
1

Survey of Graph Neural Networks and Applications
Fan Liang∗, Cheng Qian†, Wei Yu†, David Griffith‡, and Nada Golmie‡

∗Sam Huston State University, USA
Email: fxl027@shsu.edu
†Towson University, USA

Emails: cqian1@students.towson.edu, wyu@towson.edu
‡National Institute of Standards and Technology (NIST), USA

Emails: {david.griffith, nada.golmie}@nist.gov

Abstract—The advance of deep learning has shown great po-
tential in applications (speech, image and video classification). In
these applications, deep learning models are trained by datasets
in Euclidean space with fixed dimensions and sequences. Nonethe-
less, the rapidly-increasing demands on analyzing datasets in
non-Euclidean space requires additional research. Generally
speaking, finding the relationships of elements in datasets and
representing such relationships as weighted graphs consisting
of vertices and edges is a viable way of analyzing datasets in
non-Euclidean space. However, analyzing the weighted graph-
based dataset is a challenging problem in existing deep learning
models. To address this issue, graph neural networks (GNNs)
leverage spectral and spatial strategies to extend and implement
convolution operations in non-Euclidean space. Based on graph
theory, a number of enhanced GNNs are proposed to deal with
non-Euclidean datasets. In this study, we first review the artificial
neural networks and GNNs. We then present ways to extend deep
learning models to deal with datasets in non-Euclidean space
and introduce the GNN-based approaches based on spectral and
spatial strategies. Furthermore, we discuss some typical Internet
of Things (IoT) applications that employ spectral and spatial
convolution strategies, followed by the limitations of GNNs in
the current stage.

Keywords—Graph Neural Networks (GNNs), Deep Learning,
Survey, Applications.

I. INTRODUCTION

THE artificial neural network is a viable technique to carry
out the data-driven modeling and analysis of complex

systems, which can be further used to improve their effi-
cient and intelligent monitoring, control, and management.
The existing neural networks (Convolutional Neural Networks
(CNNs) [1], Recurrent Neural Networks (RNNs) [2], etc.) have
been devoted to different problem domains (IoT, etc.), support-
ing a variety of tasks (prediction, classification, identification,
tracking, co-design, and data generation, among others [3],
[4], [5], [6], [7], [8], [9]). Neural networks can improve the
efficiency of data analytics and find the hidden relationships
in datasets collected from complex and dynamic systems by
carrying out feature extraction from the investigated datasets.
Because of the rapid development of computing capacity and
optimized architectures and models, neural networks have
shown great ability to process large complex data [10], [11],
[12]. For example, CNNs deal with image classification, video,
text recognition, and audio identification by treating all the
training data as data in Euclidean space. For instance, in image
classification, CNNs represent an image as a matrix with fixed

dimensions, a typical way of processing datasets in Euclidean
space. Then, CNNs leverage a fixed filter to extract the features
in the image so that meaningful local features can be identified
and aggregated, which can be further used to conduct image
recognition and classification.

Although CNNs and RNNs have been successful on data in
Euclidean space, how to deal with data in non-Euclidean space
remains an unsolved problem. For instance, social media and
e-commerce applications are typical scenarios that generate
graph data as typical examples of data in non-Euclidean space.
Social media and e-commerce applications enable individuals
to provide recommendation and rating information. Those
applications analyze multiple data sources (e.g., user data,
market data) to provide precise information to meet individual
needs. As the data from different users and markets is dy-
namic and associated with different dimensions, it is hard to
formalize such data in Euclidean space. Instead, such data can
easily be represented by a graph structure, but existing CNNs
and RNNs cannot handle data with graph structure. Thus,
the complexity, high diversity, and irregularity of graph data
pose significant challenges to existing neural networks. Note
that the data in non-Euclidean space has no fixed structure,
and the relationship between unordered nodes changes rapidly
over time. Thus, the convolution operation of existing neural
networks cannot extract features from data in non-Euclidean
space. For example, a CNN uses fixed convolutional kernel
“filters” to extract features from 2D or 3D datasets with static
structures. Nonetheless, it is impossible to use fixed filters to
extract features from non-Euclidean space datasets since the
data in non-Euclidean space has dynamic structures. Thus, it
is necessary to design a new type of neural network to process
the non-Euclidean space data.

The graph neural network (GNN), as a new type of neural
network, has been proposed to extract features from non-
Euclidean space data. Motivated by CNN, a GNN enables
the use of a scalable kernel to perform convolutions on non-
Euclidean space data. To achieve the convolution operation
in non-Euclidean space, Sener et al. [13] proposed an active
learning scheme, which enables the convolutional kernel to
select the appropriate shape by itself so that the dynamic shape
of non-Euclidean space data can be fit. Based on the active
learning scheme, Bronstein et al. [14] leveraged a variable
convolutional kernel to extract features from non-Euclidean
space data, which is data-driven convolution. Some existing

2

studies survey different variants of GNN [15], [16], [17].
There are a number of new GNN models and approaches
that have been investigated in the past few years, such as
spatial convolution approaches [18], [19], which were not
covered by the existing surveys on GNN. The study [20]
investigated the existing efforts on optimizing hardware and
software to improve the GNN performance. In contrast, our
study focuses on introducing the development of GNN that
extends the convolutional approaches from Euclidean space
to Non-Euclidean space. We detail the existing GNN-based
approaches using spectral and spatial strategies. Furthermore,
we review and discuss the efforts on applying GNN to some
typical IoT systems in energy, transportation, and industrial
domains.

To summarize, our contributions are as follows:

• We introduce the background of artificial neural networks
in detail and review the development history. Based
on the limitation of traditional artificial neural network
models (RNN, CNN, etc.) in non-Euclidean space data,
we discuss the issues of using RNNs and CNNs to
analyze non-Euclidean space data in detail. We also
clarify the motivations for expanding the neural networks
from Euclidean space to non-Euclidean space data.

• We survey the existing strategies to analyze non-
Euclidean space data. We present a comprehensive review
of GNN models that can deal with non-Euclidean space
data. We introduce the strategies from the spectral and
spatial domains and discuss their pros and cons. We also
summarize the existing studies and research efforts on
GNN and discuss representative techniques.

• As IoT is one potential application for GNN, we review
some existing studies and present some examples of
leveraging GNN in different IoT systems such as carrying
out traffic prediction in the smart transportation system,
electricity prediction in the smart grid (e.g., power outage,
solar irradiance), and resource management in industrial
IoT (IIoT) systems. We also discuss some limitations
of GNNs from the universality and learning complexity
aspects.

Note that there are some existing GNN survey papers [16],
[17], [20], [21], [22]. For example, Zhang et al. [21] fo-
cused on the generalization ability of graph-based models.
Wu et al. [22] conducted a comprehensive review of existing
GNN models and proposed a model structure-based taxonomy.
Likewise, Abadal et al. [20] reviewed the existing efforts
on optimizing hardware and software from the computing
aspect to improve the performance of GNNs. In contrast,
our study focuses on introducing the development of GNN
that extends the convolutional approaches from Euclidean
space to non-Euclidean space. We detail the existing GNN-
based approaches and categorize the existing GNN model
into spectral and spatial strategies that depend on training
data transformation. Furthermore, we review and discuss the
efforts on applying GNN to some typical IoT systems in
energy, transportation, and industrial domains, as well as the
limitations of GNNs.

The remainder of this paper is organized as follows: In

Section II, we discuss the background and basic concepts
of artificial neural networks and GNNs. In Section III, we
focus on the spectral strategy for convolution operations in
graphs. Specifically, we introduce the spectral graph theory
and introduce the detail of spectral convolution operations. We
then review and summarize the existing efforts on spectral
GNN. In Section IV, we focus on the spatial strategy for
convolution operations in graphs. Specially, we begin with the
introduction of spatial graph convolution and review spatial
GNNs. In Section V, we introduce some typical GNN ap-
plications in IoT, including transportation traffic prediction,
electrical energy prediction, and resource allocation in IIoT.
In Section VI, we discuss the limitations of the GNN model
with respect to universality and learning complexity. Finally,
we conclude the paper in Section VII.

II. BACKGROUND

In this section, we first review the basic concepts of artificial
neural networks and present the fundamentals of GNNs.

A. Artificial Neural Networks

Artificial neural networks leverage the concept of biological
neurons so that complex computing tasks (recognition, classi-
fication, etc.) can be carried out. Artificial neural networks are
based on weighted and directed graphs, whose vertices can be
considered as neurons and whose edges can be considered as
synapses that connect neurons. In each neuron, transcendental
functions are applied to compute and aggregate the weighted
sum of outputs from the previous neurons, which pass the
results (or experience) to nearby connected neurons. By doing
this, the results from different neurons can be aggregated
and synthesized to produce complex outputs such as image
classifications.

Since the 1940’s, artificial neural networks have experienced
several cycles of failures and revivals. For instance, in 1961,
Rosenblatt et al. [23] proposed the fundamental concept of
perceptrons, which are the foundation of artificial neural
networks. Because of limited computing ability, it was hard
to implement complex neural networks at that time. Then, in
the 1980’s, Hopfield et al. [24] first implemented a neural
network on emergent collective physical computing nodes.
Motivated by Hopfield’s work, Sejnowski et al. [25] proposed
the Boltzmann machine, which leverages stochastic binary
processing units to solve interactions of different neurons
in nonlinear networks. This effort significantly reduces the
time complexity for training a neural network and introduces
the slow-incremental learning to overcome forgetting. Fur-
thermore, Werbos et al. [26] proposed the backpropagation
algorithm, which iteratively optimizes the weights and biases
for recurrent systems and improves the performance of neural
networks.

Increases in computing power resulted in new efforts to
implement neural networks in the 1990s. As an example,
Pineda [27] generalized the backpropagation algorithm to
RNNs and leveraged the optimized backpropagation algorithm
to improve the computational ability on non-linear functions.
McEliece developed [28] conducted the theory of information

3

and coding, which provides the mathematical framework to
support simulating neural network by computer. After that,
more studies focused on creating complex regression and
classification functions. Specifically in the statistics area, Long
[29] designed a functional nonlinear model that involves
hundreds of variables. Also, the Deep Neural Network (DNN)
and CNN extend the data from the time domain to the
spatial domain, which leverages the convolutional kernel to
extract features from two dimensions and three dimensions
datasets [30], [31].

B. Graph Neural Networks (GNNs)

In the following, we review GNNs. Specifically, we first
introduce the graph dataset, which is typical non-Euclidean
space data. We then introduce the motivations of processing
the data in non-Euclidean space. Finally, we overview the road
map of GNN.

Graph datasets: A graph is a data structure in non-
Euclidean space that consists of a set of objects (vertices)
and relationships between these objects (edges). Since the
graph can express complex and dynamic data, especially
the logical relationships between sets of time-varying data,
the graph structure can be used to represent datasets with
dynamic dimensions. Examples include social network data,
microscopic molecular structure data, skeletal motion data, and
others [32]. Those datasets cannot be modeled in Euclidean
space. Fig. 1 illustrates the differences between Euclidean and
non-Euclidean data structures. In general, the Euclidean data
has fixed dimensions and input data must be in a specific order
that is determined by those dimensions. In contrast, the non-
Euclidean data has dynamic dimensions and input data may
not in a particular order.

Fig. 1: Examples of Euclidean (left) and non-Euclidean (right)
data structures, with subsets indicated by the colored regions.

Motivations: In some real-world scenarios, the data cannot
be mapped to Euclidean space, which is defined by Rn,
meaning that Euclidean space data can be modelled and
represented as a set of points in a n-dimensional linear
space. For example, to present an image, we define x and
y coordinates to represent the location of each pixel, and a z
coordinate to represent the intensity in grayscale images, or a
set of z coordinates to represent the intensity of each of the
red-green-blue (RGB) or cyan-magenta-yellow-black (CMYK)
values in color images. Thus, the image or sets of RGB or
CMYK color image components can be considered data in

3-dimensional Euclidean space. However, it is hard to use n-
dimensional linear space to encode some data such as social
network data because of the dynamic dimensions. If we map
the data to Euclidean space, important information (e.g., the
relationship between data entries) will be lost. Furthermore, it
is hard to keep the information by adding more dimensions
since the relationship between data entries is dynamic. Thus,
it is necessary to extend the set of data structures that we use
for machine learning from Euclidean spaces to non-Euclidean
spaces.

The non-Euclidean space data has dynamic dimension, but
the typical neural network (e.g., CNN) can only define a
fixed convolution kernel to aggregate the features. Thus, CNNs
cannot handle non-Euclidean space data. To deal with non-
Euclidean space data, GNNs can extract and combine features
of multi-scale local spatial data with high representation ca-
pabilities, which extends the deep learning models to present
non-Euclidean space data. The key benefits of CNNs (e.g.,
the local connection, shared weights, and multi-layer usage)
are inherited by GNNs. These characteristics are important
for solving problems in graph-based applications. As a unique
non-Euclidean data structure, graphs have drawn attention to
node classification, link prediction, and cluster analysis [25].
Due to high interpretability, GNN has recently become a
widely used graph analysis method.

Road map of GNN: Fig. 2 presents the road map of
GNNs, which is inspired by CNNs. Similar to CNN, in order
to aggregate data features, GNN employs the convolution
process. The difference between GNNs and CNNs is that
a GNN processes convolution in the graph while a CNN
processes discrete convolution in Euclidean space data. The
computational complexity of ordinary convolution is defined
by the number and the size of convolutional kernels. The non-
Euclidean space data is high dimensional data. As the number
of dimensions increases, the number of convolutional kernels
grows, which leads to the significant increase of computation
complexity. In addition, using a fixed size convolutional kernel
could result in the loss of critical information of non-Euclidean
space data. Traditional discrete convolution cannot maintain
translation invariance on non-Euclidean space data. Since the
data structure is fixed in Euclidean space data, the number of
neighbors is the same for each data element. Thus, discrete
convolution can leverage a fixed-size convolution kernel to
aggregate the features. However, for non-Euclidean space data,
as the number of adjacent vertices of each vertex in the
topological graph could be different, it is hard to use a fixed-
size convolution kernel.

To deal with non-Euclidean space data, one possible way
is to leverage dynamic kernel size to adapt to the data.
Chollet et al. [33] proposed a depth separable convolution,
which specifically focuses on solving the dynamic dimension
problem of non-Euclidean space data. Compared to the tradi-
tional convolution, the depth separable convolution employs
two different sizes of convolutional kernels. It first leverages
a convolutional kernel in larger size to extract the features.
Then, it pushes the extracted features to pass a smaller size
convolutional kernel so that the features are aggregated. The
dynamic convolutional kernel size is capable of handling the

4

Fig. 2: Road map of GNN evolution

dynamic dimension of data.
Another possible way is to increase the size of convolutional

kernels, which can increase the receptive fields of convolu-
tional kernels. By doing this, the features can be aggregated
as much as possible. In order to increase the receptive fields of
convolutional kernels, the dilated convolution is proposed in
several studies [34], [35], [36]. The benefit of dilated convo-
lution is keeping the actual size of convolutional kernels (for
the sake of computation complexity), but increase the receptive
fields. By setting different dilated rates, the dilated convolution
can significantly increase the ability of high dimensional data
classification.

However, the aforementioned approaches have some limita-
tions. First, it needs to adjust either the kernel size or dilated
rate manually based on the characteristics of the data, such as
the level of connectivity in the graph. Thus, the user is hard
to create a generic network model to fit different datasets.
Second, it is still much difficult to handle the complex graph
data structure as it is hard to apply the weight information to
network models. Thus, GNNs were proposed by combining
graph theory and convolution so that graph data can be
processed effectively [23]. There are two main strategies to
implement a GNN. One strategy relies on spectral graph theory
that converts data from spatial domain to spectral domain for
further processing [33]. The other strategy does not rely on
graph theory and directly involves the convolution process in
the spatial domain [33]. We will discuss both strategies in the
following two sections.

III. SPECTRAL CONVOLUTION STRATEGY

In this section, we describe the spectral convolution strategy.
Specifically, we first briefly describe the fundamentals of
spectral convolution. We then survey the existing GNN models
that leverage the spectral convolution strategy. Furthermore,
we categorize and compare the existing GNN models. Table I
lists the key notations in the paper.

A. Spectral Graph Theory

To address the issue that CNN cannot process convolution
on the graph, Shuman et al. [37] proposed a graph signal
processing (GSP)-based scheme using spectral graph theory.
The GSP defines the Fourier Transform on the graph. Further,

TABLE I: Notations

Symbols Descriptions
λl The lth eigenvalue of the Laplacian matrix
U Feature matrix
G Graph with V vectors and E edges
D Degree matrix of vertices (diagonal matrix)
A Adjacency matrix of the graph

F1(w) Spectral input signal
F2(w) Spectral convolution kernel
gθ Self-learning parameter
Λ Diagonal matrix
X N dimensional vector
⋆G Graph convolution
Λ̃ Adjustable eigenvector matrix

Tk(x) Chebyshev polynomial obeys
K Number of neighbors
α Attention factors
h Aggregation result of GAT

on the spectral domain, GSP defines the convolution on the
graph. Based on the GSP, Bruna et al. [38] proposed the
Spectral Convolution Neural Network (SCNN) to aggregate
the features from graphs, which is the initial graph neural
network. Thus, the spectral graph theory is fundamental to
the GNN.

The discrete Fourier transform is applied when converting
graphs from spatial domain to spectral domain. This process
denoted as the graph Fourier transform. Before applying dis-
crete Fourier transform, a set of orthogonal bases for vertices
is required. We first perform a spectral decomposition of the
Laplacian matrix, which is the difference of the degree matrix
(whose n-th diagonal element is the degree of the n-th vertex)
and at adjacency matrix (whose (i, j)-th element is 1 if there
is an edge between vertices i and j). This results in n linear
independent eigenvectors that form an orthogonal basis. The
graph Fourier transform projects the orthogonal bases into
the orthogonal space, which is equivalent to expressing the
arbitrary vector defined on the graph as a linear combination
of the eigenvectors of the graph’s Laplacian matrix.

The standard graph Fourier transform can be represented by

GF [f] (λl) = f̂ (λl) =
∑N

i=1 f(i)ul(i). (1)

Here, f is a function that maps the vertices of the graph to a
number on the real line. Also, λl represents the lth eigenvalue
of the Laplacian matrix, and ul(i) represents the ith element
of the lth eigenvector. The graph Fourier transform (discrete
Fourier transform) is an inner product operation for λl and
ul. Then, applying matrix multiplication, on Equation (1), as
the matrix expression of the graph Fourier transforms. After
simplification, the matrix multiplication can be represented by
Equation (2). The graph Fourier transform is equivalent to the
inner product of transpose matrix of feature matrix and N -
dimensional vector as

f̂ = UT f. (2)

5

Here, the feature matrix U can be computed by the Laplace
matrix, which is defined by L = D − A. Denote graph as
G = (V,E), L as Laplace matrix, D is the degree matrix of
vertices (diagonal matrix), and A as the adjacency matrix of
the graph. Fig. 3 illustrates the example of those matrices for
a graph. Then, based on the Laplace matrix L, we can solve
the feature matrix U , which is the Eigen decomposite.

B. Spectral Graph Convolution

After reviewing the spectral graph theory, we now intro-
duce the spectral graph convolution. The standard convolution
mechanism in spectral graph theory can be implemented using
the graph Fourier transform, because of the duality between
convolution and multiplication that is similar to what we
observe with the standard Fourier transform:

F [f1(t) ⋆ f2(t)] = F1(w) · F2(w), (3)

where, we denote f1(t) as the spatial input signal and f2(t)
as the spatial convolution kernel. It also defines F1(w) as the
spectral input signal and F2(w) as the spectral convolution
kernel. Also, denote “⋆” as convolution operation and “·” as
product operation. Equation (3) shows the implementations of
spectral graph convolution. First, it converts the spatial signal
to spectral domain and obtains the product of spectral signal
and the spectual convolution kernel. Then, we can take the
inverse graph Fourier transform of the product of spectral
signal and convolution kernel to get the final result in the
spatial domain.

Fig. 3: Example of degree, adjacency, and Laplacian matrices
for an undirected graph

As aforementioned, the convolution operation in the spatial
domain has the requirements of sequence order and fixed
dimensions, which raises difficulties for processing graph data.
For example, given the convolution kernel size, 3 × 3, we
define the center of the kernel as the central element and
the surrounding neighbors as the receptive field. In the spatial
domain, the kernel size is fixed. Thus, for each central element
of input data, a 3×3 kernel has eight neighboring elements for
convolution operation, indicating that the size of the receptive
field must be fixed. However, in graphs, the number of neigh-
bors is uncertain; thus, it is hard to identify the fixed size of the
receptive field. In addition, elements are not homogeneously

arranged in graphs. Thus, it is difficult to assign a single value
to the length of the step of convolution kernel. However, in
the spectral domain, we can use the adjustable component
of each frequency to deal with the dynamic receptive field.
The adjustable component changes along with the receptive
field changes so that a suitable receptive field for the spectral
domain dynamic situation can be established.

C. Typical Spectral GNN

In the following, we introduce some typical spectral GNN
models and review the existing studies that leverage the
spectral convolution strategy.

1) Spectral CNN: Bruna et al. [38] proposed the spectral
graph convolution network. It uses the self-learning diagonal
matrix instead of the spectral domain convolution kernel. They
modified Equation (3) and proposed a self-learning parameter
set gθ. The convolution kernel can be represented by

X ⋆G gθ = UΛUTX, (4)

which is the discretization of the anisotropic convolution.
Here, X ∈ RN is a N dimensional vector. The ⋆G represents
graph convolution. Also, U is a matrix that includes eigen-
vectors and Λ is a diagonal matrix. In this study, the authors
leveraged the self-learning diagonal matrix to calculate the
eigenvalues of vertices.

There are some limitations of spectral CNN. The first is the
high time complexity. In a graph, the feature decomposition
of the Laplacian matrix needs to be performed on all the
elements. In addition, we have to compute to product of U ,
Λ, and UT in each forward propagation. The time complexity
is high, especially for some large-scale graphs. Furthermore,
the number of parameters of the convolution kernel depends
on the number of vertices. Thus, this approach is not suitable
for a graph that consists of a large number of vertices.

2) ChebNet: In order to reduce the computational (or
time) complexity, Defferrard et al. [39] proposed a Chebyshev
polynomial as a filter so that the time complexity of the
convolution kernel can be reduced by leveraging polynomial
fitting. The key idea of this scheme is to define the Chebyshev
polynomial filter. As we discussed before, the time complexity
of Equation (4) is high. The time complexity of the eigenvector
matrix U is O(n2). To reduce the time complexity, Hammond
et al. [40] proposed a polynomial approximation for the self
learning parameter set, gθ, which is given by the truncated
Chebyshev polynomial expansion:

gθ = gθ(Λ) ≈
∑K−1

i=0 θiTk(Λ̃). (5)

Here, Λ̃ is an adjustable eigenvector matrix, which is adjusted
to satisfy the requirement of truncated Chebyshev polynomial
expansion. Also, θi is the Chebyshev coefficient and the
Chebyshev polynomial obeys the recursion relation Tk(x) =
2xTk−1(x)− Tk−2(x).

Compared to spectral CNN, the ChebNet expression is K-
localized and has local connectivity as it is a Kth order
polynomial. In addition, the ChebNet expression identifies the
longest step of the convolution process, which is K distance
from the center element. The time complexity of Tk(Λ̃) is

6

O(|E|), which has is proportional to the number of edges
E. Thus, the overall time complexity of the expression is
O(K |E|). When the input data is a sparse graph, it can sig-
nificantly reduce the time complexity, which is much smaller
than O(n2).

3) Graph Convolution Network: Based on the spectral
convolution and ChebNet model, Kipf et al. [41] proposed
Graph Convolutional Networks (GCNs), also named as first-
order ChebNet. The GCN is a basic GNN model, and a number
of studies are based on GCNs to develop new variations
of GNN models. There are two key contributions in [41].
First, compared to the schemes that directly operate on graph
structure data [38], [39], a simple approximate layer based
on the first-order approximation was proposed so that the
calculation could be simplified. Second, the graph structure
neural network model was validated for conducting quick and
scalable processing of the semi-supervised classification in
graph related data. The efficiency and accuracy of the proposed
scheme were validated on some existing public datasets.

Fig. 4: GCN model

Fig. 4 illustrates the structure of GCN. As shown in the
figure, the input is an entire graph. In Convolution Layer 1, a
convolution operation is performed on the neighbors of each
node, and the node is updated with the result of convolution.
Then, the GCN applies the activation function (e.g., ReLU)
to the convolution results. Following the activation layer, the
output is pushed into another convolution layer and activation
layer, which is the second loop. After that, the process is
repeated until the output approaches the accuracy requirement.
Thus, the GCN can increase the depth of convolution layers
so that the accuracy requirement for each specific case can be
satisfied. The GCN has a local output function, which is used
to convert the state of the node (including the hidden state and
the node feature) into the task related tags.

In general, there are two different tasks for a GCN. The
first is node level task, such as the classification of social
media accounts, which focuses on the classification of different
nodes. Each social media account can be a node in the graph.
Classifying the account is equivalent to classifying nodes in
the graph. Second is graph level task, such as the classi-
fication of compounds, which focuses on the classification
of different graphs. The compound can be formalized as a
graph. Classifying the compound is equivalent to classifying
the graph. Convolution operations focus on updating the
hidden state of individual nodes, which extract the features

of nodes [42], [43], [44]. In order to aggregate the features
for the entire graph, the GCN employs differentiable pooling
after convolution layers [45], [46]. By doing this, the GCN can
extract node features and leverage soft clustering and node
features to compute the graph representation. Based on the
graph representation, the features for the entire graph can be
derived.

4) Summary of Existing Spectral Convolution Schemes:
In Table II, we summarize some existing studies, which are
based upon the spectral convolution strategy. We compare the
task, input parameters, input data, number of convolutional
layers, performance, and time complexity for existing studies.
In the table, A represents the adjacency matrix, X represents
the eigenvalues of vertices, and Xe represents the eigenvalues
of edges.

IV. SPATIAL CONVOLUTION STRATEGY

In this section, we present spatial convolution strategy. In
particular, we first present the principle of spatial convolution.
Then, we review the existing GNN models that leverage spatial
convolution. Finally, we summarize the existing studies that
adopt the spatial convolution strategy.

A. Spatial Graph Convolution

There are some issues when we use the spectral graph
convolution strategy. First of all, the spectral graph convolution
strategy is not suitable for directed graphs. Although most real-
world data can be formalized as undirected graphs, some traffic
data or routing data can be formalized in directed graphs,
which do not allow use of the graph Fourier transform and can-
not convert spatial information to spectral domain. In addition,
due to the immutability of Laplacian’s feature matrix U , the
structure of the graph cannot be changed during the training
process (e.g., the weight of edges, adding or deleting nodes).
Nonetheless, graphs are highly dynamic in real applications,
including social network data. Finally, the spectral CNN is
computationally intensive and time-consuming. Although the
ChebNet and GCN reduce the time complexity, they only
handle a small number of parameters, which is a limitation
of ChebNet and GCN. Thus, there are some studies focused
on the spatial convolution strategy, which tends to transform
the non-Euclidean space data to Euclidean space data so that
the convolution can be carried out directly. We discuss some
of these studies in the next sub-section..

B. Typical Spatial Graph Neural Networks

We now introduce four different neural networks that adopt
the spatial convolution. Table III lists the features of each
neural network.

1) Graph Neural Network: The GNN transforms the graph
to Euclidean space data and then applies the general con-
volution to the data. There are three steps to successfully
complete convolution in GNN. First, it identifies the neighbor
field of each node. Since the neighbor nodes are dynamic in
non-Euclidean space data, it must identify the neighbor field
before defining the convolution kernel. Then, it defines the

7

TABLE II: Summary of Existing Spectral convolution approaches

Convolution schemes Task Input parameters Input data No. of layers PERF Time complexity
Spectral CNN [38] Classification A,X MNIST - 98.7% O(n3)

SyncSpecCNN [47] Identification A,X Annotations 10 84.74% O(n3)

SyncSpecCNN [48] Prediction A,X,Xe DBLQ network
data

- - -

SyncSpecCNN [49] Classification A,X Yeast dataset - 56.0% -

SSF-CNN [50] Classification A,X,Xe HS, CAVE 3 - O(n2)

Graph CNN [51] Identification A,X MNIST - 94.23% O(n3)

GCN [52] Prediction A,X,Xe MINI 2 77% O(n2)

SEMI-Supervised GCN [41] Classification A,X,Xe Cora, Citeseer 2 70.3% O(K |E|)
GCN [53] Classification A,X Protein data - 84.6% -

Multi-graph GCN [54] Classification A,X,Xe Bunny mesh - 93.58% -

Local SGCN [55] Classification A,X MNIST 2 95.74% O(n2)

S-GCN [56] Classification A,X,Xe Reddit, Flickr - 96.8% O(nr)

S-GCN [57] Classification A,X,Xe Cora, Citeseer 6 83.12% O(K |E|)
DSGCN [18] Classification A,X ENZYMES 7 78.39% O(n2)

Semi-supervised GCN [58] Classification A,X Cora, Citeseer 2 74.5% -

AGCN [59] Prediction A,X,Xe Delaney 2004 7 79.4% O(d2)

Multi-scale GCN [60] Classification A,X,Xe Cora, Citeseer - 79.2% O(n2)

EGCN [61] Classification A,X,Xe RF, Weave 2 82.0% O(n2)

Functional Brain Network [62] Classification A,X,Xe ABIDE 10 90.0% O(n2)

Text Level GCN [63] Classification A,X R52 - 94.6% -

Edge-Labeling GCN [64] Classification A,X miniImageNet - 76.4% O(n2)

Graph WNN [65] Classification A,X Cora, Citeseer 16 82.8% O(npq)

A2GNN [66] Classification A,X HDM05,LSC 5 98.6% -

StemGNN [67] Identification A,X,Xe COVID-19 - 91.74% O(n2d)

PA-GNN [68] Defense
malicious attack

A,X Reddit 2 79.57% O(n2)

Quantum GNN [69] Classification A,X Kolmogorov-
Smirnoff

- 95.3% O(n2)

Recurrent Multi-GNN [70] Classification A,X,Xe Synthetic dataset - 99.3% O(mn)

FEW-SHOT GNN [71] Classification A,X ILSVRC-12 5 99.2% O(n2)

Transferability GNN [72] Classification A,X Cora - 76.5% O(1√
minn1,n2

)

Line-GNN [73] Classification A,X Stochastic block
mode

30 93.7% O(n2)

Spectrum DNN [74] Classification A,X UMD Wikipedia
dataset

- 82.61% O(n2)

Spectral marching [75] Identification A,X Image - 96.1% O(n2K2)

TGC-LSTM [76] Prediction A,X,Xe INRIX traffic 11 97.43% O(n2)

Graph-ARMA [77] Classification A,X,Xe MNIST, 20news 3 91.5% O(n2)

GCF [78] Prediction A,X,Xe ML-10M,
Taobao

3 79.6% -

Spectral Clustering [19] Classification A,X,Xe Cora, Citeseer - 98.7% O(n3)

LB spectral filtering [79] Classification A,X,Xe ADNI 5 91.1% -

GSDN-F, GSDN-EF [80] Classification A,X,Xe Cora, CiteSeer - 95.7% O(n2)

DAGN [81] Classification A,X,Xe Cora, Citeseer 24 85.4% O(|E|)
Graph Hashing network [82] Classification A,X,Xe MNIST 6 84.2% O(dn2)

KM2A arrays [83] Classification A,X cosmic-ray data - 95.3% O(K |ε|)
CayleyNets [84] Classification A,X,Xe MNIST 2 99.18% O((k + 1)rn)

Median Spectral Graph [85] Identification A,X Attributed
Graphs

- 83.2% O(n2)

GfNN [86] Classification A,X Cora, Citeseer 2 80.9% O(n2)

GIN [87] Classification A,X MUTAG - 91.6% -

LNPP/SBMF [88] Classification A,X Social network - 96.8% -

Learning Graph [89] Classification A,X,Xe Chemical molec-
ular dataset

2 86.4% O(dm)

LNN with Graph Sparsity [90] Classification A,X MNIST 5 96.1% -

GeniePath [91] Classification A,X,Xe MINI 18 96.5% O(|ϵ|)
Heterogeneous GAN [92] Classification A,X,Xe DBLP, ACM - 84.76% O(VΦF1F2K +

EΦF1K)

8

TABLE III: Example of spatial graph neural networks

Convolution approach Neighbor node selection Order of neighbors Kernel parameters
GNN Random walk Ordered Not shared

GraphSAGE Uniform sampling Disordered Shared

GAT First-order neighbor node Disordered Shared

PGC Sampling function Determined by weight functions Determined by weight functions

field of the convolution kernel. Finally, the inner product for
corresponding elements in the field and convolution kernel
is performed, which is similar to convolution in Euclidean
space. Fig. 5 illustrates an example of convolution in Euclidean
space which adopts a 3 by 3 filter to abstract features from
the original image. In addition, Fig. 6 shows an example of
convolution by using GNN. It clearly shows that the filter
has no fixed structure in the convolutional process of non-
Euclidean datasets. The structure of the filter depends on the
neighbor field.

Fig. 5: Convolution operation on non-Euclidean space data

Fig. 6: Convolution operation on Euclidean space data

As we discussed before, determining the neighbor field
is one important step. To this end, Hechtlinger et al. [93]
adopted random walk to identify the neighbor field within
graphs. In their study, the following parameters are defined:
P matrix as the random walk transition matrix (i.e., Pij as
the transition probability from node i to node j), S matrix as
the similarity matrix whose elements indicate how similar the
graph nodes are, and D matrix as the degree matrix. Given a
graph G, P can be defined as P = D−1S. In addition, P k

represents multi-step transition matrix whose (i, j)-th element
is the probability of the random walk moving from node i to
node j in k steps. Increasing the value of k will grow the size
of neighbor field.

2) Graph Sample and Aggregate: Another graph convo-
lution neural network model is Graph Sample and Aggregate
(GraphSAGE), which was proposed by Hamilton et al. [94]. In
this study, the graph convolution can be realized by sampling
and aggregation. As a variation from GNN, the input order
of aggregation functions has no impact on the result in
GraphSAGE, meaning that GraphSAGE can handle disordered
neighbor nodes. There are the following three key steps in
GraphSAGE: (i) a fixed number of neighboring nodes is ob-
tained through sampling; (ii) the aggregation function is used
to obtain the aggregation information of neighboring nodes so
that the features of the center element can be obtained; (iii)
the aggregation information of neighboring nodes is used to
classify or predict the content or labels of the center element.
In Hamilton et al.’s study, the authors leveraged the uniform
sampling strategy to select a fixed number of neighbor nodes.
Uniform sampling can be repeated on the connected first-order
nodes to obtain a neighbor field with a fixed number of nodes.
Furthermore, they proposed three aggregators. The first one is
the mean aggregator, which is computed by weight matrices
and a nonlinear activation function. The second aggregator
is called the long short-term memory (LSTM) aggregator,
which is an updated version of the mean aggregator. In the
LSTM aggregator, the input data needs to be organized in a
sequential manner. Because of the extra operation, the LSTM
aggregator shows a stronger expressive ability than the mean
aggregator. The last aggregator is the pool aggregator. In the
pooling approach, the vectors of each neighbor are fully fed
with forwarding propagation. After the forward propagation,
the max-pooling aggregates features across the neighbor fields.

3) Graph Attention Network: Velivckovic et al. [95] pro-
posed a Graph Attention Network (GAT), which introduced
the attention mechanism into the graph convolution model, and
used the attention mechanism to model the correlation among
nodes. In this study, they summarized the weakness of GNN
and GraphSAGE, which shares the same convolution kernel
parameters for all the nodes. This affects the final results in
some cases as the degree of association is different between
nodes in neighbor field. It is necessary to adopt different
convolution kernel parameters to treat different nodes. The
aggregation process of the GAT is represented by

h⃗
′
i = σ(1

K

∑K
k=1

∑
j∈Ni

αk
ijW

kh⃗j). (6)

The αk
ijW

kh⃗j represents the attention mechanism. Here, W
denotes a weight matrix, and a set of attention mechanism

9

coefficients
{
αk
ij

}
j,k

is included in Equation (6), which is
a single forward propagation neural network. In addition,
the attention mechanism adopts the “LeakyReLU” non-linear
activation function, which has a small negative linear slope
for negative input values [96]. After defining the aggregation
process of the GAT, Velivckovic et al. [95] leveraged Cora,
Citeseer, and Pubmed datasets to evaluate the efficacy of
GAT and experimental results demonstrated the ability on
classifications.

4) Partition Graph Convolution: In Partition Graph Con-
volution (PGC), the convolution process is treated as sample
and weight function. Yan et al. [97] proposed a scheme to
obtain the sample function and weight function. In detail,
the sampling function selects sample nodes in the neighbor
field. The key is to identify the neighbor field, which is the
sampling area. For the weight function, it classifies different
nodes in the neighbor field to K groups. It shares the con-
volution kernel parameters within the same group and does
not share parameters across different groups, which reduces
the shared field size and increases the final accuracy. In
the study, they defined three different classification schemes.
The first classification scheme is called uni-labeling, which
is the same as GNN since it classifies all the nodes as one
group. The second scheme is called distance-classification,
which classifies nodes according to the order. The central
element is “0”-order, adjacent elements are the first-order,
etc. The last scheme is called spatial configuration, which
is specifically for skeleton action identification. The spatial
configuration defines a reference distance. Based on the refer-
ence distance, it classifies different nodes. After determining
two functions, the convolution function can be represented
by fout(vi) =

∑
vj∈B(vi)

1
Zi(vj)

fin(vj) · W (li(vj)). Here,
vj ∈ B(vi) denotes the sampling function, which samples
from B(vi), the set of distance-1 neighbors of node vi in
different orders. Also, Zi(vj) is normalization coefficient, and
W (·) is the weight function. Compared to GraphSAGE that
adopts mean sampling, PGC is more generic for different cases
since it defines a sampling function.

5) Summary of Existing Spatial Convolution Schemes: In
Table IV, we summarize the existing studies based on the
spatial convolution strategy. Similar to subsection III-C4, we
also compare the task, input parameters, input data, number
of convolutional layers, performance, and time complexity for
the existing studies.

V. GNN APPLICATIONS IN INTERNET OF THINGS (IOT)

A. Overview

Since GNN has the ability to analyze non-Euclidean space
data and the IoT data is highly dynamic and dimensional, there
are some potentials to leverage GNN to assist data analysis in
IoT systems. In IoT systems, sensors collect data related to a
variety of things, including weather, location, temperature, and
others. To obtain the accurate results of data analysis, existing
studies usually involve multiple data sources in deep learning
models and the data source is considered as a key factor
in the training process of learning models. Nonetheless, the
diverse data source, dynamics data, and complex relationship

between different data elements make it difficult to organize
and process the data as the one in Euclidean space. Traditional
deep learning models (CNN, RNN, etc.) cannot treat data
analysis and obtain accurate results in non-Euclidean space
data. In addition, IoT data has become more complex since
more IoT devices are connected to IoT systems and systems
are dynamic. In order to handle the complex IoT data, GNN
models can be adopted in some IoT systems for analyzing
IoT data, since GNN models show great abilities in analyzing
non-Euclidean space data. There are some existing studies on
applying GNN to IoT systems. In the following, we review
several typical IoT scenarios, which adopt GNN to assist data
analysis process.

B. GNN in Transportation Traffic Prediction

The goal of traffic prediction in transportation systems
is leveraging the historical traffic data and road topology
to predict the traffic speed, traffic flow, and throughput so
that the decisions for mitigating the traffic congestion can
be provided [113], [114], [115]. Obviously, the precise pre-
diction results can assist drivers in selecting optimal paths
and reducing the occupation of transportation networks. For
example, Du et al. [116] proposed a GNN-based method to
carry out the prediction of traffic flows in the transportation
system. In their study, they focused on the temporal traffic
data that is time-series data. First, they defined the traffic data
as Vt ∈ Rn×c, where n is the number of nodes and c is the
number of channels. Note that c is a c-dimensional vector
for each node n, which represents the features at a specific
time t. The status can be the values of traffic flow, speed,
and congestion in this area. When c is 1, the model only
considers one feature of the traffic. After that, they formalized
the traffic prediction process. In their study, they only consider
the scenario with one node. Also, the input is 1-dimensional
vectors, indicating that only time domain is considered. Thus,
no spatial information is involved in the model as one node
is considered. Then, they arranged all the nodes to an array
(1-dimensional vector), and leveraged full connected layers
to analyze the data. Some similar research efforts consider
different features of traffic, such as traffic flow [117], traffic
speed [118], and weather [119].

Likewise, Ma et al. [120] proposed a graph CNN for the
prediction of traffic congestion in transportation networks.
In their study, they proposed a spatial-temporal matrix, in
order to treat the time-series data at multiple locations in the
transportation network as an image. This scheme applies two
convolution operations on temporal and spatial domains. Thus,
the model involves multiple nodes and complex situations,
and their study converts graph data to images and applies
two convolution operations, which do not apply the graph
convolution directly on the graph datasets. Thus, the impacts
of the relationship between different nodes cannot be mani-
fested in prediction results. In order to overcome the issue,
Wang et al. [121] proposed a lattice-based data representation
and leveraged convolution operation in lattice-based images
directly. However, this approach inherits some limitations.
First, traffic data includes geographical information; however,

10

TABLE IV: Summary of Existing Spatial Convolution Schemes

Convolution scheme Task Input parameters Input data No. of layers PERF Time complexity
GNN [98] Classification A,X,Xe SNAP social net-

work
30 76.5% O(n2)

EnhancedGNN [99] Classification A,X,Xe Cora, Citeseer - 92.5% -

graph-CNN [100] Classification A,X,Xe MCI/AD diagno-
sis

6 87.5 % -

GGNN [101] Identification A,X,Xe Protein data 2 72.6% O(n2)

SPAGNN [102] Prediction A,X Self-driving 4 83.9% -

STGNN [103] Prediction A,X METR-LA - 93.45% O(n2)

ST-GCN [104] Identification A,X Skeleton actions 3 88.3% -

SIA-GCN [105] Identification A,X,Xe Panoptic dataset 5 81.7% O(n2)

ST-ResNet [106] Prediction A,X,Xe Traffic data 15 93.7% -

AttConvLSTM [107] Prediction A,X,Xe TaxiNYC 12 86.7% -

DMVSTN [108] Prediction A,X,Xe Didi Taxi 5 90.7% O(n2)

Sequential GNN [109] Prediction A,X,Xe Traffic data 13 83.5% O(n2)

STAGN [110] Classification A,X Card transaction
data

5 870.0% -

SDynamicGRCNN [111] Prediction A,X,Xe Traffic data - 89.7% -

Semi-Supervised
GNN [112]

Prediction A,X,Xe Parking dataset 12 93.1% O(n2)

lattice-based images cannot embed the correlation geograph-
ical information. Furthermore, as the lattice-based scheme
treats different nodes as pixels, only the impact of connected
neighbors is considered. In real-world scenarios, the traffic
conditions in one location could be affected not only by
neighboring traffic conditions, but also by traffic conditions
that are far away from this location.

In order to overcome the aforementioned problem, Yu et
al. [122] proposed a GNN-based scheme, which creates a
graph to represent the traffic conditions. They leveraged nodes
to represent monitoring stations and weights to represent
different features between stations. By doing this, they created
a comprehensive graph to represent irregular transportation
networks. When creating the graph, they used a Gaussian
kernel to construct the weighted adjacency matrix, W . In
detail, they adopted a Euclidean distance metric and defined a
threshold λ. If the Euclidean distance is larger than the thresh-
old λ, the relationship features can be represented by “0”;
otherwise, leveraging the relationship features as parameter
and Gaussian kernel function to obtain the result.

Furthermore, there are other studies that focus on improving
the performance of [122]. For example, Chai et al. [123]
studied a multi-graph convolutional network to optimize the
computation of distances. Wu et al. [124] investigated a
Graph Wavenet that leverages an adaptable adjacency matrix
to deal with different traffic situations. Likewise, Guo et
al. [125] designed an attention-based spatial-temporal graph
convolutional networks, which can adapt to different traffic
situations.

C. GNN in Electrical Energy Prediction

The smart grid is a typical energy-based IoT system, which
adopts IoT devices (sensors, actuators, etc.) to collect massive
amounts of data in electricity transmission and distribution
systems. Based on the data analysis, the smart grid system

can be operated efficiently and intelligently. The electric
grid can be modeled as graph structure where the collected
data associated with various nodes corresponds to different
geographic locations. In addition, the data in the grid is highly
dynamic. There are some studies on leveraging GNN to assist
the data analysis process.

For example, Owerko et al. [126] proposed a GNN based
prediction scheme to prevent power outages. Since GNNs can
process highly dynamic data (e.g., graph data), they considered
not only the historical data of the electrical grid, but also
weather conditions, geographical location, and altitude. Then,
they formalized weather, geographical location, altitude, and
power usage data as an undirected graph. The best evaluation
results achieved 1.04 % error rate in predictions when using a
GNN with no pooling. Likewise, Khodayar et al. [127] pro-
posed a GNN-based short-term wind level prediction scheme,
in order to increase the output of wind power. Wind speed
prediction is still a challenging problem due to stochastic and
timely varying properties of wind. In their study, the authors
proposed a graph deep learning model to capture the spatial-
temporal features of the wind near to wind turbines. Each node
of the graph corresponds to a wind site and a localized first-
order approximation of spectral graph convolutions is used
to obtain the value of features. Their evaluation results show
their proposed scheme outperform other prediction schemes
that they considered, such as feed-forward neural networks
and nonlinear autoregressive neural networks with respect to
both root Mean Square Error (RMSE) and Mean Absolute
Error (MAE) performance metrics.

In addition, Khodayar et al. [128] adopted the GNN model
to predict solar irradiance, in order increase the power gener-
ation from photo-voltaic systems. In their study, they adopted
the deep generative model to capture probability densities for
continuous neighboring nodes for a graph. In order to reduce
the complexity, their approach involves a scalable generative

11

optimization algorithm to assist the capture process for proba-
bility densities. Further, the authors leverage probability densi-
ties to generate the convolutional graph autoencoder (CGAE),
which is used to forecast solar irradiance. By using real
data in the northern states of the U.S., the evaluation results
confirm that the investigated scheme has the best performance
with respect to reliability, sharpness, and continuously ranked
probability score.

D. GNN in Industrial IoT

Industrial IoT (IIoT) which encompasses multiple areas
such as manufacturing, transportation and distribution, and
mining and refining of raw materials, connects massive num-
bers of IoT devices, which generate massive amounts of data.
Based on the data analysis, IIoT will rely on data collection
and analysis to achieve automation and intelligence. From the
cyber-physical system perspective, a IIoT system consists of
a network subsystem, a control subsystem, and a computing
subsystem. As IIoT systems could generate massive amounts
of data and computing resources are generally limited, how
to optimize the performance of the network, control, and
computing subsystems is a critical issue [129].

There are a number of research efforts on leveraging ma-
chine learning to optimize the resource allocation problem in
IIoT systems [11], [130], [131], [132], [133]. Most of the
efforts only focused on Euclidean space datasets, which did not
consider system topologies and other related features. Some
studies have been leveraging new developments in GNNs to
assist resource management. For example, Liu et al. [134]
proposed a Dyna-Q (DDQ) approach based on the discrete-
time Markov decision process (DTMDP). Since the service
requirements are highly dynamic in IIoT systems, the network
function virtualization technology receives growing attention.
Given limited computing resources in the virtual environment,
designing efficient scheduling algorithms is necessary. To this
end, the proposed DDQ leverages GNN to predict resource
requirements for the virtual network functions instance (VNFI)
so that the service scheduling can be dynamically reconfigured
on the virtualized service chain, leading to the improvement
of resource utilization.

In addition, Kim et al. [135] proposed a GNN-based au-
tonomous operation control scheme for IIoT networks. They
leveraged GNNs to analyze the behaviors of different devices,
based on the relationship and security requirements and pro-
vided autonomous control to ensure both access and security.
From the system perspective, Zhang et al. [136] proposed
a Graph Neural Network Modeling for IoT (GNNM-IoT)
scheme that leverages GNNs to simulate IoT network systems.
By leveraging the GNN, the proposed simulator has salient
ability to analyze the hidden logical relationships between
different domains of massive embedded sensors. Zhang et al.
used the proposed GNNM-IoT to generate complex nonlinear
datasets, achieving better results than Long Short Term Mem-
ory (LSTM) and Auto-Regressive Integrated Moving Average
(ARIMA) schemes. Likewise, Protogerou et al. [137] proposed
a multi-agent system based on GNNs to detect attacks against
the network. To improve the performance, they formalized

active network nodes such as IoT devices, software defined
network forwarders, and fog nodes as a graph to generate
the high dimensional data input. The proposed GNN model
is capable of accurately detecting anomalies. To evaluate the
proposed GNNs response to malware attacks, they simulated
network flows of various normal and abnormal packet distri-
butions.

VI. LIMITATIONS OF GRAPH NEURAL NETWORKS

We now review the limitations of GNNs with respect to
universality and computing overhead.

Universality of GNN: If a machine learning model can
adapt to any input and situation, we consider that the model
has Turing universality [138]. Nonetheless, there is no ma-
chine learning model that has Turing universality. Similar
to GNN, the universality of GNN is one of its limitations.
Satisfying some sufficient conditions, GNN can operate on
any input function in the form of a Turing machine, and is
not limited to the network structure [139]. By establishing
the Turing equivalence between GNN and the classic dis-
tributed computing model, we can summarize the sufficient
conditions [140]: the sufficient depth of layers, sufficient
breadth of convolution layers, independent nodes, and ac-
curate expressions for each layer. However, in some cases,
it is impossible to obtain accurate mathematical expressions
for the model. In addition, adding more layers to a model
increases the computing complexity as well. The computing
ability of physical devices limits the number of layers of a
model. Thus, a number of research efforts leverage matrix
approximation, instead of obtaining exact expressions [138].
Thus, how to obtain accurate mathematical expressions for the
model while reducing the computing complexity are important
and challenging issue. Furthermore, GNN has low flexibility,
transductive, and scalability [141].

Computing overhead of GNN: As we discussed earlier,
because of limited depth and breadth, GNN cannot show its
Turing universality and has high computing complexity. Thus,
it cannot obtain accurate results when it is applied to some
specific datasets. In this case, optimizing the GNN remains
an unsolved problem. Related to this issue, Li et al. [142]
proposed a learning-based approach based on approximation
algorithms and heuristic solvers, in order to reduce the comput-
ing complexity. In detail, they leveraged a well-trained graph
convolutional network to estimate the likelihood of whether
the specific vertex has an optimal solution. By doing so, the
GNN significantly increases the search speed for traversing all
the vertex in the graph. Then, they adopted a tree search to
traverse all the vertex in the graph. The proposed approach
can increase search speed in large graphs.

VII. FINAL REMARKS

Since the complexity of datasets is increasing, how to deal
with highly dynamic and dimensional data is a critical issue
for machine learning models. In this study, we reviewed the
principle of GNNs and existing research efforts. We first
introduced the motivation for extending the training data from
Euclidean space data to non-Euclidean space data. After that,

12

we introduced two different strategies used to handle non-
Euclidean space data: spectral and spatial convolution strategy.
We surveyed the existing studies and categorized those studies
according to their respective convolution strategies. Next, we
reviewed the existing studies on the application of GNNs to
emergent IoT systems, including vehicular traffic prediction,
electrical energy prediction, and resource management in IIoT
systems. Finally, we discussed some limitations of GNNs with
respct to universality and computing overhead.

DATA AVAILABILITY

This article does not cover data research. No data were used
to support this study.

CONFLICTS OF INTEREST

The author declares that he/she has no conflicts of interest.

REFERENCES

[1] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” science, vol. 313, no. 5786, pp. 504–507,
2006.

[2] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur,
“Recurrent neural network based language model,” in Eleventh annual
conference of the international speech communication association,
2010.

[3] W. G. Hatcher and W. Yu, “A survey of deep learning: Platforms,
applications and emerging research trends,” IEEE Access, vol. 6, pp.
24 411–24 432, 2018.

[4] Z. Cai, Z. Xiong, H. Xu, P. Wang, W. Li, and Y. Pan, “Generative
adversarial networks: A survey toward private and secure applications,”
ACM Comput. Surv., vol. 54, no. 6, jul 2021. [Online]. Available:
https://doi.org/10.1145/3459992

[5] H. Xu, W. Yu, D. Griffith, and N. Golmie, “A survey on industrial
internet of things: A cyber-physical systems perspective,” IEEE Access,
vol. 6, pp. 78 238–78 259, 2018.

[6] F. Liang, W. G. Hatcher, W. Liao, W. Gao, and W. Yu, “Machine
learning for security and the internet of things: The good, the bad, and
the ugly,” IEEE Access, vol. 7, pp. 158 126–158 147, 2019.

[7] H. Xu, X. Liu, W. Yu, D. Griffith, and N. Golmie, “Reinforcement
learning-based control and networking co-design for industrial internet
of things,” IEEE Journal on Selected Areas in Communications, vol. 38,
no. 5, pp. 885–898, 2020.

[8] K. Li, G. Luo, Y. Ye, W. Li, S. Ji, and Z. Cai, “Adversarial privacy-
preserving graph embedding against inference attack,” IEEE Internet
of Things Journal, vol. 8, no. 8, pp. 6904–6915, 2021.

[9] C. Qian, W. Yu, C. Lu, D. Griffith, and N. Golmie, “Toward generative
adversarial networks for the industrial internet of things,” IEEE Internet
of Things Journal, pp. 1–1, 2022.

[10] Y. Liang, Z. Cai, J. Yu, Q. Han, and Y. Li, “Deep learning based
inference of private information using embedded sensors in smart
devices,” IEEE Network, vol. 32, no. 4, pp. 8–14, 2018.

[11] F. Liang, W. Yu, X. Liu, D. Griffith, and N. Golmie, “Toward edge-
based deep learning in industrial internet of things,” IEEE Internet of
Things Journal, vol. 7, no. 5, pp. 4329–4341, 2020.

[12] W. G. Hatcher, C. Qian, W. Gao, F. Liang, K. Hua, and W. Yu,
“Towards efficient and intelligent internet of things search engine,”
IEEE Access, vol. 9, pp. 15 778–15 795, 2021.

[13] O. Sener and S. Savarese, “Active learning for convolutional neural
networks: A core-set approach,” arXiv preprint arXiv:1708.00489,
2017.

[14] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: going beyond euclidean data,” IEEE Signal
Processing Magazine, vol. 34, no. 4, pp. 18–42, 2017.

[15] Z. Chen, F. Chen, L. Zhang, T. Ji, K. Fu, L. Zhao, F. Chen, and C.-T.
Lu, “Bridging the gap between spatial and spectral domains: A survey
on graph neural networks,” arXiv preprint arXiv:2002.11867, 2020.

[16] R. Sato, “A survey on the expressive power of graph neural networks,”
arXiv preprint arXiv:2003.04078, 2020.

[17] L. C. Lamb, A. Garcez, M. Gori, M. Prates, P. Avelar, and M. Vardi,
“Graph neural networks meet neural-symbolic computing: A survey
and perspective,” arXiv preprint arXiv:2003.00330, 2020.

[18] M. Balcilar, G. Renton, P. Héroux, B. Gauzere, S. Adam, and
P. Honeine, “Bridging the gap between spectral and spatial domains
in graph neural networks,” arXiv preprint arXiv:2003.11702, 2020.

[19] F. M. Bianchi, D. Grattarola, and C. Alippi, “Spectral clustering with
graph neural networks for graph pooling,” in International Conference
on Machine Learning. PMLR, 2020, pp. 874–883.

[20] S. Abadal, A. Jain, R. Guirado, J. López-Alonso, and E. Alarcón,
“Computing graph neural networks: A survey from algorithms to
accelerators,” ACM Computing Surveys (CSUR), vol. 54, no. 9, pp.
1–38, 2021.

[21] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A survey,”
IEEE Transactions on Knowledge and Data Engineering, 2020.

[22] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE transactions
on neural networks and learning systems, vol. 32, no. 1, pp. 4–24,
2020.

[23] F. Rosenblatt, “Principles of neurodynamics. perceptrons and the theory
of brain mechanisms,” Cornell Aeronautical Lab Inc Buffalo NY, Tech.
Rep., 1961.

[24] J. J. Hopfield, “Neural networks and physical systems with emer-
gent collective computational abilities,” Proceedings of the national
academy of sciences, vol. 79, no. 8, pp. 2554–2558, 1982.

[25] T. J. Sejnowski, “Higher-order boltzmann machines,” in AIP Confer-
ence Proceedings, vol. 151, no. 1. American Institute of Physics,
1986, pp. 398–403.

[26] P. J. Werbos, “Generalization of backpropagation with application to
a recurrent gas market model,” Neural networks, vol. 1, no. 4, pp.
339–356, 1988.

[27] F. J. Pineda, “Generalization of back-propagation to recurrent neural
networks,” Physical review letters, vol. 59, no. 19, p. 2229, 1987.

[28] R. McEliece, The theory of information and coding. Cambridge
University Press, 2002.

[29] J. S. Long, Regression models for categorical and limited dependent
variables.

[30] J. Bromley, J. W. Bentz, L. Bottou, I. Guyon, Y. LeCun, C. Moore,
E. Säckinger, and R. Shah, “Signature verification using a “siamese”
time delay neural network,” International Journal of Pattern Recogni-
tion and Artificial Intelligence, vol. 7, no. 04, pp. 669–688, 1993.

[31] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back, “Face recogni-
tion: A convolutional neural-network approach,” IEEE transactions on
neural networks, vol. 8, no. 1, pp. 98–113, 1997.

[32] W. Jiang and J. Luo, “Graph neural network for traffic forecasting: A
survey,” arXiv preprint arXiv:2101.11174, 2021.

[33] F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 1251–1258.

[34] X. Zhang, Y. Zou, and W. Shi, “Dilated convolution neural network
with leakyrelu for environmental sound classification,” in 2017 22nd
International Conference on Digital Signal Processing (DSP). IEEE,
2017, pp. 1–5.

[35] L. Zhou, C. Zhang, and M. Wu, “D-linknet: Linknet with pretrained
encoder and dilated convolution for high resolution satellite imagery
road extraction,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, 2018, pp. 182–186.

[36] Y. Wei, H. Xiao, H. Shi, Z. Jie, J. Feng, and T. S. Huang, “Revisiting di-
lated convolution: A simple approach for weakly-and semi-supervised
semantic segmentation,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 7268–7277.

[37] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular
domains,” IEEE signal processing magazine, vol. 30, no. 3, pp. 83–98,
2013.

[38] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral net-
works and locally connected networks on graphs,” arXiv preprint
arXiv:1312.6203, 2013.

[39] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional
neural networks on graphs with fast localized spectral filtering,” arXiv
preprint arXiv:1606.09375, 2016.

[40] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets
on graphs via spectral graph theory,” Applied and Computational
Harmonic Analysis, vol. 30, no. 2, pp. 129–150, 2011.

[41] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

13

[42] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in International
Conference on Machine Learning. PMLR, 2017, pp. 1263–1272.

[43] J. Atwood and D. Towsley, “Diffusion-convolutional neural networks,”
arXiv preprint arXiv:1511.02136, 2015.

[44] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional
neural networks for graphs,” in International conference on machine
learning. PMLR, 2016, pp. 2014–2023.

[45] S. Kearnes, K. McCloskey, M. Berndl, V. Pande, and P. Riley,
“Molecular graph convolutions: moving beyond fingerprints,” Journal
of computer-aided molecular design, vol. 30, no. 8, pp. 595–608, 2016.

[46] R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec,
“Hierarchical graph representation learning with differentiable pool-
ing,” arXiv preprint arXiv:1806.08804, 2018.

[47] L. Yi, H. Su, X. Guo, and L. J. Guibas, “Syncspeccnn: Synchronized
spectral cnn for 3d shape segmentation,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp.
2282–2290.

[48] J. Kunegis and A. Lommatzsch, “Learning spectral graph transfor-
mations for link prediction,” in Proceedings of the 26th Annual
International Conference on Machine Learning, 2009, pp. 561–568.

[49] A. D. Perkins and M. A. Langston, “Threshold selection in gene co-
expression networks using spectral graph theory techniques,” in BMC
bioinformatics, vol. 10, no. 11. BioMed Central, 2009, pp. 1–11.

[50] X.-H. Han, B. Shi, and Y. Zheng, “Ssf-cnn: Spatial and spectral fusion
with cnn for hyperspectral image super-resolution,” in 2018 25th IEEE
International Conference on Image Processing (ICIP). IEEE, 2018,
pp. 2506–2510.

[51] M. Edwards and X. Xie, “Graph based convolutional neural network,”
arXiv preprint arXiv:1609.08965, 2016.

[52] S. Parisot, S. I. Ktena, E. Ferrante, M. Lee, R. G. Moreno, B. Glocker,
and D. Rueckert, “Spectral graph convolutions for population-based
disease prediction,” in International conference on medical image
computing and computer-assisted intervention. Springer, 2017, pp.
177–185.

[53] P. Tripathi and P. N. Pandey, “A novel alignment-free method to classify
protein folding types by combining spectral graph clustering with
chou’s pseudo amino acid composition,” Journal of theoretical biology,
vol. 424, pp. 49–54, 2017.

[54] R. Levie, W. Huang, L. Bucci, M. M. Bronstein, and G. Kutyniok,
“Transferability of spectral graph convolutional neural networks,” arXiv
preprint arXiv:1907.12972, 2019.

[55] C. Wang, B. Samari, and K. Siddiqi, “Local spectral graph convolu-
tion for point set feature learning,” in Proceedings of the European
conference on computer vision (ECCV), 2018, pp. 52–66.

[56] E. Rossi, F. Frasca, B. Chamberlain, D. Eynard, M. Bronstein, and
F. Monti, “Sign: Scalable inception graph neural networks,” arXiv
preprint arXiv:2004.11198, 2020.

[57] A. Salim et al., “Framework for designing filters of spectral graph
convolutional neural networks in the context of regularization theory,”
arXiv preprint arXiv:2009.13801, 2020.

[58] O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann, “Pitfalls
of graph neural network evaluation,” arXiv preprint arXiv:1811.05868,
2018.

[59] R. Li, S. Wang, F. Zhu, and J. Huang, “Adaptive graph convolutional
neural networks,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 32, no. 1, 2018.

[60] S. Luan, M. Zhao, X.-W. Chang, and D. Precup, “Break the ceil-
ing: Stronger multi-scale deep graph convolutional networks,” arXiv
preprint arXiv:1906.02174, 2019.

[61] L. Gong and Q. Cheng, “Exploiting edge features for graph neural
networks,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 9211–9219.

[62] S. I. Ktena, S. Parisot, E. Ferrante, M. Rajchl, M. Lee, B. Glocker,
and D. Rueckert, “Distance metric learning using graph convolutional
networks: Application to functional brain networks,” in International
Conference on Medical Image Computing and Computer-Assisted
Intervention. Springer, 2017, pp. 469–477.

[63] L. Huang, D. Ma, S. Li, X. Zhang, and H. Wang, “Text level graph neu-
ral network for text classification,” arXiv preprint arXiv:1910.02356,
2019.

[64] J. Kim, T. Kim, S. Kim, and C. D. Yoo, “Edge-labeling graph neural
network for few-shot learning,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp.
11–20.

[65] B. Xu, H. Shen, Q. Cao, Y. Qiu, and X. Cheng, “Graph wavelet neural
network,” arXiv preprint arXiv:1904.07785, 2019.

[66] C. Li, Z. Cui, W. Zheng, C. Xu, R. Ji, and J. Yang, “Action-attending
graphic neural network,” IEEE Transactions on Image Processing,
vol. 27, no. 7, pp. 3657–3670, 2018.

[67] D. Cao, Y. Wang, J. Duan, C. Zhang, X. Zhu, C. Huang, Y. Tong, B. Xu,
J. Bai, J. Tong et al., “Spectral temporal graph neural network for
multivariate time-series forecasting,” arXiv preprint arXiv:2103.07719,
2021.

[68] X. Tang, Y. Li, Y. Sun, H. Yao, P. Mitra, and S. Wang, “Transferring
robustness for graph neural network against poisoning attacks,” in
Proceedings of the 13th International Conference on Web Search and
Data Mining, 2020, pp. 600–608.

[69] G. Verdon, T. McCourt, E. Luzhnica, V. Singh, S. Leichenauer,
and J. Hidary, “Quantum graph neural networks,” arXiv preprint
arXiv:1909.12264, 2019.

[70] F. Monti, M. M. Bronstein, and X. Bresson, “Geometric matrix
completion with recurrent multi-graph neural networks,” arXiv preprint
arXiv:1704.06803, 2017.

[71] V. Garcia and J. Bruna, “Few-shot learning with graph neural net-
works,” arXiv preprint arXiv:1711.04043, 2017.

[72] L. Ruiz, L. F. Chamon, and A. Ribeiro, “Graphon neural networks
and the transferability of graph neural networks,” arXiv preprint
arXiv:2006.03548, 2020.

[73] Z. Chen, X. Li, and J. Bruna, “Supervised community detection with
line graph neural networks,” arXiv preprint arXiv:1705.08415, 2017.

[74] S. Yuan, X. Wu, J. Li, and A. Lu, “Spectrum-based deep neural
networks for fraud detection,” in Proceedings of the 2017 ACM on
Conference on Information and Knowledge Management, 2017, pp.
2419–2422.

[75] A. Egozi, Y. Keller, and H. Guterman, “A probabilistic approach to
spectral graph matching,” IEEE transactions on pattern analysis and
machine intelligence, vol. 35, no. 1, pp. 18–27, 2012.

[76] Z. Cui, K. Henrickson, R. Ke, and Y. Wang, “Traffic graph con-
volutional recurrent neural network: A deep learning framework for
network-scale traffic learning and forecasting,” IEEE Transactions on
Intelligent Transportation Systems, vol. 21, no. 11, pp. 4883–4894,
2019.

[77] F. M. Bianchi, D. Grattarola, L. Livi, and C. Alippi, “Graph neural net-
works with convolutional arma filters,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2021.

[78] R. Yin, K. Li, G. Zhang, and J. Lu, “A deeper graph neural network
for recommender systems,” Knowledge-Based Systems, vol. 185, p.
105020, 2019.

[79] S.-G. Huang, M. K. Chung, A. Qiu, and A. D. N. Initiative, “Re-
visiting convolutional neural network on graphs with polynomial
approximations of laplace-beltrami spectral filtering,” arXiv preprint
arXiv:2010.13269, 2020.

[80] G. Fu, Y. Hou, J. Zhang, K. Ma, B. F. Kamhoua, and J. Cheng,
“Understanding graph neural networks from graph signal denoising
perspectives,” arXiv preprint arXiv:2006.04386, 2020.

[81] G. Wang, R. Ying, J. Huang, and J. Leskovec, “Direct multi-hop at-
tention based graph neural network,” arXiv preprint arXiv:2009.14332,
2020.

[82] X. Li, D. Hu, and F. Nie, “Large graph hashing with spectral rotation,”
in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 31, no. 1, 2017.

[83] C. Jin, S.-z. Chen, H.-h. He, L. Collaboration et al., “Classifying
cosmic-ray proton and light groups in lhaaso-km2a experiment with
graph neural network,” Chinese Physics C, vol. 44, no. 6, p. 065002,
2020.

[84] R. Levie, F. Monti, X. Bresson, and M. M. Bronstein, “Cayleynets:
Graph convolutional neural networks with complex rational spectral
filters,” IEEE Transactions on Signal Processing, vol. 67, no. 1, pp.
97–109, 2018.

[85] M. Ferrer, F. Serratosa, and A. Sanfeliu, “Synthesis of median spectral
graph,” in Iberian Conference on Pattern Recognition and Image
Analysis. Springer, 2005, pp. 139–146.

[86] H. Nt and T. Maehara, “Revisiting graph neural networks: All we have
is low-pass filters,” arXiv preprint arXiv:1905.09550, 2019.

[87] T. Cai, S. Luo, K. Xu, D. He, T.-y. Liu, and L. Wang, “Graphnorm:
A principled approach to accelerating graph neural network training,”
arXiv preprint arXiv:2009.03294, 2020.

[88] Y. Wang, X. Wu, and L. Wu, “Differential privacy preserving spectral
graph analysis,” in Pacific-Asia Conference on Knowledge Discovery
and Data Mining. Springer, 2013, pp. 329–340.

[89] R. Li and J. Huang, “Learning graph while training: An evolving graph
convolutional neural network,” arXiv preprint arXiv:1708.04675, 2017.

14

[90] E. Tam and D. Dunson, “Fiedler regularization: Learning neural
networks with graph sparsity,” in International Conference on Machine
Learning. PMLR, 2020, pp. 9346–9355.

[91] Z. Liu, C. Chen, L. Li, J. Zhou, X. Li, L. Song, and Y. Qi, “Geniepath:
Graph neural networks with adaptive receptive paths,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, 2019,
pp. 4424–4431.

[92] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu,
“Heterogeneous graph attention network,” in The World Wide Web
Conference, 2019, pp. 2022–2032.

[93] Y. Hechtlinger, P. Chakravarti, and J. Qin, “A generalization of con-
volutional neural networks to graph-structured data,” arXiv preprint
arXiv:1704.08165, 2017.

[94] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” arXiv preprint arXiv:1706.02216, 2017.

[95] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio,
and Y. Bengio, “Graph attention networks,” arXiv preprint
arXiv:1710.10903, 2017.

[96] A. L. Maas, A. Y. Hannun, A. Y. Ng et al., “Rectifier nonlinearities
improve neural network acoustic models,” in Proc. Int. Conf. Machine
Learning, vol. 30, no. 1, 2013, p. 3.

[97] S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional
networks for skeleton-based action recognition,” in Proceedings of the
AAAI conference on artificial intelligence, vol. 32, no. 1, 2018.

[98] J. Bruna and X. Li, “Community detection with graph neural networks,”
stat, vol. 1050, p. 27, 2017.

[99] Q. Zhao, Z. Ye, C. Chen, and Y. Wang, “Persistence enhanced graph
neural network,” in International Conference on Artificial Intelligence
and Statistics. PMLR, 2020, pp. 2896–2906.

[100] R. Wang, D. D. Nguyen, and G.-W. Wei, “Persistent spectral graph,”
International journal for numerical methods in biomedical engineering,
vol. 36, no. 9, p. e3376, 2020.

[101] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun,
“Graph neural networks: A review of methods and applications,” arXiv
preprint arXiv:1812.08434, 2018.

[102] S. Casas, C. Gulino, R. Liao, and R. Urtasun, “Spatially-aware graph
neural networks for relational behavior forecasting from sensor data,”
arXiv preprint arXiv:1910.08233, 2019.

[103] X. Wang, Y. Ma, Y. Wang, W. Jin, X. Wang, J. Tang, C. Jia, and J. Yu,
“Traffic flow prediction via spatial temporal graph neural network,” in
Proceedings of The Web Conference 2020, 2020, pp. 1082–1092.

[104] S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional
networks for skeleton-based action recognition,” Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 32, no. 1, Apr.
2018. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/
view/12328

[105] D. Kong, H. Ma, and X. Xie, “Sia-gcn: A spatial information aware
graph neural network with 2d convolutions for hand pose estimation,”
2020.

[106] J. Zhang, Y. Zheng, and D. Qi, “Deep spatio-temporal residual
networks for citywide crowd flows prediction,” vol. 31, Feb. 2017.
[Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/
10735

[107] X. Zhou, Y. Shen, Y. Zhu, and L. Huang, “Predicting multi-step
citywide passenger demands using attention-based neural networks,”
in Proceedings of the Eleventh ACM International Conference on Web
Search and Data Mining, 2018, pp. 736–744.

[108] H. Yao, F. Wu, J. Ke, X. Tang, Y. Jia, S. Lu, P. Gong,
J. Ye, and Z. Li, “Deep multi-view spatial-temporal network for
taxi demand prediction,” vol. 32, Apr. 2018. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/11836

[109] Z. Xie, W. Lv, S. Huang, Z. Lu, B. Du, and R. Huang, “Sequential
graph neural network for urban road traffic speed prediction,” IEEE
Access, vol. 8, pp. 63 349–63 358, 2020.

[110] D. Cheng, X. Wang, Y. Zhang, and L. Zhang, “Graph neural network
for fraud detection via spatial-temporal attention,” IEEE Transactions
on Knowledge and Data Engineering, pp. 1–1, 2020.

[111] H. Peng, H. Wang, B. Du, M. Z. A. Bhuiyan, H. Ma, J. Liu,
L. Wang, Z. Yang, L. Du, S. Wang, and P. S. Yu, “Spatial temporal
incidence dynamic graph neural networks for traffic flow forecasting,”
Information Sciences, vol. 521, pp. 277–290, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0020025520300451

[112] W. Zhang, H. Liu, Y. Liu, J. Zhou, and H. Xiong, “Semi-supervised
hierarchical recurrent graph neural network for city-wide parking
availability prediction,” Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 34, no. 01, pp. 1186–1193, Apr. 2020.

[Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/
5471

[113] F. Diehl, T. Brunner, M. T. Le, and A. Knoll, “Graph neural networks
for modelling traffic participant interaction,” in 2019 IEEE Intelligent
Vehicles Symposium (IV), 2019, pp. 695–701.

[114] Shu-Yan Chen, Gao-Feng Qu, Xing-He Wang, and Huai-Zhong Zhang,
“Traffic flow forecasting based on grey neural network model,” in Pro-
ceedings of the 2003 International Conference on Machine Learning
and Cybernetics (IEEE Cat. No.03EX693), vol. 2, 2003, pp. 1275–1278
Vol.2.

[115] X. Hu, C. Zhao, and G. Wang, “A traffic light dynamic control
algorithm with deep reinforcement learning based on gnn prediction,”
2020.

[116] S. Du, T. Li, X. Gong, and S.-J. Horng, “A hybrid method for traffic
flow forecasting using multimodal deep learning,” 2019.

[117] Y. Lv, Y. Duan, W. Kang, Z. Li, and F. Wang, “Traffic flow prediction
with big data: A deep learning approach,” IEEE Transactions on
Intelligent Transportation Systems, vol. 16, no. 2, pp. 865–873, 2015.

[118] Yuhan Jia, Jianping Wu, and Yiman Du, “Traffic speed prediction using
deep learning method,” in 2016 IEEE 19th International Conference
on Intelligent Transportation Systems (ITSC), 2016, pp. 1217–1222.

[119] A. Koesdwiady, R. Soua, and F. Karray, “Improving traffic flow
prediction with weather information in connected cars: A deep learning
approach,” IEEE Transactions on Vehicular Technology, vol. 65, no. 12,
pp. 9508–9517, 2016.

[120] X. Ma, Z. Dai, Z. He, J. Ma, Y. Wang, and Y. Wang, “Learning
traffic as images: A deep convolutional neural network for large-scale
transportation network speed prediction,” Sensors, vol. 17, no. 4,
2017. [Online]. Available: https://www.mdpi.com/1424-8220/17/4/818

[121] B. Wang, X. Luo, F. Zhang, B. Yuan, A. L. Bertozzi, and P. J.
Brantingham, “Graph-based deep modeling and real time forecasting
of sparse spatio-temporal data,” CoRR, vol. abs/1804.00684, 2018.
[Online]. Available: http://arxiv.org/abs/1804.00684

[122] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional
networks: A deep learning framework for traffic forecasting,”
Proceedings of the Twenty-Seventh International Joint Conference
on Artificial Intelligence, Jul 2018. [Online]. Available: http:
//dx.doi.org/10.24963/ijcai.2018/505

[123] D. Chai, L. Wang, and Q. Yang, “Bike flow prediction with multi-graph
convolutional networks,” in Proceedings of the 26th ACM SIGSPATIAL
international conference on advances in geographic information sys-
tems, 2018, pp. 397–400.

[124] Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, “Graph wavenet for
deep spatial-temporal graph modeling,” 2019.

[125] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, “Attention
based spatial-temporal graph convolutional networks for traffic flow
forecasting,” vol. 33, pp. 922–929, Jul. 2019. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/3881

[126] D. Owerko, F. Gama, and A. Ribeiro, “Predicting power outages using
graph neural networks,” in 2018 IEEE Global Conference on Signal
and Information Processing (GlobalSIP), 2018, pp. 743–747.

[127] M. Khodayar and J. Wang, “Spatio-temporal graph deep neural net-
work for short-term wind speed forecasting,” IEEE Transactions on
Sustainable Energy, vol. 10, no. 2, pp. 670–681, 2019.

[128] M. Khodayar, S. Mohammadi, M. E. Khodayar, J. Wang, and G. Liu,
“Convolutional graph autoencoder: A generative deep neural network
for probabilistic spatio-temporal solar irradiance forecasting,” IEEE
Transactions on Sustainable Energy, vol. 11, no. 2, pp. 571–583, 2020.

[129] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang, “A
survey on the edge computing for the internet of things,” IEEE Access,
vol. 6, pp. 6900–6919, 2018.

[130] F. Liang, C. Qian, W. G. Hatcher, and W. Yu, “Search engine for the
internet of things: Lessons from web search, vision, and opportunities,”
IEEE Access, vol. 7, pp. 104 673–104 691, 2019.

[131] F. Liang, W. G. Hatcher, G. Xu, J. Nguyen, W. Liao, and W. Yu,
“Towards online deep learning-based energy forecasting,” in 2019 28th
International Conference on Computer Communication and Networks
(ICCCN), 2019, pp. 1–9.

[132] X. Liu, W. Yu, F. Liang, D. Griffith, and N. Golmie, “Towards deep
transfer learning in industrial internet of things,” IEEE Internet of
Things Journal, pp. 1–1, 2021.

[133] F. Liang, W. Yu, X. Liu, D. Griffith, and N. Golmie, “Towards
computing resource reservation scheduling in industrial internet of
things,” IEEE Internet of Things Journal, pp. 1–1, 2020.

[134] Y. Liu, Y. Lu, X. Li, Z. Yao, and D. Zhao, “On dynamic service
function chain reconfiguration in IoT networks,” IEEE Internet of
Things Journal, vol. 7, no. 11, pp. 10 969–10 984, 2020.

15

[135] J.-H. Kim, S. Lee, and S. Hong, “Autonomous operation control of
IoT blockchain networks,” Electronics, vol. 10, no. 2, 2021. [Online].
Available: https://www.mdpi.com/2079-9292/10/2/204

[136] W. Zhang, Y. Zhang, L. Xu, J. Zhou, Y. Liu, M. Gu, X. Liu, and
S. Yang, “Modeling IoT equipment with graph neural networks,” IEEE
Access, vol. 7, pp. 32 754–32 764, 2019.

[137] A. Protogerou, S. Papadopoulos, A. Drosou, D. Tzovaras, and I. Refani-
dis, “A graph neural network method for distributed anomaly detection
in IoT,” Evolving Systems, pp. 1–18, 2020.

[138] P. Rendell, Turing machine universality of the game of life. Springer,
2016.

[139] C. Petzold, The annotated Turing: a guided tour through Alan Turing’s
historic paper on computability and the Turing machine. Wiley
Publishing, 2008.

[140] T. Landelius, “Reinforcement learning and distributed local model
synthesis,” Ph.D. dissertation, Linköping University Electronic Press,
1997.

[141] W. Song, Z. Xiao, Y. Wang, L. Charlin, M. Zhang, and J. Tang,
“Session-based social recommendation via dynamic graph attention
networks,” in Proceedings of the Twelfth ACM International Confer-
ence on Web Search and Data Mining, 2019, pp. 555–563.

[142] Z. Li, Q. Chen, and V. Koltun, “Combinatorial optimization with graph
convolutional networks and guided tree search,” Advances in neural
information processing systems, vol. 31, 2018.

