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1. Introduction

In this paper, we investigate some implications of the linearization coeflicients for classical
orthogonal polynomials. It might be stated that the importance of linearization formu-
las in the study of orthogonal polynomials was superbly highlighted in Richard Askey’s
famous National Science Foundation Regional Conference lecture series at Virginia Poly-
technic Institute in June 1974. These lectures resulted in a beautiful set of lecture notes
that Askey lovingly assembled in [1], and in particular in his beautiful chapter, Lecture
5: linearization of products where he discusses the importance and history of lineariza-
tion formulas for Chebyshev, Gegenbauer (ultraspherical), Jacobi, Krawtchouk, Meixner,
Laguerre and Hermite polynomials. One of the beautiful things about linearization coef-
ficients for orthogonal polynomials is that they are surprisingly connected with some
beautiful combinatorial problems. These combinatorial connections have been generalized
and exploited by Askey and many others (for some nice reviews of this beautiful connec-
tion with linearization formulas for orthogonal polynomials, see [2,3]). Other interesting
applications of linearization formulas include duality [4], positivity [5], moments [6], and
addition theorems [7,8] to just scratch the surface of this deep topic.

Our application of linearization, encroaches on the study of the properties of the gen-
eralized hypergeometric series which arise in linearization coefficients. In particular, we
produce two-dimensional contiguous relations for linearization coeflicients of hyperge-
ometric orthogonal polynomials in the Askey-scheme. These contiguous relations are
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derived by using integrals of products of these orthogonal polynomials. These integrals are
related to linearization coefficients for the polynomials. The idea for the two-dimensional
contiguous relations goes back to a paper by Ismail, Kasraoui & Zeng (2013) [9]. In this
paper we re-derive the general expression for the two-dimensional contiguous relations
and then apply this relation to several specific examples, namely for the linearization of a
product of two and three Gegenbauer polynomials, a product of two and three Hermite
polynomials, linearization of two Jacobi polynomials and for a product of two unscaled
and two scaled Laguerre polynomials.

2. Preliminaries

We adopt the following list conventions as follows. Within a list of items, we define

x1
a—i—{;}:: {a+x1,...,a+ x4},

Xn

and when = is used within a list of values, we define +a := {a, —a}. Letz € C, n,k € Ny
unless otherwise stated. The definition that we use for the Pochhammer symbol (shifted
factorial) is given by

@p=@)(Ez+1D---(z+n—-1), (2)g:=1, zeC,
(215> 210 = @)n - (2k)n-

We will also adopt the following compact notation for the minimum and maximum of any
two integers, m, n € Z,

mvVvn := max(m,n), mAn:= min(m,n).
Define the generalized hypergeometric series [10, Chapter 16]
oo
als..., 0y (a1s...,a7)n x"
F 35X = —_—
r3<b1,---’b5 ) ;(bl,,..,bs)nn!

and the Kampé de Fériet double hypergeometric series [11, (28)]

Ff:q;k< al,...,ap:bl,...,bq;cl,...,ck xy)
i 011,---,0111,31>---,,3m;)/1>---;7/n

. i (ala---,ap)r-i-s(bl’--->bq)r(C1>---,Ck)s xrys

—. 2.1
(ala---’al)r+s(ﬂ1>---aﬂm)r(yla---ayn)s rl s! @D

r,s=0

3. Two-dimensional contiguous relations which correspond to the
linearization of a product of orthogonal polynomials

In this section we derive the general relation for two-dimensional contiguous relations for
linearization coefficients of unscaled orthogonal polynomials, namely Theorem 3.1 below.
This theorem is similar to [9, Theorem 2.1], albeit for unscaled polynomials p,(x). In the
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remainder of this paper, we compute explicitly the linearization coefficients of the products
of two and three orthogonal polynomials. From this we show examples of these contigu-
ous relations for certain continuous hypergeometric orthogonal polynomials in the Askey
scheme. However, in Theorem 7.7 we extend this theorem for scaled Laguerre polynomi-
als. The general result presented in [9, Theorem 2.1] is for integrals of products of scaled
orthogonal polynomials p, (Ax), for some A € C.

Consider a sequence of continuous orthogonal polynomials p,(x), m,n € Ny, x € C,
which satisfy the orthogonality relation

/I P55 p(5500) it = (@), (3.1)

where 7 is the support of the measure 1 and « is a set of parameters. Orthogonal polynomi-
als satisfy the following three-term recurrence relation, with the assumption p_; (x;et) :=
0,

Pn—i—l(x;“) = (Aux + Bn)pn(x;a) - Cnpn—l(x;a)- (3.2)

The linearization coefficients @y, := @m, where n := {n;,...,nn} € Né\], N > 2,k € Ny,
m := {k} U n, are defined using

np+--+nn

Pm () puy(e) = D ampr(xa). (3.3)
k=0

Note that even though it is true that k € {0,...,n; + - - - 4+ ny}, it may be that k has a more
restricted range depending on the specific orthogonal polynomials involved.
Now consider the integral over N 4 1 orthogonal polynomials P(m;a) € R, where

m := {n,...,nN+1} by
Pm;a) := /Ipnl(x;oz) o Py (60) Py (6 00) dpa. (3.4)

We can formally see that integral is associated with the linearization of a product of N
orthogonal polynomials as follows. Without loss of generality choose

ny <ny <--- <nNN =< NN+1.

Then after substituting (3.3) in (3.4) and using (3.1), one obtains

n+---+nnN
P:=P(m;a) =/I D ampuy (eOpr(xe) dje = hy 1 (@)am, (3.5)
k=0

and since overlap in the orthogonality only occurs if ny41 < n; + - - - + np;, the integral
P(m;a) will vanish otherwise. Further, define

PjjE = Pji(m;oz) =Pny,...onj_L,n £ L0, AN ). (3.6)

Theorem 3.1: Let N,j,k e No, 1 <j <k <N+1, nj,ng € M, X € 7, A,,j,an, C,,j satisfy
the three-term recurrence relation (3.2). Then the definite integral P (m; o) corresponding to
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a product of N+ 1 orthogonal polynomials defined by (3.4), satisfies the following sequence
of (N;rl) contiguous relations

(BAn, — AnBu)P — Ay Pl — CyAn P7 + AyPy + CyAy P =0,

where the P, PjjE are given by (3.5), (3.6) respectively.

Proof: Choose a quantum number m := n; € m, and then evaluate PJTir using (3.4). Then
use (3.2) to replace py+1(x) with (Apx + Bp)pm(x) — Cupm—1(x) in the integrand. Now
choose a different quantum number n := n; € m and replace xp,(x) in the resulting
expression with

1
xpn(x) = A (Pn-i—l(x) — Bupn(x) + Cnpn—l(x)) . (3.7)

Multiplying both sides of the resulting expression by A, produces a five term two-
dimensional contiguous relation for P involving F’ji and Pki. Repeating this process for

all (N ;1) unique combinations of quantum numbers in m completes the proof. |

Remark 3.2: For a linearization of a product of N orthogonal polynomials, choose j #
k € {1,...,N}. The three-term recurrence relation (3.7) is symmetric under permutation
of nj and ng. Hence each unique contiguous relation is the result of choosing two quan-
tum numbers from N + 1 possibilities and therefore one will obtain a sequence of (N ;Ll)

contiguous relations for the definite integral of a product of N 4 1 orthogonal polynomials.

In the remainder of the paper, we compute examples of these contiguous relations for
certain continuous hypergeometric orthogonal polynomials in the Askey scheme.

4. Gegenbauer (ultraspherical) polynomials

The Gegenbauer (or ultraspherical) polynomials can be defined as [12, (9.8.19)]

Ch(x) =

M)y —nn+2A 1—x
2F ; ,

n A+1 72

where n € Ny, A € C\ {0}, x € C. Gegenbauer polynomials are orthogonal on (—1, 1),
with orthogonality relation [12, (9.8.20)]

7 TQ2A + 1)8pmn
22=1(n + A)nil'(A)?

1
/ 1 CLECLX (1 — %) 7 dx = = WS (41)

where A € (— %, 00)\{0}. The three-term recurrence relation for Gegenbauer polynomials
is described via (3.2) with [10, Table 18.9.1]

2(n+ A) n+21—1
Ay=———- B, =0, Cj=——7-—. 4.2
" n—+1 " " n—+1 (42)
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4.1. Linearization of a product of two Gegenbauer polynomials

The linearization formula for a product of two Gegenbauer polynomials is given by [10,
(18.18.22)]

m
C;(X)Ci;(x) = Z Bi,m,ncz+n72k(x)’ (4.3)
k=0

where m, n € Ny, without loss of generality n > m, and

g . A= 20 0m ot n = 201k mk ) nk QW man—k
bmr T (m e+ n+ & — Dk(m — )11 — D) () gk M) mn—2k

According to Askey [1, (5.7)], Dougall [13] (in 1919) first stated (4.3), but did not give his
proof, and Hsii [14] (in 1938) was able to prove it by induction. Using (4.1), we see that (4.3)
is equivalent to the following integral of a product of three Gegenbauer polynomials

(4.4)

1
C(k,m,n; 1) := /_ 1 CLECHECh (A =2 dx =Wy, i BE, . (45)

Remark 4.1: Using the recurrence relations given by (4.2) with Theorem 3.1, one obtains
the following contiguous relations:

(m+1)(p+ DCY + (p+ 21 — )(m +1)CT

=@+ Mm+1CS + (p+r)(m+2x—1)C;, (4.6)
(n+A)(m+1)CF + (m+ 21 — 1)(n+1)C;

= (m+ M) (n+ 1)CY + (m+ 1) (n+21—1)C5, (4.7)
(n+ 1)@+ DCT + (p+21 — )(n+1C]

=@+Mn+1DCT + (p+ 1)(n+2x—DC3, (4.8)

where the subscripts j of C; where j € {1,2,3}, correspond to the parameters p, m, n
respectively. For (4.6), (4.7), (4.8) to be satisfied, there are conditions on the parameters,
namely,

pe{n—m,...,.n+m}, m+n—p=xle2Z (4.9)

To use the contiguous relations in Remark 4.1 with (4.5), we can alter it by taking
p = m+n—2k, to obtain C(p,m,n; 1) in terms of the linearization coefficients Bim
namely

n’
D1 . pARA
Cp,m,md) = hPB%(ern—p),m,n' (4.10)

The contiguous relations given in Remark 4.1 can then be combined with (4.10) and the
conditions (4.9) to be expressed as

A +mQA+p) p(A +m)
()L +P i 1) %(m—i—n—p—l),m,n ()» +P o 1) %(m—i—n—p-i—l),m,n
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= (1’}’1 + I)B%(m-i-n—p-i-l),m-i-l,n + (m + 24 — 1)B%(m-i—n—p—l),m—l,n’
(n+ 1)+ DBy ity + M+ 20 = D0+ DB 1)1
=m+)n+ DBy priymnrr T+ D0 +20 = DB1 0y 1y mn-1o

A+nmQ2r+p) p(A+n) B
()\ +P + 1) %(m-i—n—p—l),m,n + O\ +P _ 1) %(m-i—n—p-i—l),m,n

= (7’1 + I)B%(m-i-n—p-i-l),m,n-i-l + (n +21 — 1)B%(m-i—n—p—l),m,n—1' (4'11)

Take for instance for (4.11) which follows from (4.6). Using the identities (4.1), (4.4), it
reduces to

(m+2)P+1DCT+@+21—D(m+1C] — (p+1)m+1DC — (p+r)(m+2x—1)Cy
3 22N 1 rem—p—1) M L gnp—n—1) P Lt pem—1) B2 L (g p—1)
S TGUAm—p+ TG —n+p+ DT (51— m+p+ D) W1 grpmrp1)(@h)p-1
( P+DA+mL+m+p—n—1DQRr+n+p—m—1D)@Ar+n+m+p—1)
m+p—n+Hn+p-—m+DRL+p—-DRrA+m+n+p—1DRA+m+n+p+1)
B m+DP+MNL+m+n—p—1DCr+m+p—n—1D@Ar+m+n+p—1)
m+n—p+D)m+p—n+1DCr+p—DQRr+m+n+p—1DQr+m+n+p+1)
P +m—DA+n+p—m—1)
m+p—-m—-1DC2r+p—-1D2r+m+n+p—1)
A+mQCr+m4+n—p—1) )
m+n—p+1DQCr+m+n+p—1)

Since the rational coefficient multiplying the factorials and shifted factorials vanish, we
can see that this identity is trivially satisfied. So this is a clear validation of the contigu-
ous relations implied by Theorem 3.1. Note that similar validations can be obtained by
using (4.7), (4.8), which we leave to the reader.

4.2. Linearization of a product of three Gegenbauer polynomials
Now we present the linearization formula for a product of three Gegenbauer polynomials.

Theorem 4.2: Let p,m,n € Ny and without loss of generalityp <m <n, A € (—%, 00) \
{0}, x € C. Then

Lp+r£l+nJ
CrICLEC = Y FiynChyin ), (4.12)
k=0
where
) Di,p,m,n’ ifo<k<p-1,
Thona =N B, ifp<ks LL ot "J ,
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(m+ W) mW)p(A+m+n+p—2k)(m~+n+p— 20k p—k M) mtn—k M) mtntp—k

D* =
kpamn M) mn O+ 11+ 114 p— DKL — BN + 1 — DMt s pk P p2k
{ A } { T : { p— } T o) i
rp—k|[> —n > | —A—m—n—p+k| > 2 > 2
F —m—n+k
X 11110 at+1—k [Ol—m—n 5 5
1+p—k { —Atiom } S Ivarmman FEC SR SE
—A+1-m—n+k
A A+m+n +p- 2k)(m +n + 2P - Zk)!()‘)p ()L)k—p ()V)m-#p—k ()‘)n+p—k()h)m+n+p—2k (2)\)m+n+p—k

kpmn "= Got m A+ n+ p — kpl(k — p)m + p — )N+ p = M) st pok Wt 2p—2k QW) bt p—2k

_p )
A —m—p+k —A—m—n—p+k | —A+2k—2p—m—n+2 *ZH{Z}“"’ZP*’”*"
tk—p 2 , 2

—n—p+k —A—m—n—2p+2k |’
—m—n—p+2k
x ki e 1.
0 —A+1-p 0
_ At l—m—p+k —2hHl—m—n—pt+k | —A+2k—2p—m—n {1}*2"*2‘”*”‘*”
tE=P ) arinptk —2041—m—n—2p+2k > 2 > 2
—AFl—m—n—p+2k

Proof: Consider (4.12), where Fk P

following integral of a product of four Gegenbauer polynomials which is equivalent to the
linearization of a product of three Gegenbauer polynomials, namely

is to be determined. Using (4.5), one obtains the

1 1
Fi,p,m,n=h— / Cr(0)C(0C(0)Cyy +n72k(x)(l—x))‘_ Tdx. (4.13)
m-+n—+p—2k

Now use (4.3) to write the product of Gegenbauer polynomials of degree m and # as a
single sum over [ € Ny, 0 < [ < m. This converts (4.13) into a single sum of an integral
of a product of three Gegenbauer polynomials whose terms can be evaluated using (4.5).
After avoiding the factor I 4+ p—k becoming negative (in which case Fi‘, pms vanishes), we
obtain

m

A —
Fk,p,m,n - Z Blman Lp,m+n—2D
I=max(0,k—p)

which breaks the linearization formula into two regions depending on k, namely
|

A A A A A A A
Cp (x) Cm (x)cn (x) = Z Cp+m+n—2k(x) Dk,p,l,m + Z Cp+m+n—2k(x) Ek,p,l,m’
_ =p

where
p+m—k

,p,mn T ZBlm an—l,p,m+n—Zl’ ,p,mn = Z Bl+k—pmn p Lp,m—+n+2p—2k—2I"

Factoring the products of linearization coefficients in terms of shifted factorials and
factorials completes the proof. |

Remark 4.3: Setting p = 0 in (4.12) straightforwardly produces (4.3) since the first sum
vanishes and the 11 F1o(1) in the second sum is unity.
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Corollary 4.4: Let p,m,n € Ny and without loss of generalityp <m <n, \ € (—%, 00) \
{0}. Then

fasiy (—p—m—n) (—p—m—n—i—l)
(ZA)p(Z)\)m(Z)\)n _ (Z)M)p+m+n Z 2 2 k 2 k
plmin! T (p+m+n) kpmn ( —2p—p—m—nt1) (—2A—p-m—n+2)
k=0 2 k 2 k
Proof: Letx = 1in (4.12) and [10, Table 18.6.1] C%(1) = (21),/n!. [ |

Define the following integral of the product of four Gegenbauer polynomials

: 1
Cloommb2) = / GG ChERICH (1 =52 d,
1

where | = p+ m + n—2k. We now present the contiguous relations for the integral of a
product of four Gegenbauer polynomials.

Theorem 4.5: Let p,m,n € Ny, and without loss of generality p <m <mn, and |l €
{0,....,p+m+n}suchthatp +m+n— 1% 1iseven. Then
(m+2)@p+1 F%(p+m+n—l+1),p+1,m,n + @ +20 = 1D(m+2) F%(p+m+n—l—1),p—1,m,n
=@+Nm+DF 1 ) pmira T @A +20 1)

X F% (p+m+n—I-1),p,m—1,n>

n+MP+DF iy primn T @+H22 =D+ F1 0, s
=@+NO+DF1 gy pmap T @ D024 = 1)

X F% (p+m~+n—I1—1),p,m,n—1>

P+1 F%(p+m+nfl+l),p+l,m,n +pt22-1 Fl(P+m+nflfl),p71,m,n

2
_@x+Dp+2) I(p+2)
T Ol aermne e Dpmn T T T (b= D pan?

(n+21)(m+1) F%(p—i—m-ﬁ-n—l—}—l),p,m-ﬁ-l,n +(m+24 = 1(n+2) F%(p-i—m—‘rn—l—l),p,m—l,n
= (m+ D+ DLt pmgt T (1) (420 = 1)

x F% (p+m~+n—I1—1),p,m,n—1’

(m+1) F%(P—i—m-i—n—l—l—l),p,m—i—l,n +(m+2x—1) F%(P-i—m—i-n—l—l),p,m—l,n

@A+ D(m+ ) I(m + 1)
- (A + 1+ 1) %(p+m+nflfl),p,m,n + ()\‘ Ny 1) %(p+m+nfl+l),p,m,n’

(n+1) F%(p+m+n—l+1),p,m,n+l tm+2h-1) F%(p+m+n—l—1),p,m,n—1

@A+ D+ I(n+ 1)
- (r+ I+ 1) %(p-ﬁ-m-ﬁ-n—l—l),p,m,n + O+ 1— D %(p+m+n—l+1),p,m,n’
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where
) ; _
o _ D%(p—i—m—i—n—l:tl),p,m,n’ ifm4+n—p+2<l<m+n+p,
Lptmtn—1£)pmn "~ | E* , fo<l<m+n—p.

L (p+-mtn—I£1),pmon
Proof: Aside from the contiguous relations (4.6)—(4.8), there are three more

I+ 1@+ 1DCY + (p+21 — DI+ 1CT

=@ +MI+1C + (p+ 11 +21 - 1Cy, (4.14)
I+ M) (m+1)CF + (m+ 21 — DI+ 1)C5

= (m+ M)+ DCy + (m+ 1)1+ 21 — DCy,
(I4+2)(n+1C + (n+21— DI+ 1)C3

=+ M1+ 1DC + (m+ 1 +21—1DCy, (4.15)

because we now have an integral of a product of four orthogonal polynomials and therefore
there will be (;) = 6 contiguous relations. The parameters p, m, n and [ are associated
with the subscripts 1, 2, 3 and 4 respectively, and [ = p + m 4 n—2k. Applying this to the
six contiguous relations (4.6)—(4.8), (4.14)-(4.15), and using Theorem 4.2 completes the
proof. |

5. Hermite polynomials

The Hermite polynomials can be defined as [12, (9.15.1)]

— x2

S PR P
Hn(x)=(2x)”2Fo( 2™~z 1);—i), (5.1)

where n € Ny, x € C. Hermite polynomials are orthogonal on (—o00, 00), with orthogo-
nality relation [12, (9.15.2)]

o0
/ Hyp () Hy(x) €™ dx = /7 2080 = hpSpun. (5.2)
—0oQ0

The recurrence relation (3.2) for Hermite polynomials is given through
A, =2, B,=0, C,=2n (5.3)

The definite integral of a product of N € Ng, N > 2, Hermite polynomials is defined by

H(n) := / Hy, (x) -+ Hyy,, () e dx,

wheren := {n1, ..., nyy1}. Note that H(n) has a generating function given by [15, Exercise
4.11]

exp | 2 Z tit; —\/_ Z : tk H(n) (5.4)

1<i<j<k A, = 0
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5.1. Linearization of a product of two Hermite polynomials

The Hermite polynomials (5.1) have a linearization formula given by [10, (18.18.23)]
m
Hy(x)Hy (%) = > b mnHp g n—2k (%), (5.5)
k=0

where m, n € Ny, without loss of generality n > m, and

2kmin!
Bkmn = .
T kKl(m — k)!(n — k)!

According to [16], the linearization formula for Hermite polynomials (5.5) is referred to
as the Feldheim-Watson linearization formula for the Hermite polynomials. This formula
can be traced back to papers of Feldheim and Watson in 1938 [17,18]. The definite integral
corresponding to the linearization of a product of two Hermite polynomials is given by

H(p, m,n) .= /00 Hp(x)Hy (x)Hy (x) e du.

Using (5.5) and orthogonality (5.2), we see that H(p, m, n) is given by

H(p, m,n)

0, ifp>n+morm>n+porn>m+p
or(p+m+mn) mod?2) =1,
= S minlpl2t 5]

Lm—i—zn—pJ!Lm-g-g_nJ!Ln_,_g_mJ % otherwise.

(5.6)
Corollary 5.1: Let |t1],|%2], |t3] < 1. Then H(p, m, n) has the following multilinear generat-

ing function (5.4), given by

00 mAn Fmvn2ptn—m| g n
2° t 't

exp(tity + tits + tat3) = Z Z

n,m=0 p=0

(mAn—p)!(p+|n—m)!p!’

Proof: Starting with (5.4), (5.6), for a fixed m, n € Ny, p is non-vanishing for |n — m| <
p < n+ m. Shifting the p-index by |n — m| and scaling p by a power of two to remove the
remaining vanishing values of H(p, n, m) completes the proof. |

Remark 5.2: Let x € C, p,m,n € Ny, and without loss of generality assume m < n. Fur-
ther,letp e {n —m,...,n+ m} and p + m + n £ 1 even. Combining Theorem 3.1 with
the coefficients of the recurrence relation given by (5.3) yields three contiguous relations
for the integral of the product of three Hermite polynomials:

Hy — H —2pH] +2mH; =0, (5.7)
HY —H —2pH[ +2nH; =0, (5.8)
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HI — HY —2mH; +2nH; = 0. (5.9)
Using (5.6) with (5.7) the following identity is obtained:
m+n—p—1J'Ln+p—m+1J' {m—kp—n—lJl

2 2 2

3 mtn—p+1||ntp-—m—1] m—i—p—n—lJ'
(p+1)L 3 JL 5 JL > !

|mtp—n+l|Imtn—p—1] n—l—p—m—i—lJ'
2 ' 2 ' 2 '

+Lm—l—n—p—#lJ!{m+p—n+1J!{n+p—m—IJ!ZO‘
2 2 2

(m+1)L

This can be rearranged to the following

(n—l—p—m—l—l <(m+1)_m+p—n+1>+m+n—p+1 <_(p+1)+m+p2—n+l>>

2 2 2
y m+n—p—1 . n+p—m—1 . m+p—n—1 .
3 ! 3 ! 3 1=0.

Since the coefficient multiplying the factorials vanishes, we can see that the identity is
trivially satisfied. So this is a clear validation of the contiguous relations implied by
Theorem 3.1. Note that similar validations can be obtained by using (5.8), (5.9), which
we leave to the reader.

5.2. Linearization of a product of three Hermite polynomials
Theorem 5.3: Let p,m,n € Ny and without loss of generality p < m < n, x € C. Then
L5

Hy()Hn(O)Hp(¥) = Y fepmnHpsmsn—2k (), (5.10)
k=0

where

dipomns fO<k=<p-—1,

fepmn =\ o, ifp <k < ij
1p12k —k,—m,—n,—m —n+k, 4
dk,P,Wl,n = 0 (1’1’]1{—:— 1’1) P ol 4F3 {?}_m_n ;4_} 5
(p—k)!(m+n—k)! 1+p— kU

minl(m~+n+2p — 2k)12k
k=—plm+p—Kin+p—Kip+m+n—2k)!
—p,—m—p+k-—n—p+k—m—n—p+2k
{(1)}+2k—2p—m—n ;Z
2

ek,p,m,n =

X 4F;3
1+k_p)
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Proof: Using (cf. [12, (9.8.34)])

n X
— ol T -5 o
Hn(x)_n‘ozgngoa ch <\/&>

four times in (4.12), and [10, (5.11.12)], the result follows. |

Remark 5.4: Setting p = 0 in (5.10) straightforwardly produces (5.5) since the first sum
vanishes and the 4F3(i) in the second sum is unity.

Define the following definite integral of a product of four Hermite polynomials
o]
H(k, p, m, 1) := / Hy () Hp (x) Ho (x) Ho () € dix.
—00

Using orthogonality and the linearization relation (5.10) one produces the following
corollary.

Corollary 5.5: Let k, p,m,n € Ny. Then

EBipmm  if0<k<m+n-—p,

Hk,p,mn) =1 Drpmn ifm+n—p+2<k<m-+n+p, (5.11)
0, otherwise,
where
k: m—+n
c ST minl(p + k)2l
k,p,m,n = —p—k k _ k —
Lm-i—nzp _]'l_ +p-;n mJ!l_ +p—;m nJ!
—k, —p, |_rtfm;pfkj’ |_mfnzfpfkJ )
X 4F3 0l _x =1
—p— —k=p
1+ |_m-i—nzp kJ,{1}2 4
k+m+n
VT KL Gm + myl
Dk,p,m,n =

k+p—m—n m—+n+p—k m—+n+k—
| SRy Py T |

—k—m— k—p—m—n
-—m, —n, |.p 2 nJ>|_ pz J

1
X 4F3 Oy 5

Proof: Start with Theorem 5.3 and then integrate both sides using the property of
orthogonality for Hermite polynomials (5.2). This leads to the following integral for the
linearization coefficients, namely

1

fk,p,m,n = h

e.¢]
_2
—/ Hp (x) Hy () Hy () Hp 44 n—2k () € dix.
m4n+p—2k J—oo

This allows us to write the integral of a product of four Hermite polynomials as

Hp, m,n,1l) = hlf%(P_i_mJ,_n—l),p,m,n'
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Theorem 5.6: Let p, m,n € Ny and without loss of generalityp <m < n, k€ {0,...,p+
m + n}. Then the contiguous relations for the integral for a product of four Hermite polyno-
mials are given by

Frpmtin — Frprtmn + 2mFkpm—10 — 2pFkp—1.mn = 0,
Fk,p,m,n+1 - Fk,p+1,m,n + ank,p,m,n—l - 2PFk,p—l,m,n =0,
Frr1pmn — Frpttmn + 2kFk—1pmn — 20Fkp—1,mn = 0,
Fk,p,m,n+1 - Fk,p,m+1,n + 2”Fk,p,m,n71 - szk,p,mfl,n =0,
Ferrpmn — Frpmein + 2kFk—1pmn — 2mFrpm—1n = 0,
Frevtpmiin — Frpmnt1 + 2kFk_1pmn — 20Fkpmu—1 =0,

where
Ek,p,m,n) lfo <k<m-+n — D>

Fk,p,m,n= Dk,p,m,na ifm+n—p+2<k<m+n+p,
0, otherwise.

Proof: In addition to the contiguous functions shown in Remark 5.2, there are three
additional ones:

Hy —Hf —2pH] +2mH; =0,
HT — H —2pH] +2nH; =0,
Hy — Hy —2mH; + 2nH; = 0.

Combining these with (5.11), the contiguous relations of the theorem are obtained. =~ W

6. Jacobi polynomials

The Jacobi polynomials can be defined as [10, (18.5.7)]

1 —n, 11—
Pfqa’ﬂ)(x) = uﬂﬁ( mrtatft ; x))
n! oa—+1 2

where n € Ny, o, 8 > —1, x € C. Jacobi polynomials are orthogonal on (—1, 1), with the
orthogonality relation [10, Table 18.3.1]

1
/ PeP ()PP (x) (1 — 0 (1 + x)°
-1

2P T+ a+ DI (n+ B+ 1)
T QCn4a+B+DI(n4+a+ B+ Dn!

Snm =: hnSnm- (6.1)
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The coefficients for the three-term recurrence relation for the Jacobi polynomials are given
by [10, (18.9.2)]

Qn+a+B+D2n+a+p+2)
2+ D(n+a+pg+1)

@ = pHC2n+a+p+1)
2n+D)(n+a+B+D2n+a+pB)
nm+a)(n+pB)2n+a+ B +2)
n+Dn+a+B+1)2n+a+B)

n— >

(6.2)

n =

n =

6.1. Linearization of a product of two Jacobi polynomials

The linearization formula for Jacobi polynomials was given in a fundamental work by
Rahman [19, (1.9)]. Rahman expressed the linearization coefficient in terms of a 9Fg(1).
His result was given in terms of some other variables s = n—m, j = k—n 4 m, and also con-
tained a typographical error. The typographical error was that the term (2s — 2n — o — )
in Rahman’s original publication should have been written as (2s — 2n — o — f);. (Note
that in [20, (2.1.1)], it was realized that Rahman’s result contained a typographical error.)
The corrected and further simplified version of Rahman’s result is given as follows.

Theorem 6.1 ([19]): Let m,n € Ny and without loss of generality, n > m, o, 8 € C. Then

)= e ) 6

where

af @+ LB+ Dula+ B+ Dop—om(@+ B+ Dom(e + B+ 1+2n—2m+2k)
. mi@+ B+ Dm(@+ 1,8+ Dp—m(@+B+2oml@+p+1)
o m—m+lLa+p+2n—2m+ 1,20 +2+2n+2,2m,a — B)i
KQB+2n—2m+2,a+n—m+lLa++2n+2,—a — f —2m)y;

atprk+id —k+19
Bin—mt L Bt gl /3+n+1—a—m7{2]+n—m,#
X oFg ;1
L B—a—k+ k+
Brnomes w—m+1,1 - ma+ﬁ+n+37” H+,3+n—

Proof: See Rahman (1981) [19, (1.9)] and [21, (3.3)] for description of correction. |

Corollary 6.2: Let I,m,n € Ny and without loss of generality m <n and e {n—
m, ..., n+ m} using the linearization formula for Jacobi polynomials, it is possible to write
the integral of the product of three Jacobi polynomials as follows:

1
P(,m, ma, ) = f PP PP (0P () (1 — 0 (1 4 0P d h,

) _al+m n,n,m

where h; is defined in (6.1).
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Theorem 6.3: Let I,m,n € No and without loss of generality m <n and le {n—
m,...,n+ m}

2(a—ﬁ)(a+ﬁ)(m—n)(a+ﬁ+m+ﬂ+1)(a+ﬁ+2n+1)aa,/s
(o + B +2m)(a + B+ 2n) Hm—nnm
+(a+ﬁ+m+1)(m—|—1)(a+ﬁ+2n+l)(a+ﬂ+2n+2) a.p
(0{ + ﬂ +2m+ 1) IH+m—n+1,n,m+1
N (@+mB+ma+p+2m+2)(@+p+2n+Da+p+2n+2) 4p
(a + ﬁ +2m)(a + ,8 +2m+1) I+m—n—1,n,m—1

—@+B+2m+2Da+B+n+1Dn+ l)a(ll—:in—n—l,n-&-l,m
@+ p+2m+)(@+n)(B+m@+B+2n+2) op

(@ + B +2n) Hm—ntLn—1m = O
2@—=PB)a+p)l-—nma+p+n+i+]) 4p
(@ + B +2D(e+ B +2n) Hrm—n,nm
(@t Bt+2A4+2)(@tBtnt D+ D) op
(@+B+2n+1) Hm—n—1,n+1,m

C@AmBAm@+p+20+2)(@++2n+2) op

(@4 B +2n+1)(a+ B +2n) Hrm—ntln—1lm
N (@+B+2n+2)(a+I1+DB+I1+ D+ p+20+ 1)aa,f,

(@ + B +2143) Hrm—n+1,nm
l(a+ﬁ+l)(a+ﬂ+21+2)(a+ﬂ+2n+2)aa,ﬁ —o
(a+B+2—D(a+p+2) brm—n—Lnm =

2@ —B)a+pHU—m@+B+m+1+1) 4p
(@+B+2)(a+B+20+2)(a+ B +2m) Hm—mnmm
B (m+1)(ot+/3+m+1)aa,ﬂ
(ot+/3+2m+1) I+m—n+1,n,m+1
_letmBtmatp+2m+2) op
(@+ B +2m)(a+p+2m+1) Hmon—lnm=l
((X+l+1)(,3+l+1)(0!+,3+2m+2)aa,ﬂ
(@+B+204+2)(a+p+20+3)  Hmontlmm
l(a+ﬂ+l)(a+ﬂ+2m+2)aa,ﬁ
(+B+2l—D(a+p+2l) Hmon-lmm

=0.

Proof: To determine the contiguous relations, the coefficients of the three-term recurrence
relation defined in (6.2) are used. Combining these coefficients with the general form of
the contiguous relation of Theorem 3.1 results in

(0 — B)a+ B)(a+ B+ 2n)(nj — m) (e + B+ nj+ng+ Do+ B +2n;+ 1)
(nj + D + B+ nj + D + B+ 2n) (n + D (¢ + B + ng + Do + B + 2my)
(a+,3+2nk+1)(a+ﬂ+2nk+2)P+
2+ D+ B +np+ 1) nj
(@+n)B+n)la+p+2n+2)(a+p+2n++p +2ﬂk+2)P_
2(nj +Da+B+n+ D+ B +2nj)(l’lk+ D+ B+ng+1) "
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_(a+B+2nj+ D+ B +2nj+2)(a+n)(B+nm)la+B+2n+2)

2+ D+ B+n+ D+ D(a + B+ me+ D + B+ 2ng) "k
(a+/3+2nj+1)(a+,3+2nj+2)P_
2(nj+ (@ +p+n+1) e

Then using Corollary 6.2 with the definition of the coefficient ai‘f ., in Theorem 6.1

completes the proof. |

7. Laguerre polynomials

We now consider Laguerre polynomials L% (x) and we restrict the values of the polynomi-
als such that x € C, R > —1. One may define the Laguerre polynomials in terms of its
generalized hypergeometric series representation [12, Section 9.12], as follows

(@ + 1y —n
o — .
Ly (x) = — 1F1<a N l’x) .

The Laguerre polynomials have the following orthogonality relation [12, (9.12.2)]

Ha+l+m5

! mn —- hm(Sm,n)

oo
/ Ly (x) L5, (x)x% e * dx =
0

where Ro > —1 is imposed so that the orthogonality integral exists. For Laguerre polyno-
mials, one has the following three-term recurrence relation coeflicients (3.2),

—1 '_2n+a—|—1 n+ao

= , =— C,:= . 7.1
T n41 " n+1 T n41 7.1)
Define ny,...,ny+1 € Ng, R > —1,
o0
L(n;a) := f Ly (x)-- -L‘;,’NH (x)x%e ¥ dx. (7.2)
0

Using the generating function for Laguerre polynomials [12, (9.12.10)]

t o.¢]
10 e (7 ) = L icor,
n=0

one finds that (7.2) has the following generating function [15, (9.3.7)]

o0
Z Lmsa)ty! - - £

n15...,n=0

k

u f
=T+ (1—1f) (1 —t) ! 1+;1_th ) (7.3)
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7.1. Linearization of a product of two Laguerre polynomials

Theorem 7.1: Letx € C, Ra > —1, n,m € Ny, and without loss of generality n > m. Then

22M(Dm(a + 1)y

L oLy = —— 21
n+m (—1)k+n+mk!
k=;m (¢ + Dp(m+n—k)l(k—n+m)!
n—m—k+19
gl
X 3F2 ;1 Lk (x)

n—m+1,%—m

Proof: Letx =1—2xf ~Lin (6.3). Applying the relevant limiting relation [12, (9.8.16)]

lim PP (1 —2xp~1) = L%(),
B—o0

produces
n+m
: (a,8) -1, p(a,B) -1\ _ 1 (o) —1\ %8
ﬁan;oPm 1 —=2xB" )P, (1 —2xB )_ﬂli)n;o](z P (1 —2xB )ak,m,n'
=Nn—m

One also has the following useful asymptotic result. Let k € Ny, b € C, ¢ € C\ {0}. Then

. (ca+bp 4
m — = ¢C".

li - (7.4)

a— 00 a
Using (7.4) to evaluate the limit on the right-hand side completes the proof. |
Define p,m,n € Ny, R > —1,

o0
Lg,m’n = /0 L;‘ () Ly, (x) L5, (x)x%e™* dx,
and using (3.5), (7.1), we have for [n — m| < p < m+n,
|n—ml—p+{}
T(a + 1+ mvn)(—1prrtmpmam(dy o —a — mAn, f{l}

L;m»ﬂ = 302 ;1.

n—mli(m+n—p)l(p— |n — m)! Lt 1n—ml, L —man

(7.5)
Hence we have the following generating function (7.3)

0 22 (e + Do X (=1

; (2(mAn) — p)! p!

|n — m|!
n,m=0
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3]

2 1
1+|n—m|,%—m/\n

—o — MAmn,

X 35

= ((1 = tp) (1 = tm) (1 — tn) + tp(1 — ) (1 — £) + tin(1 — £p) (1 — 1)

+ a1 — 1) (1= t) "7

Theorem 7.2: Letp,m,n € No,a > 1such that |n — m| < p < m + n. Then, one has three
contiguous relations for the product of the three Laguerre polynomials given by

(m+a)(m+n—pla+1+ (m—1)vm22=DA( 2y, 4,
In—m+111(p — |n — m+1])!

[n—m+1|—p+ 0
—a — (m—1)An, f{l}

X 3F ;
2 1+|n—m+l|,%—(m—|—1)/\n

(DO +n=pTe+14+mvm22" ()
[n—m|l(p — |n — m| +1)!

|n—m|—p—1+{(1)}
- —mAn, ——————
X 3F2 1 ;1
1+ |n—m|,53 —mAn

(m+ D0 (e + 1+ (m+ Dva)2m+andy L
m4+n—p+Dn—m-—1\1(p—|n—m—1|)!

In—m—1]—p+19

X 3F ;

e 1—|—|n—m—l|,%—(m—|—1)/\n
P+ T (@ +1+mvn)22mndy,
(m+n—p+Din—m|l(p—[n—m—1|)!

|n—m|—p+l+{(1)}
- —mMAn, ——————

31
1+ |n—m|,

x 3B,

1
3 mAn

2(p — mT(a + 1+ mvn)22mm(dy,
n— mli(p — |n— m)!

|n—m|—p+{‘1)}

e
1+ |n—m|,3 —mAn

—0 — mAR,
X 3F2

(n+a)(m+n—p)T(a+ 1+ mv(n—1)ame=Dhy, o)
ln—m—1|1(p — |n — m — 1|)!
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|n—m—1\—p+{(1)}

2
51
1+ n—m—1|,1 —ma(n—1)

—a—mA(n—1),
X 3

_(pHDm+n=pLa+1+mvm22" ()
|[n —m|l(p — |n — m| +1)!

0
|n—m|—p—1+{1}
—o0 — mAn, I

51
14+ |n—m,

X 3

1
z—ﬂ’l/\l’l

(n+ DT (e + 1+ mV (n+ 1))22m ety
m+n—pln—m+1l(p—|n—m+1))!

[n—m+1]—p+19
o g+ 1), ]

X 3F, 1 ;1
1+n—m+1,5 —mA(n+1)

_(pHel@+ 14+ mvm22 " (),
m+n—p)n—m|lp—|n—ml +1)!

|n—m|—p+1+{(l)}
- —mAn, ——————
X 3F; ) ;1
1+ |n—m|, 5 —mAn

2(p — W + 1+ mvn)22mn(dy, o

= ml!(p = [ = m])!

jn—ml—p+{9)}
-0 — MAR, ———5——

x 3B, 1 ;11 =0,
1+ |n—m|,53 —mAn

(n+a)(m+n—pla+ 14 m—1)vmam=Dmy e, ),

ln—m+1|1(p — [n—m+ 1])!

[n—m+1|—p+ 0
=y, ]

X 3F, 1 ;1
l+n—m+1f,53 —(m+1An

_(mta)(m+n—pT@+1+mvn—=D)4 0D e
In—m—1|1(p —|n—m—1|)!

|n—m—1\—p+{(1)}
-z .
1+ n—m—1|,1 —ma(n—1)

—a—mA(n—1),
X 3F2

(m~+ D0+ 1+ (m+ Dva2m+andy
m+n—p+Dn—m-—1\1(p— |n—m-+1|)!
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In—m—1]—p+19
N o o

X 3F H
T litim—m—1Ll = m+An

(n+ DT (@ + 1+ mV (n+ 1)22m et Ly
m+n—p+Dn—m+11(p—|n—m-+1])!

|[n—m+1|—p+ 0
o ma e, el

X 3F, 1 ;1
1+n—m+1,5 —mA(n+1)

2m — mT(a + 1+ mvm)22mm(dy,

= ml!(p — [ = m])!

jn—ml—p+{9)}
- —mAn, —————

X 3F2 1 ;1] =0.
1+ |n—m|,53 —mAn

Proof: Using Theorem 3.1, one has the following three contiguous relations:

P+DLf —(m+ DL = (m+ao)l; — (p+a)l] +2(p — m)L,
(p+ DL} —(n+ DL = (n+ o)Ly — p+a)l] +2(p —nlL,
(m+ DL — (n+ DL = (n+ o)Ly — (m+ o)Ly +2(m — n)L.
Using the linearization of a product of two Laguerre polynomials (expressed as an inte-

gral of a product of three Laguerre polynomials) written as a hypergeometric function
3F>(1) (7.5) and substituting it into the above equations completes the proof. |

7.2. Linearization of a product of two scaled Laguerre polynomials

Consider the integral associated with linearization coefficients for a product of two scaled
Laguerre polynomials

p mn(@ D) = /OO Lg (x) L3, (ax) L5 (bx)x* e dx, (7.6)
0

where Ra > —1 and L%

(@ b) =0ifp>=n+m+ 1.

Remark 7.3: One wayto see that Ra > —1is the necessary condition for (7.6) is as follows.
The above integral can be written out in terms of hypergeometric series to become

(@ + Dp(er + Dm(a + 1)y
p'm!n!

P m ol -
_p)S(_M)k(_n)la b / +k+l+o —x
" Z kg(; Z (o + D)s(or + Dger + 1)tk x e "dx.

s=

Lo ,(a,b) =

p.m,n
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The integral then becomes I'(« + 1 + s + k + ), where it is required that f(« + s+ k +
I) > —1. Since this must be true for all values that s, k, and [ take in the summation, this
requirement takes the form Ml > —1.

We now present a theorem which describes double sum representations for this integral.

Theorem 7.4: Let p,m,n € Ny, a, b> 0, Ra > —1. Then

Mo+ Do+ Du(—0 —p)m <_f)m b

Lpmn(a) = piml(n+ m — p)! b

o o (—m)(—a = m)(p + V(e + 1+ philp — n—m)pys [ g)" ,
% Z Z (@ +p—m+ Diyi(p + Digi—mk!l! ( a .

Proof: By inserting the definition of the Laguerre polynomials, this integral can be con-
verted to a triple sum, which can be evaluated using the integral definition of the gamma
function, namely

(@ + Dp(@ + Dl + Dy
p'mln!

L8 (@) =

5 i i 3~ CPCmyCmiN@ 145 4k hatt!
(a 4+ Ds(o + Do + 1) stk!l
s=0 k=0 I=0
Byre-writingI'(a + 1+ k+1+5) = ' + 1)(o¢ + Dgqi(e + 1 + k + I)s, one can write
the sum over s as a terminating Gauss hypergeometric series at unity. The hypergeometric
series can be evaluated using the Chu-Vandermonde identity [10, (15.4.24)]. This converts
the triple sum into a double sum which produces

Noa+1+mla+14+n)

Lpma(@b) = plm! (o + 1)
§ in—P-i-k (—1)l+k(_m)k(P 4 1)[(06 41 +p)lakbp+l—k
(A Dr(p + Dk + 1+ pi—i(n — p+ k= DIKIL

In order to extend the sum indices to infinity, one can reverse the order of the k index
by setting k > m — k. Performing a series of standard manipulations for Pochhammer
symbols produces the final form which completes the proof. |

An alternative form of the integral £
Theorem 7.4, namely

(a,b) follows by utilizing the identity in

pmn

(p—m)!

(P + Do = P' (P —m+ 1), (7.7)

which is valid for p > m (see also [22]).
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Corollary 7.5: Let p,m,n € No,p > m, a, b> 0, R > —1. Then

Mo+ 14+n)(—a—pm

Lopmn(@b N" b 2% (a,b
pona(8:0) = ml(p — m)!(n 4+ m — p)! <_E) pmn(@b),
where
7% (a,b) = i (Pp—n—myp(—m,—a —m)(p+ Lo+ 1+ p) <_E>kbl
o Lk=0 (p—m+La+p—m+ gy kll a
pp(p—n—m:—m—e—mp+lLatp+1l b
= F200 (p , P ;——,b), (7.8)
p—m+lLa+p—m+1:—;— a

where F;gé is terminating Kampé de Fériet double hypergeometric series (2.1).

Proof: The terminating double hypergeometric Kampé de Fériet form (2.1) of the integral
L3 1n,n(a, b) in Corollary 7.5 follows from Theorem 7.4 by utilizing the identity (7.7) (p >
m) with r = k+ land (2.1). This completes the proof. [ |

Remark 7.6: Note thatthe a = b = 1linearization formula corresponding to (7.8) may be
found [18, p. 32] whose linearization coefficients are given in terms of a terminating 3 F,(1).
However Watson’s formula must be taken with special care as the terminating 3F, (1) may
be undefined. This is demonstrated by the case n = 3,m = 2. Watson sums the 3F, (1) over
asum index M € {n —m,...,n+m} ={1,...,5}. Then for M = 1, both denominator
parameters will be less than or equal to zero.

Theorem 7.7: Let p,m,n € Ny, a, b, >0, Ra > —1. Then the contiguous relations for the
integral of the product of three Laguerre polynomials, which two are scaled is the following:
ap+a)L] —(m+a)L; + Cm+a+ DL
—a@p+a+1)L—(m+ 1)L +ap+ DL =0,
bp+a)L] —(n+a)l5 +C2n+a+ 1L
—b2p+a+ DL —(m+1DLT +b(p+ DL =0,
bm+a)l;, —an+a)ly +an+a+ 1)L —-b2m+a+ 1)L
—a(n+ 1L +bm+ DL =0,

where
L := L(p,m,n;c;a,b),
LT :=Lp+1,mnaab),

L5 = L(p,m=+1,n0;a,b),
LE = Lp,mn=+L0;a,b).
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Proof: Again Theorem 3.1 will be used with the coefficients of the three-term recurrence
relations of Laguerre polynomials. However, because we are now working with scaled
Laguerre polynomials, one of these coeflicients is now modified to the following:

a
n+1

Where a is the scaling factor of the Laguerre polynomial L% (ax). The other two coefficients
seenin (7.1) are unchanged. This can be found by inserting the scaled Laguerre polynomial
into the three-term recurrence relation and solving for the coefficients. |

n=

Acknowledgments

We are deeply indebted to Mourad E. H. Ismail for describing his idea to us for the creation of
two-dimensional contiguous relations from the linearization coefficients of orthogonal polynomials.
Without his generous support, this paper would never have come to be. We would also like to thank
Roberto S. Costas-Santos for valuable discussions.

Disclosure statement

No potential conflict of interest was reported by the author(s).

References

[1] Askey R. Orthogonal polynomials and special functions. Philadelphia: Society for Industrial
and Applied Mathematics; 1975.

[2] Stanton D. Orthogonal polynomials and combinatorics. In: Special functions 2000: current per-
spective and future directions (Tempe, AZ); Dordrecht: kluwer Academic Publishers; 2001. p.
389-409. (NATO Sci. Ser. IT Math. Phys. Chem.; Vol. 30). https://doi.org/10.1007/978-94-010-
0818-1_15.

[3] Zeng J. Combinatorics of orthogonal polynomials and their moments. In: Cohl HS, Ismail
MEH, editors. Lectures on orthogonal polynomials and special functions, Sixth Summer
School, Maryland, 2016, Lecture notes from the 6th Summer School (OPSF-S6) held at the Uni-
versity of Maryland, College Park, MD, July 11-15, 2016, Cambridge: Cambridge University
Press; 2021. p. 280-334. (London Math. Soc. Lecture Note Ser.; Vol. 464).

[4] Gasper G. Positivity and the convolution structure for Jacobi series. Ann Math Second Ser.
1971;93:112-118. https://doi.org/10.2307/1970755.

[5] Gasper G. Positivity and special functions. In: Theory and application of special functions
(Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975). New York:
Math. Res. Center, Univ.Wisconsin, Publ. No. 35; 1975. p. 375-433.

[6] Corteel S, Kim ]S, Stanton D. Moments of orthogonal polynomials and combinatorics. In:
Recent trends in combinatorics. Cham: Springer; 2016. p. 545-578. (IMA Vol. Math. Appl,;
Vol. 159). https://doi.org/10.1007/978-3-319-24298-9_22.

[7] Koornwinder T. Positivity proofs for linearization and connection coefficients of orthog-
onal polynomials satisfying an addition formula. J London Math Soc Second Ser.
1978;18(1):101-114. https://doi.org/10.1112/jlms/s2-18.1.101.

[8] Koornwinder TH. Dual addition formulas associated with dual product formulas. In: Nashed
Z,LiX, editors. Frontiers in orthogonal polynomials and g-series. Chapter 19. Hackensack, NJ:
World Scientific Publishing; 2018. p. 373-392. arXiv:1607.06053v4.

[9] Ismail MEH, Kasraoui A, Zeng J. Separation of variables and combinatorics of linearization
coefficients of orthogonal polynomials. ] Combinatorial Theory Ser A. 2013;120(3):561-599.

[10] NIST Digital Library of Mathematical Functions [Release 1.1.8 of 2022-12-15]; 2023. E. W. J.
Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller,
B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.; https://dlmf.nist.gov/.


https://doi.org/10.1007/978-94-010-0818-1_15
https://doi.org/10.2307/1970755
https://doi.org/10.1007/978-3-319-24298-9_22
https://doi.org/10.1112/jlms/s2-18.1.101
http://arXiv:1607.06053v4
https://dlmf.nist.gov/

658 (&) H.S.COHLAND L. RITTER

(11]

(12]

(13]

(14]

(15]

(16]

(17]
(18]

(19]

(20]

(21]

(22]

Srivastava HM, Karlsson PW. Multiple Gaussian hypergeometric series. Chichester: Ellis
Horwood Ltd.; 1985. (Ellis Horwood Series: Mathematics and its Applications).

Koekoek R, Lesky PA, Swarttouw RE Hypergeometric orthogonal polynomials and their
g-analogues. Berlin: Springer-Verlag; 2010. (Springer Monographs in Mathematics; with a
foreword by Tom H. Koornwinder).

Dougall J. A theorem of Sonine in Bessel functions, with two extensions to spherical harmonics.
Proc Edinburgh Math Soc. 1918;37:33-47.

Hsii HY. Certain integrals and infinite series involving ultraspherical polynomials and Bessel
functions. Duke Math J. 1938;4:374-383.

Ismail MEH. Classical and quantum orthogonal polynomials in one variable. Cambridge: Cam-
bridge University Press; 2009. (Encyclopedia of Mathematics and its Applications; Vol. 98).
With two chapters by Walter Van Assche, With a foreword by Richard A. Askey, Corrected
reprint of the 2005 original.

Ismail MEH, Koelink E, Romén P. Generalized Burchnall-type identities for orthogonal
polynomials and expansions. SIGMA Symmetry, Integrability Geometry Methods Appl.
2018;14:072. https://doi.org/10.3842/SIGMA.2018.072.

Feldheim E. Quelques nouvelles relations pour les polynomes d’'Hermite. ] London Math Soc.
1938 Jan;s1-13(1):22-29. https://doi.org/10.1112/jlms/s1-13.1.22.

Watson GN. A note on the polynomials of Hermite and Laguerre. ] London Math Soc.
1938;13(1):29-32. https://doi.org/10.1112/jlms/s1-13.1.29.

Rahman M. A nonnegative representation of the linearization coefficients of the product of
Jacobi polynomials. Canadian ] Math. 1981;33(4):915-928. http://dx.doi.org/10.4153/CJM-
1981-072-9.

Janssen AJEM, Braat JJM, Dirksen P. On the computation of the Nijboer-Zernike Aberration
integrals at arbitrary defocus. ] Mod Opt. 2004;51(5):687-703. https://doi.org/10.1080/095003
40408235546.

Askey RA, Beatson RK, Chihara TS, et al. Report from the open problems session at OPSFA13.
Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), Special Issue on
Orthogonal Polynomials, Special Functions and Applications. 2016;12:Paper 071, 12.
Chaggara H, Koepf W. On linearization and connection coefficients for generalized Hermite
polynomials. ] Comput Appl Math. 2011;236(1):65-73. https://doi.org/10.1016/j.cam.2011.
03.010.


https://doi.org/10.3842/SIGMA.2018.072
https://doi.org/10.1112/jlms/s1-13.1.22
https://doi.org/10.1112/jlms/s1-13.1.29
https://doi.org/http://dx.doi.org/10.4153/CJM-1981-072-9
https://doi.org/10.1080/09500340408235546
https://doi.org/10.1016/j.cam.2011.03.010

	1. Introduction
	2. Preliminaries
	3. Two-dimensional contiguous relations which correspond to the linearization of a product of orthogonal polynomials
	4. Gegenbauer (ultraspherical) polynomials
	4.1. Linearization of a product of two Gegenbauer polynomials
	4.2. Linearization of a product of three Gegenbauer polynomials

	5. Hermite polynomials
	5.1. Linearization of a product of two Hermite polynomials
	5.2. Linearization of a product of three Hermite polynomials

	6. Jacobi polynomials
	6.1. Linearization of a product of two Jacobi polynomials

	7. Laguerre polynomials
	7.1. Linearization of a product of two Laguerre polynomials
	7.2. Linearization of a product of two scaled Laguerre polynomials

	Acknowledgments
	Disclosure statement
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [493.483 703.304]
>> setpagedevice




