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Abstract—We study the problem of minimizing the (time)
average security costs in large systems comprising many in-
terdependent subsystems, where the state evolution is captured
by a susceptible-infected-susceptible (SIS) model. The security
costs reflect security investments, economic losses and recovery
costs from infections and failures following successful attacks.
However, unlike in existing studies, we assume that the underlying
dependence graph is only weakly connected, but not necessarily
strongly connected. When the dependence graph is not strongly
connected, existing approaches to computing optimal security
investments cannot be applied. Instead, we show that it is still
possible to find a good solution by perturbing the problem and
establishing necessary continuity results that then allow us to
leverage the existing algorithms.

I. INTRODUCTION

In complex engineering systems, comprising systems work

together to deliver their services, e.g., information and com-

munication networks and power systems, introducing inter-

dependence among the systems. This interdependence among

systems also allows a local failure and infection of a system by

malware to spread to other systems. Therefore, the structure

of interdependence among the systems should be taken into

consideration when determining their security investments.

There is already a large volume of literature that examines

how to optimize the (security) investments in complex systems

or the mitigation of disease spread. For example, in [6], [8],

[9], [5], researchers adopted a game theoretic formulation to

study the problem of security investments with distributed

agents. In another line of research, which is more closely

related to our study, researchers investigated optimal strategies

using vaccines/immunization (prevention) [4], [16], antidotes

or curing rates (recovery) [3], [10], [15] or a combination of

both preventive and recovery measures [14], [17]. In addition,

in recent studies [11], [12], Mai et al. investigated the problem

of minimizing the (time) average costs of a system operator,

where the costs includes both security investments and recov-

ery/repair costs ensuing infections or failures.

All of theses studies assume that the underlying dependence

graph is strongly connected. In this study, we adopt the

framework used in [11], [12] but allow the dependence graph

to be weakly connected. When the graph is only weakly

connected, some of key properties and results proved for

strongly connected networks do not hold. As a result, we

cannot directly apply the algorithms from existing studies,

including those of [12].

In a related study, Khanafer et al. [7] extended the earlier

studies on the stability of the susceptible-infectious-susceptible

(SIS) model (e.g., [16]) to weakly connected networks. A

weakly connected network comprises a set of strongly con-

nected components (SCCs) {S1, S2, . . . , Sn}. They assumed

that the n SCCs can be ordered S1 ≺ S2 ≺ · · · ≺ Sn,

where Si ≺ Si+1 indicates the presence of a directed path

from a node in Si to another node in Si+1 but not vice versa,

and proved the following: (i) if every SCC has a reproduction

number less than 1, then the disease-free state is the unique

globally asymptotically stable (GAS) equilibrium; and (ii) if

S1 has a reproduction number larger than 1 and every other

SCC has a reproduction number smaller than 1, then there is

a unique endemic GAS equilibrium.

In our model, attacks targeting systems arrive according to

some (stochastic) process. Successful infections of systems can

spread to other systems via dependence among the systems.

The system operator decides suitable security investments to

fend off the attacks, which in turn determine the breach

probability that they fall victim to attacks and become infected.

Our goal is to minimize the (time) average costs of the system

operator managing a large system comprising many systems,

e.g., large enterprise intranets. The overall costs in our model

account for both security investments and recovery/repair costs

ensuing infections, which we call infection costs.

Contributions: This paper presents an important extension

of the work reported in [12] to more general and common sit-

uations in practice, where the underlying dependence graph is

only weakly connected. Our approach based on perturbation of

the external attack rates allows us to leverage efficient methods

for solving the nonconvex perturbed problem approximately.

In particular, we show that the optimal point and optimal

value of the problem are continuous and increasing in the

perturbation vector. As a result, we can solve the perturbed

problem instead, for which suboptimality can be quantified

using computable upper and lower bounds on the optimal

value. We also provide a sufficient condition under which these

bounds coincide, i.e., the perturbed problem can be solved

exactly despite its nonconvexity.

Notation and Terminology: Let R and R+ denote the set

of real numbers and nonnegative real numbers, respectively.U.S. Government work not protected by U.S. copyright



For a matrix A = [ai,j ], let ai,j denote its (i, j) element, AT

its transpose, and ρ(A) its spectral radius. For two matrices

A and B, we write A≥B if A−B is a nonnegative matrix.

We use boldface letters and numbers to denote vectors, e.g.,

x=[x1, ..., xn]
T and 1=[1, ..., 1]T. For any two vectors x and

y of the same dimension, x ◦y is their element-wise product.

For x ∈ Rn, diag(x) ∈ Rn×n denotes the diagonal matrix

with diagonal elements x1, . . . , xn. For x > 0, x−1 denotes

its element-wise inverse, i.e., x−1 = [x−1
1 , ..., x−1

n ]T.

A directed graph G=(V, E) consists of a vertex set V and an

edge set E ⊆ V × V . A directed path is a sequence of edges

in the form
(

(i1, i2), (i2, i3), ..., (ik−1, ik)
)

. The graph G is

strongly connected if there is a directed path from each node

to any other node. The directed graph G is said to be weakly

connected if the undirected graph we obtain after replacing its

directed edges with undirected edges is connected.

The rest of the paper is organized as follows: Section II

describes the setup and the problem formulation. Section III

presents the perturbed problem and the main results, followed

by our solution approach in Section IV. Section V provides

some numerical results.

II. MODEL AND FORMULATION

Suppose that the overall system consists of N systems, and

let A = {1, . . . , N} denote the set of systems. The set A can

be partitioned into {Ap,An}. Each system i ∈ Ap ⊊ A expe-

riences external attacks from malicious actors in accordance

with a Poisson process with rate λi > 0. On the other hand, the

systems in An do not experience external attacks and, hence,

λi = 0 for all i ∈ An. When a system experiences an attack,

it suffers an infection and subsequent economic losses with

some probability, called breach probability.

In addition to external attacks from malicious actors, sys-

tems also experience secondary attacks from other infected

systems. Thus, even the nodes in An can experience secondary

attacks. When a system suffers a secondary attack, it becomes

infected with the same breach probability mentioned above.

In other words, the breach probability is the same whether the

attack is external or secondary.

The breach probability of system i depends on the security

investment on the system: let si ∈ R+ be the security

investment on system i (e.g., investments in monitoring and

diagnostic tools). The breach probability of system i is de-

termined by some function qi : R+ → (0, 1]. In other words,

when the operator invests si on system i, its breach probability

is equal to qi(si). We assume that qi is decreasing, strictly

convex and continuously differentiable for all i ∈ A. It was

shown [2] that, under some conditions, the breach probability

is decreasing and log-convex (hence, strictly convex).

This can model the spread of virus/malware or failures in

complex systems. The rate at which the infection of system

i causes that of another system j is denoted by βi,j ∈ R+.

When βi,j > 0, we say that system i supports system j or

system j depends on system i. Let B = [bi,j : i, j ∈ A] be

an N × N matrix that describes the infection rates among

systems, where the element bi,j is equal to βj,i. We adopt the

convention βi,i = 0 for all i ∈ A.

When system i falls victim to an attack and becomes

infected, the operator incurs costs at a certain rate for recovery

(e.g., inspection and repair of servers). Besides recovery costs,

the infection of system i may also cause economic losses

if, for example, some servers in system i have to be taken

offline for inspection and repair and are inaccessible during the

period to other systems that depend on the servers. To model

the recovery costs and economic losses, we assume that the

infection of system i causes total losses of ci per unit time.

Recovery times of system i following its infections are mod-

eled using independent and identically distributed exponential

random variables with parameter δi > 0. Furthermore, the

recovery times of different systems are mutually independent.

A. Model

Define a directed graph G = (A, E), where a directed edge

from system i to system j, denoted by (i, j), belongs to the

edge set E if and only if βi,j > 0. Unlike in our earlier studies

[11], [12], here we do not assume that matrix B is irreducible;

instead, we assume that the graph G is only weakly connected,

but not strongly connected.1 We say that node i is exposed to

attackers if there is a directed path from some node j ∈ Ap to

node i, and denote the set of exposed nodes by AE . We call

the remaining nodes accessible to the attackers and denote the

set of accessible nodes by AA.

Let us comment on the distinction between ‘exposed’ versus

‘accessible’ systems. In our model, exposed systems may rep-

resent systems known to malicious actors, which communicate

or exchange information with each other frequently. Thus, the

attackers can target them either directly via external attacks

or indirectly through secondary attacks. On the other hand,

communication or exchange of information between accessible

systems and exposed systems is highly asymmetric; most of

communication is from accessible systems to exposed systems.

Due to very limited communication from exposed systems to

accessible systems, their infection rates by exposed systems

are difficult to estimate reliably. For this reason, the infection

rates are set to zero in our model even though they can still

be vulnerable to occasional infections. As we will show, such

systems can still serve as reservoir for infection in that the

stable equilibrium for some of them may be endemic and they

will be at ‘infected’ state with a strictly positive probability at

steady state and, thus, can infect other exposed systems. For

this reason, it is important to model such accessible systems.

A weakly connected network can be partitioned into a

set of maximally strongly connected components (MSCCs)

{C1, C2, . . . , Cm} =: V(C) [7].2 The set AE comprises a

subset of MSCCs, and AA includes the remaining MSCCs.

Based on this observation, we construct another directed graph

1If the graph G is not weakly connected, we can consider each weakly
connected component of G separately.

2A subgaph of a directed graph is maximally strongly connected if (a) it
is strongly connected and (b) adding another node leads to a subgraph that is
no longer strongly connected.



G(C) = (V(C), E(C)), where a directed edge from v to v′ in

E(C) indicates βi,j > 0 for some system i in v and another

system j in v′. Since the vertices in V(C) are MSCCs, there is

no directed cycle in G(C), i.e., G(C) is a directed acyclic graph

(DAG). Using this property, we can show that V(C) has leaf

vertices with no incoming edges; if this were not true, every

vertex in V(C) has an incoming edge. Since V(C) is a finite set,

this implies that there is a directed cycle, which contradicts

the assumption that the vertices in V(C) are MSCCs.

We partition the vertex set V(C) into {V0, . . . ,Vm}, where

Vℓ, ℓ = 0, 1, . . . ,m, is the set of MSCCs whose maximum

distance from leaf vertices is ℓ.3 Obviously, V0 is the set of

leaf vertices. Note that there is no directed edge coming into

any vertex in Vk from any other vertex in Vℓ, ℓ ≥ k. Hence, the

frequency of attacks experienced by a system i that belongs

to some MSCC in Vk depends only on the states of systems

in ∪k−1
ℓ=0Vℓ along with λi.

B. Dynamics and Equilibria

We adopt a similar framework used in [11], [12] and use

the SIS model to capture the evolution of the system state. Let

pi(t) be the probability that system i will be at the ‘infected’

state (I) at time t ∈ R+, and define p(t) := (pi(t) : i ∈
A). The dynamics of p(t) are approximated by the following

(Markov) differential equations for t ∈ R+:

ṗ(t) = (1− p(t)) ◦ q(s) ◦
(

λ+Bp(t)
)

− δ ◦ p(t) (1)

where p(0) ∈ [0, 1]N , s := (si : i ∈ A) is the security

investment vector, and q(s) = (qi(si) : i ∈ A) is the

corresponding breach probability vector.

Suppose that for each security investment vector s, p(t)
converges to a unique stable equilibrium p̄(s) (the existence

and uniqueness of such an equilibrium will be addressed in

the subsequent section). Since the unique stable equilibrium

of the differential system in (1) specifies the probability that

each system will be infected at steady state, the average cost

of the system is given by

F (s) := w(s) + cTp̄(s),

where w(s) is the cost of investing s in the security of the

systems (e.g., w(s) =
∑

i∈A
si), and c := (ci : i ∈ A). We

are interested in solving the following problem:

F ∗ := min
s∈S

F (s) = min
s∈S

(

w(s) + cTp̄(s)
)

(2)

where S ⊂ RN
+ is the feasible set for s. Throughout the paper,

we assume that the cost function w is a convex function and

the feasible set S is a convex set.

The main challenge in solving this problem is that p̄(s) does

not have a closed-form expression and need not be convex. For

this reason, we consider the following alternative formulation

3Here, the maximum distance from leaf vertices is defined to be the
maximum among the maximum distances from the leaf vertices, i.e., the length
of the longest path from any leaf vertex.

with a higher dimension. From (1), for fixed s, p̄(s) ∈ [0, 1]N

is a solution to the following equation:

(1− p) ◦ q(s) ◦
(

λ+Bp
)

= δ ◦ p

Since q(s) > 0, the above equation is equivalent to

(1− p) ◦
(

λ+Bp
)

− q(s)−1 ◦ δ ◦ p = 0, (3)

where q(s)−1 := (qi(si)
−1 : i ∈ A). Now, (2) can be

reformulated in a following more explicit form:

[P] min
s∈S,p∈[0,1]N

f(s,p) := w(s) + cTp

subject to (3)

Unfortunately, depending on λ and B, for fixed s, there may

be more than one p that satisfies (3), rendering the problem

nonconvex. This problem does not arise when B is irreducible

(i.e., G is strongly connected) and λ ⪈ 0 (as considered in

[12]) because the uniqueness of the solution is already ensured.

However, this is not the case when G is only weakly connected.

Our main idea to tackling this issue is as follows. For our

problem [P], we are interested in a solution of (3) which is

a stable equilibrium of (1). Even when the stable equilibrium

is unique, explicitly computing the unique stable equilibrium

to carry out the optimization in (2) does not lead to a

computationally efficient approach because the optimization

problem is not convex. In order to skirt this issue, in the

following section, we propose a more practical approach based

on perturbed problems, which then allows us to leverage the

efficient algorithms proposed in [12].

III. PERTURBED PROBLEM AND MAIN RESULTS

In this section, we describe how we can find a good solution

to the problem in (2) in a computationally efficient manner.

To this end, we first construct a new approximated problem by

perturbing the attack arrival rate λ by adding a nonnegative

vector ε ⪈ 0. Although we can work with any nonnegative

vector ε such that a unique stationary vector p̄ is strictly

positive, in order to simplify our exposition, we assume that

the perturbation vector ε takes the form ε = ϵ1 with ϵ > 0.4

In other words, we perturb the external attack rate of every

system by ϵ. For fixed ϵ ≥ 0, we define λ
ϵ := λ+ ϵ1.

Suppose that the security investment s is fixed. Then, for

all ϵ > 0, there is unique p̄ϵ(s) > 0 that satisfies the

following [12]:

(1− p) ◦
(

λ
ϵ +Bp

)

− q(s)−1 ◦ δ ◦ p = 0 (4)

Define

F ∗
ϵ := min

s∈S

(

w(s) + cTp̄ϵ(s)
)

. (5)

Our approach is as follows: first, we know that, for fixed

ϵ > 0, p̄ϵ(s) is continuous in s [12]. We will prove that,

for fixed s, p̄ϵ(s) is continuous in ϵ ≥ 0. From the continuity

of the objective function, this implies that F ∗
ϵ is continuous in

4As long as we perturb the attack arrival rate of at least one system in each
accessible MSCC (by ϵ), our results continue to hold.



ϵ ≥ 0. Finally, we can solve the perturbed problem for some

small ϵ, and use the solution to the perturbed problem as an

approximated solution to the original problem with ϵ = 0.

Recall that when ϵ = 0, there could be multiple solutions

to (3). Therefore, in order to make use of this observation, we

need to establish that limϵ→0 p̄
ϵ(s) exists and coincides with

the unique stable equilibrium of (3). To this end, the following

lemma establishes the existence of a unique stable equilibrium

of (3). Due to a space constraint, the proofs of main results

are omitted here and can be found in [13].

Proposition 1. For fixed s ∈ S , there is a unique stable

equilibrium p̄(s) of (1), which satisfies (3).

A. Continuity of Stable Equilibria p̄

For s ∈ S , define gs : Rn+1 → Rn, where

gs(ϵ,p) = (1− p) ◦
(

λ
ϵ +Bp

)

− q(s)−1 ◦ δ ◦ p. (6)

Clearly, gs is a continuously differentiable function and its

partial derivative w.r.t. p is given by

∂pg
s(ϵ,p)=diag(1− p)B − diag(q(s)−1 ◦ δ+λ

ϵ+Bp).

Proposition 2. For each s ∈ S , p̄ϵ(s) is continuous in ϵ > 0.

For s ∈ S , define a mapping λ̄
s
: R+ → RN

+ , where, for

each v ∈ V(C),

λ̄
s

v(ϵ) =

{

λ
ϵ
v +

(

B−vp̄
ϵ
−v(s)

)

v
if ϵ > 0,

λv +
(

B−vp̄−v(s)
)

v
if ϵ = 0,

where B−v is a submatrix of B without the columns cor-

responding to the systems that belong to the MSCC v, and

p̄ϵ
−v(s) and p̄−v(s) are the subvectors of p̄ϵ(s) and p̄(s),

respectively, obtained after removing the elements for the

systems in v. Obviously, λ̄
s
(ϵ) tells us the total attack rates,

including both external attacks from malicious actors and

secondary attacks coming from other systems that do not

belong to the same MSCC, at the unique stable equilibrium

as a function of the security investments s and perturbation ϵ.

For each v ∈ V(C), let nv := |v|. For each s ∈ S , define

ĝs
v : Rnv+1 → Rnv , where

ĝs
v(ϵ,pv)=(1−pv)◦

(

λ̄
s

v(ϵ)+Bvpv

)

−qv(s)
−1◦δv◦pv, (7)

and Bv is the nv×nv submatrix of B with columns and rows

corresponding to the systems in v. Clearly, ĝs
v is the mapping g

defined in (6) restricted to the MSCC v with fixed attack rates

λ̄
s

v(ϵ) coming from outside the MSCC v. We point out that,

from the viewpoint of a system, there is no distinction between

an external attack from a malicious actor or a secondary attack

coming from another system in a different MSCC. Clearly, for

fixed ϵ > 0, p̄ϵ(s) is the unique solution that satisfies

ĝs
v

(

ϵ, p̄ϵ
v(s)

)

= 0 for all v ∈ V(C). (8)

Similarly, p̄(s) satisfies

ĝs
v

(

0, p̄v(s)
)

= 0 for all v ∈ V(C). (9)

Proposition 3. Fix s ∈ S. Then, for any decreasing positive

sequence {ϵl : l ∈ N} with liml→∞ ϵl = 0, we have

liml→∞ p̄ϵl(s) = p̄(s).

One would expect that the minimum cost we can achieve

by solving (5) would not decrease with ϵ. The following

proposition tells us that this is indeed the case.

Proposition 4. For each s ∈ S , p̄ϵ(s) is increasing in ϵ > 0.

As a result, the optimal value F ∗
ϵ is increasing in ϵ ≥ 0.

Proposition 4, together with the continuity of the objective

functions in (2) and (5) and Propositions 2 and 3, tells us that

as we reduce ϵ, the optimal value F ∗
ϵ of the perturbed problem

will decrease to the optimal value F ∗ of the original problem.

Therefore, this suggests that if we solve the perturbed problem

(5) with sufficiently small ϵ, the optimal point we obtain will

likely be a good solution for the original problem, and the

optimal value of (5) will serve as an upper bound to F ∗.

IV. SOLVING THE PERTURBED PROBLEM

In this section, we discuss how we can solve the perturbed

problem in (5) by extending the formulation and adapting the

algorithms proposed in [12]. First, we rewrite the perturbed

problem as follows:

[PP] min
s,p

f(s,p) = w(s) + cTp

s.t. (p−1 − 1) ◦
(

λ
ϵ +Bp

)

= q(s)−1 ◦ δ (10)

s ∈ S, p > 0

Note that constraint (10) is the same as (4) when p > 0. Next,

we introduce the following change of variables:

di = (qi(si))
−1 or, equivalently, si = q−1

i (d−1
i ),

where q−1
i is the inverse map of qi. Let D = {q(s)−1 | s ∈ S}.

As a result, we obtain the following equivalent problem:

[EP] min
d,p

f̃(d,p) = w̃(d) + cTp

s.t. (p−1 − 1) ◦
(

λ
ϵ +Bp

)

= d ◦ δ (11)

d ∈ D, p > 0

where w̃(d) := w(q−1(d−1)). This problem is nonconvex in

general because of the cost function, the equality constraint in

(11), and possibly the constraint set D. But, as shown in [12],

a local minimizer can be found efficiently using a reduced

gradient method (RGM), providing an upper bound on F ∗
ϵ .

Suppose that D is convex and w̃(d) is convex in d ∈ D,

which implies the convexity of f̃(d,p). It can be shown that,

provided that w is convex and increasing, e.g., w(s) = 1T s,

the second assumption holds for a family of breach probability

functions qi(si) = (1 + κisi)
−βi for some κi > 0 and βi ∈

(0, 1], in which case si = (d
1/βi

i −1)κ−1
i is convex in di. When

such assumption does not hold, one might consider a suitable

convex lower bound of w̃(d) instead. In addition, when S =
{s ∈ RN

+ | 1Ts ≤ sbudget}, where sbudget is the total budget,

the constraint set D would be convex for the aforementioned

family of breach probability functions.



Following an approach analogous to [12], we can obtain a

convex relaxation of the perturbed problem to deal with the

nonconvex constraint in (10). Define the following variables:

p := e−y, t := λ
ϵ ◦ ey, U := diag(ey)Bdiag(e−y) (12)

Using these new variables, (11) can be rewritten as follows.

t+ U1 = λ
ϵ +Bp+ d ◦ δ (13)

Finally, we relax the equality constraints in (12) using the

following convex inequality constraints.

1 ≥ p ≥ e−y, t ≥ λ
ϵ◦ey, U ≥ diag(ey)Bdiag(e−y) (14)

These yield the following convex relaxation of [EP]:

[CR] min
d,p,y,t,U

f̃(d,p) = w̃(d) + cTp (15)

s.t. (13), (14), d ∈ D, y > 0

Theorem 1. Suppose x+
R := (d+,p+,y+, t+, U+) is an

optimal point of [CR]. Then, we have

f̃(d+,p+) ≤ F ∗
ϵ ≤ f̃(d′,p′), (16)

where the pair (d′,p′) is a feasible point of [EP] given by

p′ = e−y+

and d′ = d+ + diag(δ−1)B(p+ − p′).

In addition, [CR] is exact, i.e., (d′,p′) solves [EP], if

BTdiag(δ−1)∇w̃(d) ≤ c for all d ∈ D. (17)

We end this section with the following remarks. First, note

that condition (17) can be checked prior to solving the relaxed

problem [CR]. This can be done easily when ∇w̃ (or an

upper bound) is known and the constraint set D is simple

enough. Second, our approach in this section is based on the

reformulation [PP] of the original problem, where we use

the condition that p > 0; in the relaxation [CR], this is

ensured by imposing the condition p ≥ ey. If pi = 0 for

some i at an optimal point of the original problem (which

can happen when G is only weakly connected and λi = 0),

this condition would be violated and we cannot use (10); in

the relaxation, this would correspond to having yi → ∞.

As a result, our perturbation of the attack rates introduced in

Section IV proves to be meaningful in practice as it not only

allows us to employ efficient methods to solve the problem

approximately (as will be demonstrated numerically in the next

section), but also takes into account more stringent scenarios

(with varying external attack rates).

V. NUMERICAL EXAMPLES

In this section, we provide some numerical results to evalu-

ate the proposed method. Our numerical studies are carried out

in MATLAB (version R2018b) on a laptop with 8GB RAM

and a 2.4GHz Intel Core i5 processor.5 We assume that the

breach probability can be approximated (in the regime of in-

terest) using a function of the form qi(s) = (1+κis)
−1 for all

i ∈ A. In practice, the parameter κi > 0 models how quickly

5Mention of commercial products does not imply NIST’s endorsement.

the breach probability decreases with security investment for

system i. Here, for simplicity, we take κi = δ−1
i . In the first

example, we use an artificial scale-free network, whereas the

second example makes use of an Internet peer-to-peer network.

Example: We consider a weakly connected network con-

sisting of two MSCCs, denoted by G1 = (V1, E1) and

G2 = (V2, E2) with |V1| = 50 and |V2| = 150. Here, each Gi

is a bidirectional scale-free network generated with the power

law parameter for node degrees set to 1.5, and the minimum

and maximum node degrees equal to 2 and ⌈3 log |Vi|⌉,

respectively, in order to ensure network connectivity with high

probability. We also add 10 directed edges chosen uniformly

at random (u.a.r) from G1 to G2.

We fix δi = 0.1 for all i ∈ A and S = RN
+ . The

infection rates βj,i are chosen u.a.r. between [0.01, 1]. We

choose w(s) = 1Ts and c = (ν1 + 0.2crand) ◦ BT1,

where the elements of crand are chosen u.a.r in (0, 1), and

ν ≥ 0 is a varying parameter. We select c above to reflect an

observation that systems that support more neighbors should,

on the average, have larger economic costs modeled by ci
(Section II-A). We select u.a.r 10 nodes in G2 to have positive

primary attack rates λi = 0.1. Here, G1 is not exposed and we

consider λϵ
1 = ϵ in our perturbed problem.

0 0.05 0.1 0.15 0.2
2.2

2.22

2.24

2.26

2.28

2.3

2.32

2.34

2.36

f(
s
,p

)

CR lower bound

CR upper bound

RGM upper bound

0 0.5 1

10-4

2.28

2.3

2.32

2.34

2.36

f(
s
,p

)

0 0.05 0.1 0.15 0.2
2.35

2.4

2.45

f(
s
,p

)

CR lower bound

CR upper bound

RGM upper bound

0 0.5 1

10-4

2.405

2.406

2.407

2.408

f(
s
,p

)

Fig. 1. Bounds on optimal costs (normalized by N ) when varying ϵ in two
scenarios: ν = 0.9 in top plot and ν = 1.1 in bottom plot. Insets correspond
to a small range of perturbations ϵ ∈ (10−5, 10−4)

Fig. 1 shows the objective function values obtained using

(a) the RGM (for finding a local minimizer starting from initial

point (0, p̄(0))),6 (b) the optimal point (d+,p+) of [CR] and

6We combine RGM with a backtracking line search algorithm using initial
step size γ0 = 1 and a shrinking factor of 0.85; see [12] for details.



(c) the feasible point (d′,p′) introduced in Theorem 1, as we

vary ϵ. Here we solve [CR] using MOSEK package [1]. The

top plot corresponds to ν = 0.9 and shows that [CR] is not

exact because there is a gap between the objective function

values achieved by (d+,p+) and (d′,p′). In fact, in this case

the RGM provides a better upper bound on the optimal value

than (d′,p′). The bottom plot corresponds to ν = 1.1 and

clearly indicates that [CR] is exact as both upper and lower

bounds overlap. Moreover, we can verify that the condition

for [CR] to be exact (in Theorem 1) holds for any ν ≥ 1. The

insets plot the achieved objective function values over a small

range of perturbations ϵ ∈ (10−5, 10−4).
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0.2

0.3

p
i*

total infection cost: c
T

p/n = 0.23471

Fig. 2. Optimal solution for the case ν = 1.1 and ϵ = 10−5.

Both MOSEK and RGM take less than 1 second to run for

most values of ϵ. However, the RGM can take up to 5 seconds

when ν = 1.1 and the value of perturbation ϵ is very small (in

the interval (10−5, 10−4)) because some p̄ϵi ’s are very close

to 0, causing the Jacobian matrix of constraint function (6)

to become almost singular. Fig. 2 plots the stable equilibrium

p̄(s∗ϵ ) for the case with ν = 1.1 and ϵ = 10−5. The figure

suggests that the first MSCC comprising systems 1 through 50

will likely be fully protected, i.e., achieves disease-free stable

equilibrium, at the optimal point of the original problem in (2).

In this case, the condition number of the Jacobian matrix of g

in (6) is approximately 3.2 × 104, explaining longer running

times of the RGM as discussed above.

Example 2: We consider the Gnutella peer-to-peer network

from August 9, 2002 with 8,114 nodes and 26,013 directed

edges.7 We use similar settings as in the first example, except

that we set λi = 0.01 for i = 1, . . . , N
2 and 0 otherwise. In the

perturbed problem, we select λϵ
i = ϵ for i = N

2 + 1, . . . , N .

Fig. 3 shows the lower and upper bounds obtained using

the RGM and convex relaxation [CR] on the optimal values

of the perturbed problem when ν = 0.8 and crand = 0. In this

example, we first use MOSEK to solve [CR], which takes

less than 40 seconds to run for each value of ϵ. Then, we use

the RGM with an initial solution (d′,p′) obtained from [CR],

which takes less than 10 seconds on average. In this example,

[CR] is not exact as there is a gap between (d+,p+) and

(d′,p′). But, the gap between that of (d+,p+) and the local

minimizer obtained by the RGM is less than a little over 4

percent. Also, the inset suggests that all three values of the

objective function converge as ϵ diminishes, validating our

analytical results.

7Data is available at https://snap.stanford.edu/data/index.html.
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Fig. 3. Bounds on optimal costs (normalized by N ) when varying ϵ with ν =
0.8. Insets correspond to a small range of perturbations ϵ ∈ (10−5, 10−4)
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