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Pairs of Heron and right triangles with a common area
and a common perimeter

By ABHISHEK JUYAL (Chennai) and DUSTIN MOODY (Gaithersburg)

Abstract. A Heron triangle is one in which the side lengths and area are integers.

An integral right triangle is an example of a Heron triangle. In this paper, we show

that there are infinitely many pairs of integral right triangles and Heron triangles with

a common area and common perimeter, continuing a line of similar results with other

pairs of geometric shapes. This result is established using the theory of elliptic curves.

1. Introduction

All of us learn basic facts about triangles, rectangles, square, polygons, and

so forth in our primary schools. At that time, we do not know how much mys-

tery is still hidden in these geometric shapes. For example, the congruent number

problem is easy enough for a schoolchild to understand, but is an active area of

research today. The congruent number problem is: Given a positive integer n,

does there exist a right triangle (with rational side lengths) whose area is n?

Number theory has some deep connections with triangles and other polygons.

From the point of view of arithmetic, the perimeter and area are fundamental

characteristics of a rational triangle. Therefore, it is natural to try to classify

rational triangles by their perimeters and/or areas. More generally, similar ques-

tions can be asked about other two-dimensional geometric objects. The question

we concern ourselves with in this article, is to find pairs of shapes which have

the same area and same perimeter. To the best of our knowledge, this kind of
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question was first posed when Bill Sands asked his colleague R. K. Guy if there

were rectangles and triangles with integer side lengths with the property that

they had the same perimeter and area. In 1995, Guy [10] showed that the answer

was affirmative, but that there is no non-degenerate right triangle and rectangle

pair with the same property. In that same paper, Guy also showed that there are

infinitely many such isosceles triangle and rectangle pairs.

Since that time, there have been several other works dealing with finding

infinitely many pairs of geometric objects which have the same perimeters and

the same areas. We highlight some of the literature in this direction: two distinct

Heron triangles by A. Bremner [1], Heron triangle and rectangle pairs by

R. K. Guy and Bremner [2], integral right triangle and parallelogram pairs

by Y. Zhang [20], integral isosceles triangle-parallelogram and Heron triangle-

rhombus pairs by Das, Juyal and Moody [6], integral right triangle and rhom-

bus pairs by S. Chern [4], θ-triangle and ω-rational parallelogram pairs by Lalin

and Ma [15], and finally rational right and isosceles triangles by Hirakawa and

Matsumura [11].

In this paper, we continue this line of study. We examine integer right tri-

angles and Heron triangles which share a common area and common perimeter.

Using the theory of elliptic curves, we are able to prove that there are infinitely

many examples. As integral right triangles are Heron triangles, this will also yield

a new proof of Bremner’s result for two distinct Heron triangles. We conclude

with some directions for future work.

2. Right triangle and a Heron triangle with the same area

and perimeter

In this section, we prove the result that there are infinitely many pairs of

Heron triangles and integral right triangle pairs which have both a common area

and common perimeter. Recall that a Heron triangle is a triangle whose side

lengths and area are all integers. Every Heron triangle can be parameterized by

its side lengths which can be taken to be of the form{
(m+ n)(mn− k2),m(m2 + k2), n(m2 + k2)

}
,

where m,n, k ∈ Z, with m,n ≥ 1 and mn > k2 (see [3]).
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Similarly, as is well-known, the side lengths of an integral right triangle may

be parameterized by {
(u2 − v2), 2uv, (u2 + v2)

}
for positive integers u, v, with u > v.

The main result of this paper is the following.

Theorem 2.1. There are infinitely many integral right triangles and Heron

triangles with the same area and perimeter.

In order to prove Theorem 2.1, we will take the conditions that the two

shapes have equal areas and equal perimeters, and produce a certain elliptic

curve. This curve will have the property that some of its rational points will

directly correspond to the property that the two shapes have equal areas and

equal perimeters. First we prove some properties of this elliptic curve in the

following proposition.

Proposition 2.2. Let Ẽ be the elliptic curve defined over Q(k) by

Ẽ(k) : y2 = x3 + Ã(k)x2 + B̃(k)x, (1)

where

Ã(k) = −24k3 − 2k2 − 12k − 2,

and

B̃(k) = (k + 1)2(16k4 − 8k3 + 17k2 + 10k + 1).

The rank of Ẽ(Q(k)) is 2, and

P̃1 =
(
(k + 1)2, 4k(k − 1)(k + 1)2

)
, P̃2 =

(
(k − 1)2, 4k(k − 1)(k2 + 2)

)
,

are generators of Ẽ(Q(k)).

Proof of Proposition 2.2. The discrimininant of Ẽ is

512k4(k + 1)4(k2 + 1)(16k4 − 8k3 + 17k2 + 10k + 1)2.

It is easy to verify that P̃1 and P̃2 are rational points on Ẽ(Q(k)). Now, we show

that P1 and P2 are generators. The key result needed is the Gusić and Tadić

specialization theorem [9, Theorem 1.3]. The theorem deals with elliptic curves

given by an equation y2 = x3 +A(k)x2 +B(k)x, where A,B ∈ Z[k], with exactly

one non-trivial 2-torsion point over Q(k). If k0 ∈ Q satisfies the condition that

for every nonconstant square-free divisor h of B(k) or A(k)2− 4B(k) in Z[k] that
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the rational number h(k0) is not a square in Q, then the specialized curve E(k0)

is elliptic and the specialization homomorphism at k0 is injective. If, additionally,

there exist P1, P2 ∈ E(Q(k)) such that P1(k0), P2(k0) are the free generators of

E(k0)(Q), then E(Q(k)) and E(k0)(Q) have the same rank r, and P1, P2 are the

free generators of E(Q(k)).

Using SAGE [17], we can compute for the specialized curve at k0 = 5 the

rank 2. The generators are (36, 2880), and (16, 2160). These are the same points

as evaluating P̃1 and P̃2 at k0 = 5. Checking the conditions of Gusić and Tadić

specialization theorem, a calculation shows k0 = 5 satisfies the squarefree require-

ments. We therefore have that the specialization is injective, and hence the rank

of Ẽ(k) is at most 2. But the specialization at k0 = 5 shows P̃1 and P̃2 are linearly

independent, and hence the rank is 2 over Q(k), and necessarily P̃1 and P̃2 are

the generators. �

We now give the proof of the main result: infinitely many Heron and integral

right triangles with both the same area and same perimeter.

Proof of Theorem 2.1. We know that the sides of a Heron triangle may

be parameterized by

s1 = n(m2 + k2), s2 = m(n2 + k2), s3 = (m+ n)(mn− k2),

for some positive integers m,n, k, with mn > k2. The area is then mnk(m +

n)(mn− k2) and the perimeter is 2mn(m+ n).

An integral right triangle has its sides parameterized by

t1 = u2 − v2, t2 = 2uv, t3 = u2 + v2,

for positive integers u, v (with u > v), and where t21 + t22 = t23. The area is

uv(u2 − v2) and the perimeter is 2u(u+ v).

We set the perimeters and areas equal:

m2n+mn2 − u2 − uv = 0, (2)

k3m2n+ k3mn2 − km3n2 − km2n3 + u3v − uv3 = 0. (3)

We solve for v in the first equation (2), and substitute it into the second

equation (3). Assuming that mn(m+ n) 6= 0, then this yields

m4n2 + 2m3n3 +m2n4 − k3u2 + kmnu2 − 3m2nu2 − 3mn2u2 + 2u4 = 0. (4)
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This equation in m,n, u, and k is affine, and so does not represent a curve. If we

fix variables, then the resulting equations can be curves of different genus. For

example, fixing m = 1, n = 1 results in a curve of genus 4. Of interest to us, we

observe that fixing n = 1, k = 2 yields a genus 1 curve in m and u.

We note that equation (4) is symmetric with regards to the variables m and n.

We will choose to simplify by setting n = 1. Then we see that the equation has

rational points (m,u) = (0, 0) and (−1, 0), hence it is thus an elliptic curve in m

and u. A Weierstrass equation for this curve is given by

E(k) : y2 = x3 +A(k)x+B(k),

where

A(k) = −11k6 − k5/2− 529/48k4 − 3k3/4− 19k2/24− k/4− 1/48,

B(k) = (−1/864)(12k3+k2+6k+1)(1008k6−24k5+1007k4−36k3−38k2−12k−1).

We include the maps of the transformation in the Appendix, as they are unwieldy,

though straightforward to compute (for example, it can be computed via the

Weierstrassform command in Maple [14]). E(k) is an elliptic curve provided that

k(k + 1)(k2 + 1)(16k4 − 8k3 + 17k2 + 10k + 1) 6= 0.

This curve E(k) has a rational two-torsion point

(−2k3 − k2/6− k − 1/6, 0).

We also note two rational points P1 and P2, which lie on the elliptic curve E(k):

P1 = (−2k3 + k2/12− k/2 + 1/12, k(k − 1)(k + 1)2/2),

and

P2 = (−2k3 + k2/12− 3k/2 + 1/12, k(k − 1)(k2 + 2)/2).

We transform E(k), so that the 2-torsion point is translated to become (0, 0)

and the coefficients are in Z[k]. This simple linear transformation is an isomor-

phism which yields

Ẽ : y2 = x3 + Ãx2 + B̃x,

with

Ã = −24k3 − 2k2 − 12k − 2,

B̃ = (k + 1)2(16k4 − 8k3 + 17k2 + 10k + 1).
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The two rational points become

P̃1 = ((k + 1)2, 4k(k − 1)(k + 1)2), P̃2 = ((k − 1)2, 4k(k − 1)(k2 + 2)).

By Proposition 2.2, these two points are the generators of Ẽ and hence have

infinite order. If we trace back through the transformations, each rational point

on Ẽ will potentially lead to a Heron triangle and right triangle pair which have

the same area and same perimeter. We say potentially, because we need to ensure

that the side lengths are positive. As a result of our analysis, we will prove there

are infinitely many such rational pairs with the same area and perimeter.

Concretely, the sides of the Heron triangle (resulting from P1) are

s1 =k4−2k3+4k2−2k+1, s2 =(k2+1)(k2−k+1), s3 =−(k−1)(k2−k+2),

and the sides of the right triangle are

t1 = k(k − 1)(k2 − k + 2), t2 = 2k2 − 2k + 2, t3 = (k2 + 1)(k2 − 2k + 2).

The common perimeter is

2k4 − 4k3 + 8k2 − 6k + 4,

and the common area is

k(k − 1)(k2 − k + 2)(k2 − k + 1).

For P2, the resulting sides of the Heron triangle are (after scaling)

s1 =k6+k4+2k3+k2+4, s2 =(k3+2)(k2+1)(k−1), s3 =(k3+k+1)(k2+2),

and the sides of the right triangle are

t1 =k(k2+2)(k3+2), t2 =−2(k3+k+1)(k−1), t3 =k6+2k4+2k3+2k2+2.

The common perimeter is

2(k3 + k + 1)(k3 + 2),

and the common area is

−k(k2 + 2)(k3 + 2)(k3 + k + 1)(k − 1).
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The Heron triangles are not right triangles, as can be checked by the converse

to the Pythagorean theorem (except for k = ±1). It is trivial to observe that the

side lengths are integers, provided k ∈ Z.

In order to make geometric sense, it should be checked that the sides of the

above triangles are all of positive length. We first examine the case for triangles

resulting from the point P1. It is easy to check that s1 and s2 are postive for

any value of k, and that s3 > 0 for k < 1. Similarly, we see t1 > 0 for k < 0

and k > 1, and that t2 and t3 are always positive. Thus, for k < 0, the side

lengths of the Heron and right triangles will have positive length. For example,

when k = −2, the Heron triangle sides are [53, 35, 24], and the right triangle sides

are [48, 14, 50]. The common perimeter is 112, with the common area 336. See

Figure 1.

A similar analysis carried out on the triangles corresponding to P2 yields that

at least two sides will always have opposite sign, hence it is not possible in this

case to have actual Heron and right triangles, despite the formulas for their areas

and perimeters being equal. For example, for k = 2, the Heron triangle sides are

[104, 50, 66], and the right triangle side lengths are computed to be [120,−22, 122].

The common perimeter would be 220, and the common area ±1320.

Any rational point Q on Ẽ can be expressed as an integral linear combination

of P1 and P2 added to a torsion point (such as (0, 0) or the identity element).

Each such point Q will potentially lead to a Heron and right triangle pair with

the same perimeter and same area. An easy check can then be done to determine

for what values of k the side lengths are positive.

Now we use a result of Poincaré–Hurwitz [19, p. 78] about the density of

rational points. Their theorem states that if an elliptic curve E(Q) has positive

rank and at most one torsion point of order two, then the set E(Q) is dense in

E(R). We can check that Ẽ(k) has another point of order two if and only if

B̃2 − 4Ã = 0, or equivalently,

256k12 + 768k11 + 1120k10 + 1968k9 + 3233k8 + 3432k7

+ 3196k6 + 3192k5 + 2342k4 + 1080k3 + 228k2 + 72k + 9 = 0.

There are no rational solutions, so Ẽ only has one point of order two. Thus, by

the Poincaré–Hurwitz result, once we have one such point (for a fixed value of k),

we will have infinitely many. �

Another question that could be asked: When is the right triangle primitive?

Using the triangles corresponding to P1, it is easy to see that t1, t2 and t3 are all

divisible by 2 when k is an integer. For the Heron triangle, s1, s2 and s3 will be
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s3 = 34

s2 = 35 s1 = 53

t2 = 14

t3 = 50t1 = 48

Figure 1. An example of a Heron triangle and integral right triangle,

both of which have a perimeter of 112 and an area of 336.

even only when k is odd. So we could consider only odd k, and then divide the

side lengths of both triangles by 2. Note under this assumption that we always

have t3/2 − t1/2 = 1. Thus, the resulting integral right triangle will have two

sides which differ by 1, and hence must be primitive.

We end this section with an easy corollary. In [1], Bremner found two pa-

rameter families of pairs of Heron triangles with equal perimeter and area. Using

Theorem 2.1, we have another proof that there are infinitely many pairs of Heron

triangle pairs with equal perimeters and equal area, since an integral right trian-

gle is a Heron triangle. We also observed that the Heron triangles obtained above

are not right triangles, showing they are distinct.

Corollary 2.3. There are infinitely many pairs of distinct Heron triangles

with the same area and same perimeter.

Remark 2.4. We note that there are no (non-trivial) integral right triangle

pairs with the same area and same perimeter.

To see this, we set the side lengths for the two right triangles as {u2−v2,
2uv, u2 + v2} and {p2 − q2, 2pq, p2 + q2}. Setting the perimeters equal, we can

then solve for v:

v = (p2 + pq − u2)/u.

Substituting this expression for v into the equation for equal areas yields

−2p(p− u)(p+ u)(p+ q)(p2 + 2pq + q2 − 2u2) = 0.
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The trivial solutions are for p = ±u, p = 0, p = −q, and lead to degenerate

triangles. The only non-trivial solutions would be when p2 + 2pq + q2 − 2u2 = 0.

However, this can be re-written as (p+q)2 = 2u2, or equivalently, ((p+ q)/u)
2

=2.

Since a rational square root of 2 does not exist, we see that there can be no such

desired pair of right triangles.

3. Conclusion and directions for future work

We have proved that there are infinitely many pairs of Heron triangle and

integral right triangle pairs with common area and common perimeter. We have

also shown that there are infinitely many pairs of Heron triangles with the same

area and same perimeter, while there does not exist any such right triangle pairs.

A related question one can try to solve is the same problem for pairs of isosceles

and (non)-isosceles Heron triangles.

It would also be interesting to study the curve family Ẽ(k) in (1). We showed

the rank is 2 over Ẽ(Q(k)), but for specific values of k, the rank (over Q) can be

higher. For example, when k = −1929,−1582,−1563,−933,−745, the rank is 6.

Can the rank be higher?
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Appendix A. The maps to and from the Weierstrass equation

Recall that in the proof of Theorem 2.1 we had the following equation:

C(k) : m4 + 2m3 +m2 − k3u2 + kmu2 − 3m2u2 − 3mu2 + 2u4 = 0.

We can map this curve to and from a Weierstrass equation

E(k) : y2 = x3 +A(k)x+B(k),

via the following maps (computed via Maple [14]).
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We have φ : C(k)→ E(k), where φ(m,u) = (x, y) with

x =
1

12m(m+ 1)
(12k4u− 12k3m2 − 24k3mu− 12k3m− 12k3u+ k2m2

− 12k2mu+ 24km3 − 36km2u+ 24ku3 − 24m4 + 24m3u+ 48m2u2

− 48mu3 + k2m+ 30km2 − 48kmu− 48m3 + 36m2u+ 48mu2

− 24u3 + 6km− 23m2 + 12mu+m),

and

y =
1

2m(m+ 1)
(4k6u+ k5u− 4k4m2 + 4k4mu+ 8k3m3 − 12k3m2u

+ 8k3u3 − 4k4m+ 6k4u+ 12k3m2 − 13k3mu+ 4k2m3 − 9k2m2u

+ 2k2u3 + 4km4 − 24km2u2 + 16kmu3 + 8m5 − 8m4u− 16m3u2

+ 16m2u3 + 4k3m+ k3u+ 4k2m2 − 7k2mu+ 12km3 − 6km2u

− 24kmu2 + 12ku3 + 20m4 − 16m3u− 24m2u2 + 16mu3 + 8km2

− 7kmu+ 16m3 − 9m2u− 8mu2 + 2u3 + 4m2 − u).

The maps back are given by ψ : E(k)→ C(k), where ψ(x, y) = (m,u) = with

(m,u) =

(
f1(x, y, k)

f2(x, y, k)
,
f3(x, y, k)

f4(x, y, k)

)
.

Here

f1(x, y, k) = −19008k10 − 5040k9 − 636k8 − 26784k7x− 8601k7 − 6192k6x

− 2592k6y + 3425k6 + 1350k5x− 720k5y − 13824k4x2 − 2745k5

− 6858k4x− 2562k4y − 3456k3xy − 639k4 + 2700k3x− 1080k3y

+ 288k2xy − 2592kx3 + 621k3 − 1332k2x+ 1140k2y − 1728kxy

+ 864x3 − 864x2y − 165k2 + 270kx− 360ky + 288xy + 21k − 18x

+ 30y − 1,

f2(x, y, k) = 2(12k3 − k2 + 6k + 6x− 1)(1008k6 − 2280k5 + 1199k4 + 288k3x

− 1116k3 − 1176k2x+ 154k2 + 144kx− 144x2 + 12k − 24x− 1),

f3(x, y, k) = −5184k10 + 1008k9 − 7596k8 − 9504k7x+ 2021k7 − 432k6x

− 432k6y + 18k6 − 9522k5x+ 1368k5y − 5184k4x2 + 1563k5

− 648k4x− 291k4y − 432k3x2 − 864k3xy + 1440k4 − 684k3x
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+ 324k3y − 2592k2x2 + 936k2xy − 864kx3 + 555k3 − 216k2x

− 834k2y − 432kx2 − 432kxy − 432x2y + 90k2 − 18kx− 180ky

+ 72xy + 5k − 3y,

f4(x, y, k) = (12k3 + k2 + 6k + 6x+ 1)(1008k6 + 2280k5 + 1199k4 + 288k3x

+ 1116k3 + 1176k2x+ 154k2 + 144kx− 144x2 − 12k + 24x− 1).
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