each simulation takes six inputs, in addition to the arithmetic mean and standard 
deviation of the reference diameter distribution, and estimates the errors of the fit parameters for a linear model of 
ln (intensity) versus ln (radius) (Table S8 of this Letter). Repeating the simulation 100 times for each combination of 
input parameters samples potential errors of the fit parameters. Grouping the resulting error estimates by the unique 
values of a single input parameter, and averaging over the values of the other input parameters, isolates the average 
effect of each input parameter on the error of the fit parameters (Figure S3 of this Letter). 

For the reference diameters and sizing errors in the effort to validate, the error of the standard deviation of 
nanoparticle diameters has the largest average effect (Figure S3b,h of this Letter). This result is consistent with the 
canonical example of slope suppression in linear regression, which motivates the development of a measurement error 
model to improve parameter estimation by linear regression.4 Other simulation parameters have lesser or no average 
effects. Both the true slope of the linear model of ln (intensity) versus ln (radius) and the error of the mean of 
nanoparticle diameters have lesser average effects on the error of the fit parameters. The shape parameter of the skew-
normal diameter error distribution, the true intercept of the linear model of ln (intensity) versus ln (radius), and the 
standard deviation of ln (intensity) have no effects on the error of the fit parameters (Figure S3 of this Letter). 
 
 
 
Table S8. Simulation parameters a 

symbol definition 
minimum 

value 
maximum 

value unit 
number of 

values 
𝝁𝝁𝒅𝒅ref Mean of the reference diameter distribution 47.8 nm 1 
𝝈𝝈ref Standard deviation of the reference diameter distribution 6.3 nm 1 
𝜖𝜖𝜇𝜇𝑑𝑑 Error of the arithmetic mean of the diameter distribution 0 35 nm 20 
𝜖𝜖𝜎𝜎𝑑𝑑  Error of the standard deviation of the diameter distribution 0 35 nm 20 
𝛼𝛼 Shape parameter of the skew-normal diameter error distribution 9 13 – 5 
𝛽𝛽 True slope of the linear model of ln (intensity) versus ln (radius) 1.5 3.5 ln (nm)-1 7 

ln(𝛾𝛾) True intercept of the linear model of ln (intensity) versus ln (radius) -4.5 -2.5 ln (arb.) 5 
𝜎𝜎𝐼𝐼 Standard deviation of ln (intensity) 0.3 0.7 ln (arb.) 5 

a Bold text indicates reference values that remain constant in the simulation. The sample size of each simulation is 500 nanoparticles. Each 
combination of input parameters occurs in replicates of 100 for a total of 3.5×107 simulations in a full factorial analysis. 
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Figure S2. Slope suppression. (a-p) Scatter plots showing certain effects of errors of the diameter standard deviation 
and of intensity, 𝜖𝜖𝜎𝜎𝑑𝑑 and 𝜎𝜎𝐼𝐼, on fits of a power-law model to (gray) reference data and to (cyan) simulation data for a 
true value of 𝛽𝛽 = 3.0. To clearly show the onset of slope suppression, the range of errors differs slightly from that of 
the simulations in Table S8. Representative fluctuations of true values of 𝛽𝛽 around 3.0 are due to sampling variability 
for 1208 nanoparticles, as in Figure 1c of this Letter. 
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Figure S3. Average effects. Plots showing the average effects of simulation parameters on (a-f) error of the slope 
parameter and (g-l) error of the intercept parameter of the linear model of ln (intensity) versus ln (radius). The 
corresponding simulation parameters are in Table S8 of this Letter. 
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