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ABSTRACT 

When two eigenmodes are at internal resonance (IR), i.e. they 
have commensurate eigenfrequencies, their coupling strength can be 
significantly enhanced. Rich nonlinear dynamics have been shown 
at IR. In this work, we present a novel non-monotonic energy 
dissipation rate of microelectromechanical systems (MEMs) at IR. 
We demonstrate that the MEMs can selectively dissipate via two 
largely distinctive pathways, solely depending on the choice of their 
relative initial phase. Remarkably, these novel and complicated 
behaviors can be modeled by an intuitive parametric-oscillator-like 
model. Our work illuminates a path to dissipation engineering, 
frequency stabilization, and sensitivity enhancement. 
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INTRODUCTION 

Understanding energy dissipation is critical both for 
fundamental science and practical applications, such as for quantum 
information [1,2] and fundamental timing and sensing 
applications [3–5]. A fundamental picture of energy dissipation is 
that a non-equilibrium harmonic oscillator exponentially losses 
energy to a thermal bath. Based on this basic picture, many efforts 
are made to engineer the dissipation rate by either modifying the 
coupling strength with the thermal bath, such as via phononic 
bandgap structures [6], or introducing an extra coupling source, i.e. 
another bath - another oscillator [7–9]. Dissipation engineering has 
very different goals, for example, a switch demands a high energy 
dissipation rate for a short transition time [10,11], while more 
commonly, a low dissipation rate is desired for good isolation of 
oscillators from the environment which is a benefit for many 
scenarios, such as extending coherence time of quantum 
computer [12–14], reducing thermal noise for sensing and timing 
purposes, and reducing power consumption. In particular, a 
selective dissipation rate without disturbing other parameters of the 
system could be a good compromise for the different needs. 

Internal resonance (IR)  [15] is a competent candidate for 
dissipation engineering via mode coupling. Different from the 
commonly used parametric coupling of two modes with arbitrary 
eigenfrequency relationships [16,17], IR happens only when their 
frequencies have a commensurate relationship (e.g. 1:3), and 
therefore, has stronger coupling [18]. Recently, IR is intensively 
studied in the nano/micro-electro-mechanical systems (N/MEMs) 
and shows rich nonlinear dynamics, such as period-tripling 
states [19,20], and frequency stabilization in a nonlinear 
oscillator [21]. Regarding the dissipation at IR, previous works 
observed anomalous decay rates during the free ringdown of the 
coupled system. Due to the rapid energy exchange between the 
modes at IR, one mode in the free ringdown system could present 
either a faster  [8] or slower [7] dissipation rate depending on the 
system parameter. However, due to the limitation of the setup, only 

one mode of the system was controllable and measurable, largely 
limiting the understanding of these novel behaviors. Moreover, 
recent theoretical research [22] points out that by choosing proper 
initial conditions of the two modes, even richer nonlinear dynamics 
could show up, such as the non-monotonic amplitude dependence of 
decay rate and phase-dependent dissipation paths. 

Here we experimentally demonstrate a selective non-
monotonic dissipation rate of a double-clamped beam at internal 
resonance. The two modes under investigation are two eigenmodes 
of the beam with nearly commensurate eigenfrequencies (1:3) and 
strong Duffing nonlinearity. By preparing two modes at specific 
initial conditions, then releasing them and recording their free 
ringdown simultaneously, we observe that they either lock at 
internal resonance or bypass it during ringdown. Such selection can 
be controlled by tuning their initial relative phase before ringdown. 
If they lock, the high-frequency mode (mode 2) performs as a 
period-3 parametric drive to the low-frequency mode (mode 1). It 
creates a period-tripling state, which resembles the period-doubling 
states for parametric resonators [23]. Under such states, mode 2 
transfers energy to mode 1, making it experience an energy gain 
while the system still loses energy continuously. Finally, when 
mode 2’s energy is lower than the parametric drive threshold, the 
two modes unlock and dissipate with their intrinsic energy loss. 
Remarkably, the locked state can last several times longer than the 
intrinsic dissipation time of mode 1 and of the system. During this 
process, mode 1 exhibits a non-monotonic dissipation rate as a 
function of the system energy. If they bypass at internal resonance, 
we observe a reverse effect, i.e. mode 1 transfers energy to mode 2 
and shows a transient faster dissipation rate. For the two cases, the 
coupled-mode system shows distinct system dissipation rates since 
the induvial intrinsic dissipation rates of the two modes are different. 
This locking and bypass dissipation trajectories and the modes’ 
behaviors during locking can be well described by an intuitive 
period-tripling model where mode 2 acts as a parametric drive to 
mode 1. This switchable and non-monotonic dissipation rate 
induced by strong modal coupling could shed light on extending the 
coherence time and improving frequency stabilization of general 
resonators used in sensing and timing applications. 

 
SYSTEM AND MEASUREMENT 

As shown in Fig. 1(a), the system under investigation is a 
clamped-clamped beam with two side gates for driving the system 
and performing an electrical measurement. A laser vibrometer 
performs optical measurement, simultaneously. The device is placed 
in a vacuum chamber with pressure < 1 x 10-5 Torr. The lowest order 
in-plane mode (mode 1) and torsional mode (mode 2) shown in Fig. 
1(b) are of eigenfrequencies ω1/2π ≈ 64.6 kHz and ω2/2π ≈ 199.9 
kHz, respectively, with nearly commensurate relationship (ω1 ≈ 
ω2/3). Their intrinsic dissipation rates without coupling are 
significantly different with the measured value of Γ1/2π ≈ 1.5 Hz and  
Γ2/2π ≈ 3.3 Hz, respectively.  



 
 
Figure 1: (a) Measurement schematics and false-colored SEM 
micrograph of the clamp-clamp (c-c) beam MEMS. Optical and 
electrical measurements are performed, simultaneously. (b) 
Simulated mode shape of the two coupled modes.  
 

For characterization, the two modes are driven separately, 
responding with oscillating frequencies ω1,osc and ω2,osc. When the 
driving force is strong, mode 1 shows the spring hardening effect 
while mode 2 presents the softening effects, shown as the orange 
and green dots in Figure 2, respectively. The x-axis of mode 2 
(green) is scaled by a factor of three (ω2,osc/3) to compare with mode 
1. Here the two modes are driven separately, i.e. when one mode is 
driven, the other one remains mostly at thermal equilibrium with the 
bath. The dip on mode1’s spectrum (orange) corresponds to the IR 
frequency of ω1,osc = ω2/3 where the model coupling is the strongest, 
resulting in some energy transfer to mode 2 from mode 1 [24]. 

In the ringdown experiment, we drive the two modes separately 
to their initial amplitude A1,0 and A2,0, labeled as red dots. At time t 
= 0, we turn off their drive simultaneously to let them freely decay. 
Following their Duffing backbone (black arrows in Figure 2), their 
frequencies shift due to the exponentially decaying amplitude (Fig. 
3) and reach the IR when their oscillating frequency ω1,osc = ω2,osc/3 
(black dots in Figure 2). Since mode 2’s softening effect, the IR 
frequency during ringdown (black dot) is somewhere between the 
initial frequency of mode 2 (red dot) and the eigenfrequency of 
mode 2 (black dashed line). 

 
NON-MONOTONIC ENERGY DISSIPATION RATE 

At IR, the two modes either lock or bypass each other 
depending on the initial relative phase. Figure 3(a) and 3(b) presents 
the frequency and energy of the two modes for the locking case. 
Before entering IR, the two modes exponentially decay (Fig. 3b) 
with their intrinsic dissipation rates. Following their Duffing 
backbone, ω1,osc decreases while ω2,osc increases (Fig. 3a) shown as 
the black arrows in Fig. 2. After entering the locked states, ω1,osc 
locks to ω2,osc and oscillates around it, while ω2,osc is not largely 
affected by mode 1. It can be explained considering the situation 
where mode 2’s energy is much larger than mode 1. Only when the 
two modes are nearly unlocked, mode 1 and mode 2’s energies are 

comparable, and the two modes both present oscillations.  

 
Figure 2. Spectrums of mode1 and mode2 are labeled by yellow and 
green dots. The oscillating frequency of mode2 is divided by 3. The 
two modes have opposite Duffing coefficients. In ringdown 
experiments, we set the initial conditions at A1,0 and A2,0 (red dots), 
respectively, and turn off the drive simultaneously. They evolve to 
equilibrium following the black arrows. After being locked at the 
internal resonance, the black dots, Mode1 experiences frequency 
and amplitude increase shown as the short black arrow.  

The complete equation of motion for this coupled-mode system 
is written as: 

�̈�𝑞1 + 𝛤𝛤1�̇�𝑞1 + 𝜔𝜔12𝑞𝑞1 + 𝛼𝛼1𝑞𝑞13 + 3𝑔𝑔12𝑞𝑞12𝑞𝑞2 = 0 (1) 
�̈�𝑞2 + 𝛤𝛤2�̇�𝑞2 + 𝜔𝜔2

2𝑞𝑞2 + 𝛼𝛼2𝑞𝑞23 + 𝑔𝑔21𝑞𝑞13 = 0 (2) 
where 𝑞𝑞1  and 𝑞𝑞2  are the modal displacement, 𝛼𝛼1  and 𝛼𝛼2  are the 
Duffingg coefficients with opposite signs, and 𝑔𝑔12 and 𝑔𝑔21 are the 
coupling rate. As 𝑞𝑞2 ≫ 𝑞𝑞1, Eq. (2) can be simplified to a Duffing 
oscillator while Eq. (1) can be rewritten as: 
 

�̈�𝑞1 + Γ1𝑞𝑞1̇ + 𝜔𝜔12𝑞𝑞1 + 𝛼𝛼1𝑞𝑞13 = 𝑞𝑞12𝐹𝐹2(𝑡𝑡) cos[Φ2(𝑡𝑡)] (3) 
where the interaction term in Eq. (1) is regarded as a parametric 
drive with time-varying frequency ω2(t) = Φ̇2(𝑡𝑡)  and amplitude 
F2(t). Eq. (3) depicts a parametric oscillator under a period-three 
drive, i.e. ω2(t)/3 = ω1(t). Similar to parametric oscillators under 
period-two drive, the period-three drive creates period-tripling 
states  [25,26] that are degenerate with 2𝜋𝜋/3  relative phase 
difference.  

During locking, mode 2’s eigenfrequency continuously shifts 
to a higher frequency, pulling Mode 1 to a higher frequency and 
higher amplitude on its Duffing backbone (short arrow in Fig. 2). As 
a result, mode 1 shows an anomalous negative dissipation rate 
(energy gain), as shown in the inset of Fig. 3(b), while the system 
continuously loses energy. At the end of the locking state, mode 2 
is not able to provide enough parametric drive to mode 1, therefore, 
the two modes unlock from each other, and dissipate again 
following their own intrinsic dissipate rate. The locking state length, 
or coherent time, depends on the initial energy of the system. 
Remarkably, the locking state can last up to ≈ 0.26  s which is 
around 3 times of the intrinsic dissipation time of mode 1 (1/Γ1≈
0.10 s) and 5 times of the system dissipation time (1/Γ2≈ 0.05 s). 

The dynamics of the system can be fully modeled by the Eq. 
(1-2). However, here we only focus on its long-term evolution 
(~1/Γ) and ignore the time-averaged interaction energy. Under such 



assumptions,  intuitively, the energy loss by mode 2 equals the 
energy gain by mode 1 after excluding their intrinsic losses: 

 
Figure 3. Oscillating frequencies and energy of the two 
locked modes are presented in (a) and (b), respectively. The 
yellow and green dots correspond to mode1 and mode2, 
respectively. The inset of (b) shows the measured relative 
energy change rate (effective -Γ1), illustrating non-
monotonic and negative dissipation rate (energy gain) during 
locking. The bypass case is shown in (c). A rapid energy loss 
is observed for mode 1 at internal resonance, colored gray.  

𝑑𝑑𝐸𝐸1
𝑑𝑑𝑡𝑡 = −𝛤𝛤1𝐸𝐸1 + 𝑃𝑃 (4) 
𝑑𝑑𝐸𝐸2
𝑑𝑑𝑡𝑡 = −𝛤𝛤2𝐸𝐸2 − 𝑃𝑃 (5) 

where 𝐸𝐸1 ∝ 𝑞𝑞12 and 𝐸𝐸2 ∝ 𝑞𝑞22 are the energy of mode 1 and mode 2, 
𝑃𝑃 is the energy exchange rate. As mode 1 amplitude is nearly a 
constant, P ≈ 𝛤𝛤1𝐸𝐸1 can be considered a constant. The black lines in 
Fig. 3(b) shows the fitted 𝐸𝐸1 and 𝐸𝐸2 with only one fitting parameter 

P.   
For the bypass case, except for a short rapid energy decay of 

mode 1 at the IR (gray area in Fig. 3(c)), the two modes continuously 
exponentially decay with their intrinsic loss rates. The lock or 
bypass depends on the relative phase between the two modes at the 
initial state. We can select the dissipation path of the system by 
setting their initial phase. 

Intuitively, the lock or bypass is decided by the energy transfer 
direction at IR. The direction is governed by their relative phase. For 
example, if mode 2’s phase φ2/3 is ahead compared to φ1, the energy 
flows from mode 2 to mode 1 and pumps mode 1. Their oscillating 
frequencies can be maintained at IR although both slowly increase.  
On the contrary, if mode 1’s phase leads, it transfers energy to mode 
2 at IR which makes their frequencies bypass IR quickly.   
 

 
Figure 4. Relative phase of mode1 (φ1) and mode2 (φ2) in 7 
repeating experiments. φ1- φ2/3 exhibits discrete values of (0, 4π/3, 
2π) at period tripling states. 

To demonstrate the period-tripling model, we repeat the same 
ringdown experiment, and we find the system exhibits phase-
locking with discrete relative phase φ1- φ2/3 = n×2π/3 shown in 
Figure 4 where n is an integer. It is consistent with the period-
tripling interpretation. The discrete relative phase resembles the 
n×2π/2 period-doubling states for parametric oscillators. 

 
SUMMARY 

In conclusion, we have demonstrated selective energy 
dissipation pathways of a coupled system at the internal resonance 
(i.e. two modes with 1:3 commiserate eigenfrequencies). By setting 
the relative initial phase between the two coupled modes, the two 
modes can either enter the designated phase-locking state or bypass 
it during their free ringdown. In the phase-locking path, the coupling 
from the high-frequency mode (mode 2) acts as a period-three 
parametric drive to the low-frequency mode (mode 1), locking the 
phase and making φ1- φ2/3 nearly constant. During the phase-
locking, the frequency of the two modes varies with their decaying 
amplitude along with their Duffing amplitude-frequency 
relationship while maintaining the 1:3 internal resonance 
relationship. Since the two modes have opposite Duffing 
coefficients and mode 2’s energy is much larger than mode 1, 
“slave” mode 1 exhibits a frequency increase together with “master” 
mode 2, resulting in an energy gain during the locking. It makes 
mode 1 presents an anomalous non-monotonic energy dissipation 
rate during the ringdown. Remarkably, the locking time can be 



nearly 6 times longer than the system dissipation time scale 1/Γ2 and 
3 times longer than the intrinsic dissipation time scale 1/Γ1 of mode 
1 itself. The findings of phase-locking states and selective 
dissipation rates are useful for energy dissipation engineerings, such 
as for fast switches or low-dissipation timing/sensing devices. The 
proposed intuitive period-tripling model provides a picture to 
understand the complicated dynamics in coupled nonlinear 
resonators.  
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