
Coherently coupled mechanical oscillators in the quantum regime

Pan-Yu Hou,1, 2, ∗ Jenny J. Wu,1, 2 Stephen D. Erickson,1, 2 Daniel C. Cole,1 Giorgio Zarantonello,1, 2

Adam D. Brandt,1 Andrew C. Wilson,1 Daniel H. Slichter,1 and Dietrich Leibfried1, †

1National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305, USA
2Department of Physics, University of Colorado, Boulder, CO 80309, USA

(Dated: June 22, 2022)

Coupled harmonic oscillators are ubiquitous in physics and play a prominent role in quantum science.
They are a cornerstone of quantum mechanics [1] and quantum field theory [2], where second
quantization relies on harmonic oscillator operators to create and annihilate particles. Descriptions
of quantum tunneling, beamsplitters, coupled potential wells, “hopping terms”, decoherence, and
many other phenomena rely on coupled harmonic oscillators. However, the ability to couple separate
quantum harmonic oscillators directly, with coupling rates that substantially exceed decoherence
rates, has remained elusive. Here, we realize high-fidelity coherent exchange of single motional
quanta between harmonic oscillators – in this case, spectrally separated harmonic modes of motion
of a trapped ion crystal – where the timing, strength, and phase of the coupling are controlled
through an oscillating electric potential with suitable spatial variation. The coupling rate can
be made much larger than the decoherence rates, enabling demonstrations of high-fidelity quantum
state transfer, entanglement of motional modes, and Hong-Ou-Mandel-type interference [3]. We also
project a harmonic oscillator into its ground state by measurement and preserve that state during
repetitions of the projective measurement, an important prerequisite for non-destructive syndrome
measurement in continuous-variable quantum error correction [4–6]. Controllable coupling between
harmonic oscillators has potential applications in quantum information processing with continuous
variables, quantum simulation, and precision measurements. It can also enable cooling and quantum
logic spectroscopy [7] involving motional modes of trapped ions that are not directly accessible.

Quantum harmonic oscillators (HOs) are ubiquitous in
models of nature and have a mathematically simple de-
scription based on creation and annihilation operators
â† and â, respectively [1]. For two different HO modes
labeled as a and b, we designate the creation and anni-
hilation operators {â†, â} and {b̂†, b̂} respectively. Com-

bining the operators â† and b̂ as â†b̂ models the cre-
ation of a quantized excitation in mode a while anni-
hilating one excitation in mode b, as required for el-
ementary descriptions of tunneling, beamsplitters, cou-
pled potential wells, and “hopping terms” in solid state
models. Incomplete exchange leads to entanglement be-
tween modes a and b, and models of decoherence can
be realized by coupling a system a with a reservoir of
unobserved oscillators {bi} through interactions of the

form â†b̂i [8]. Encoding information into HOs has appli-
cations in quantum simulation [9–12], quantum commu-
nication [13–16], and continuous-variable quantum infor-
mation processing [5, 17–21]. Conceptually, more quan-
tum information can be stored in the high-dimensional
Hilbert space of HOs, a potential advantage over qubits,
if operations with sufficient fidelity and quantum error
correction (QEC) [22] can be implemented. Crucially,
information encoded in the HO needs to be preserved
during processing and error correction.

Harmonic oscillators have been coupled directly in
a number of systems [23–39], in some cases in the
single-quantum regime and with full control of the HO
states [40, 41]. However, these latter systems exhibited
substantial decoherence rates relative to the achieved
coupling rates. HOs have also been indirectly coupled

by interacting with shared qubits [42–48].

In this work, we demonstrate direct coherent coupling
of two HOs in the single-quantum regime with full state
control and, crucially, coherence times much longer than
the duration of a single state exchange. In general, the
bilinear coupling of two HOs can be described by the
Hamiltonian

H = ~g
(
eiφâb̂† + e−iφb̂â†

)
, (1)

where 2π~ is Planck’s constant, ~g is the coupling energy,
and φ is a controllable phase. This coupling can lead to
partial or full exchange of quantum states, as illustrated
in Fig. 1a. Ideally, the timing, strength g, and phase φ
of the coupling can be well controlled. To be practically
useful, the coupling rates need to be much larger than
decoherence rates of the coupled HO quantum states.

A linear string of N ions confined in a three-
dimensional harmonic potential and subject to mutual
Coulomb repulsion exhibits 3N normal modes of collec-
tive ion motion that can be treated as uncoupled HOs [49]
(see Supplementary Material). These motional modes
typically have coherence times of several milliseconds and
can be manipulated by external electric fields [50], and by
coupling to internal states of the ions using laser [51, 52]
or microwave fields [51, 53–55]. In this way, individ-
ual modes can be initialized in a variety of quantum
states [56] and information about the motion can be
transferred to the internal states of ions, which are in
turn read out by state-dependent fluorescence [57]. The
recoil from photons scattered during readout typically
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FIG. 1. Coupled quantum mechanical oscillators. a, Illustration of quantum state transfer between two coupled HOs.
A coherent coupling (green) fully exchanges the states of two HOs up to a phase at ts and creates two-mode entanglement at
ts/2, constituting a beamsplitter operation (see Supplementary Material). b, Three-dimensional perspective and c, top view
of the trapping zone in a segmented Paul trap (not to scale). A 9Be+-25Mg+-9Be+ crystal is confined along the axial direction
z in a harmonic potential well (solid black line in the top view). Two of three axial normal modes, “Alternating” at 3.66 MHz
and “Stretch” at 3.38 MHz (mode participation vectors ξ for all ions visualized as arrows in the dashed box at the bottom),
are coupled by an oscillating electric potential U(z, t) = U(z)A(t) cos(ωt + φ). The coordinate origin is at the location of the
Mg+ ion, and the spatial dependence of U(z) = U0z

3 is visualized by the green curve in c. The potential is generated from
twelve synchronized rf drives ViA(t) cos(ωt + φ) (i = 1, ..., 12, with Vi represented by the color of wavy arrows) applied to
twelve control electrodes (gold). d, Coupling pulse shape in the experiments. Green oscillating line represents the temporal
dependence of U(z, t) under the amplitude envelope A(t) (blue dashed line).

perturbs the ion motion and destroys its quantum coher-
ence. Here, we couple pairs of normal modes by apply-
ing an electric potential with suitable spatial dependence
that oscillates at the difference of two mode frequencies,
and investigate the properties of such coupling opera-
tions. In particular, we can couple to a mode of motion
whose symmetry protects it from perturbations during
readout. This enables us to perform minimally disturb-
ing measurements of the mode, projecting its state but
not otherwise affecting it. To demonstrate this essential
element of continuous-variable QEC, we repeatedly test
whether the protected mode is in its ground state while
preserving the state to a high degree.

We consider two normal modes a and b at frequencies
ωa and ωb, with position coordinates δrn,ia and δrn,ib re-
ferring to the displacement relative to equilibrium of the
nth ion along direction ia or ib, where ia, ib ∈ {x, y, z}.
To couple these modes, we apply an oscillating and
spatially-varying electric potential

U(r, t) = U(r)A(t) cos(ωt+ φ), (2)

with 0 ≤ A(t) ≤ 1 a pulse envelope (blue dashed line
in Fig. 1d) that evolves slowly compared to 2π/ω, and
ω ≈ |ωa−ωb|. The modes are coupled by curvature terms

αn =
∂2U

∂ia∂ib
|r=rn,0 (3)

in the expansion of U(r) around the equilibrium position
rn,0 of the nth ion. After transforming to the interaction

picture and neglecting fast-rotating terms (see Supple-
mentary Material), the interaction Hamiltonian has the
form of Eq.(1) with g(t) = A(t)g0. The coupling strength
g0 is a sum over contribution from each ion

g0 =

N∑
n=1

gn =

N∑
n=1

Qnαn
4Mn

√
ωaωb

ξ(ia)n,a ξ
(ib)
n,b , (4)

where Qn, Mn, ξ
(ia)
n,a and ξ

(ib)
n,b denote the charge, mass

and participation in modes a and b of the nth ion. The
participation is defined as the nth ion’s component of
the normalized eigenvector of a given normal mode. A
particular contribution gn can be positive or negative and
g0 can be influenced by properly designing the curvatures
αn to constructively add when multiplied with the mode
participations. For example, when two identical ions are

subject to the same curvature α1 = ∂2U
∂x∂z |r=r1,0 = α2,

the coupling between modes a and b, where the two ions
oscillate in phase along the z axis and out of phase along

the x axis respectively, will vanish, because ξ
(z)
1,aξ

(x)
1,b =

−ξ(z)2,aξ
(x)
2,b . If instead the oscillating potential fulfills α1 =

−α2, the coupling terms add constructively.
Atomic motion is extremely fragile and can be signif-

icantly perturbed by a single photon recoil. However, if
photon recoil can be limited to a certain ion s that does

not participate in a mode a, i.e. ξ
(ia)
s,a = 0, this mode is

protected and largely unperturbed even if thousands of
photons are scattered from ion s. The coupling Eq.(1) en-
ables “swapping” of the state in mode a into a suitable

mode b where ξ
(ib)
s,b 6= 0 and subsequently, information
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about the state of b can be coherently transferred to the
internal state of s. After swapping the motional state
back into a, readout of s yields this information, while
preserving the state of mode a to a high degree. This
could be exploited for implementing continuous-variable
QEC. We characterize the degree of protection of states
in the axial out-of-phase (“Stretch”) mode of a symmet-
ric three-ion mixed species crystal from photon recoil on
the middle ion (see Fig. 1b). This mode has negligible
participation of the middle ion and we utilize this pro-
tection to gain information on the Stretch mode state
without perturbing it substantially.

We trap 9Be+ and 25Mg+ ions in a segmented linear
Paul trap composed of two electrode layers. The struc-
ture near the trapping zone is shown in Fig. 1b and 1c
(also see [58]). We denote the axis of the linear trap as
z and the two radial principal axes of the trap potential
ellipsoid as x and y. To produce the coupling poten-
tial U(r, t), we apply signals oscillating at ω with differ-
ent amplitudes Vi to the twelve electrodes closest to the
ions. We calculate the potentials due to each electrode
to determine the set of Vi that generates the desired cur-
vatures at the ion positions while minimizing unwanted
electric fields and curvatures. The coupling pulses have
a smooth common envelope A(t) applied to all electrodes
that reduces sudden perturbations of the trapping poten-
tial (Fig. 1d).

We use microwave fields to implement “carrier” transi-
tions between internal hyperfine states, which leave mo-
tional mode states unchanged. We use stimulated Raman
transitions [51, 52] on both species of ions to cool mo-
tional modes to near their ground states, to prepare ap-
proximate number states in a certain mode, and to trans-
fer information about the states of motion onto internal
states of the ions for readout by state-dependent fluores-
cence [56]. After near-ground-state cooling, 9Be+ is pre-
pared in |↓〉B ≡ 2S1/2 |F = 2,mF = 2〉B and 25Mg+ in
|↓〉M ≡ 2S1/2 |F = 3,mF = 3〉M by optical pumping. In
each experiment, information about the motional modes
is mapped into the “bright” states |↓〉B and |↓〉M . During
a fluorescence detection lasting several hundred microsec-
onds, ions in these states scatter several thousand pho-
tons in all directions, of which approximately 30 photons
on average are detected, while all other hyperfine states
(dark states) scatter on the order of one photon or less.
Probabilities of detecting the ions to be in the “bright”
and “dark” states are determined by fitting a histogram
of photon counts from multiple trials to a Poisson distri-
bution or using thresholds (see Supplementary Material).
The mapping from a certain motional state to different
combinations of bright and dark states is realized by π
pulses on motional sidebands or by rapid adiabatic pas-
sage (RAP) pulses [59]. Details on state mapping in each
experiment are described in Supplementary Material.

Experimental characterization of the coupling between
two axial modes, the “Alternating” (∼3.66 MHz, sub-

script A) and Stretch (∼3.38 MHz, subscript S) modes, in
a symmetric mixed-species crystal ordered 9Be+-25Mg+-
9Be+ (BMB) as shown in Fig. 2. The participations of
ions in the modes are represented by black arrows in
Fig. 1b. The Mg+ ion does not contribute to g0 because
it has no participation in the Stretch mode. In Fig. 1c, a
cubic oscillating potential U(z, t) = A(t)U0 cos(ωt+φ)z3

with origin at the ion crystal center (green line) yields
differential (ideally opposite) αn at the two Be+ ions’
positions and non-zero g0. In a coupling pulse with a
non-zero duration (Fig. 1d), A(t) ramps up from zero to
one in τr = 20µs, then stays constant for τc and ramps
back to zero in τr. Its pulse area is equal to that of a
square pulse of amplitude one and duration τ = τr + τc.

The sequence of operations for characterizing the cou-
pling is shown in Fig. 2a. We calibrate the coupling
frequency ω0 and strength g0 by cooling all three axial
modes close to the ground state and initializing the Al-
ternating mode in an approximate number state |n = 1〉
with a sideband π pulse of the |↓〉M |0〉A ↔ |↑〉M |1〉A
transition (|↑〉M ≡ 2S1/2 |F = 2,mF = 2〉M ). Exchange
between the Alternating mode and Stretch mode will al-
ter the probability that the injected phonon (motional
quantum) is present in the Alternating or Stretch mode.
This probability is read out through the Be+ ions, which
participate in both modes, using a sideband pulse on
the |↓〉B |n〉A/S → |↑〉B |n− 1〉A/S transitions (|↑〉B ≡
2S1/2 |F = 1,mF = 1〉B), followed by detection of state-
dependent fluorescence. The probability P (nA/S = n)
of either mode being found in number state n= 0,1,2 is
extracted from the observed fluorescence of the two Be+

ions (see Supplementary Material). When scanning the
coupling pulse frequency ω (Fig. 2b) around the mode
frequency difference with a fixed coupling duration of
τ0 ≈ 100µs, we observe a reduction of the probability
P (nA = 1) to near zero coincident with an increase of the
probability P (nS = 1). We next scan the pulse duration
while on resonance at ω0 (Fig. 2c), observing P (nA = 1)
and P (nS = 1) oscillating out of phase at a frequency of
Ωc = 2g0 ≈ 2π×5.1 kHz with similar contrast. The single
phonon is swapped into the Stretch mode at ts ≈ 100µs,
and transferred back to the Alternating mode at 2ts,
corresponding to a double-swap operation. The popu-
lation loss per swap is estimated to be about 0.5% (see
Supplementary Material). We can increase Ωc to about
2π×18 kHz, limited by low-pass filters on the electrodes
and the maximum amplitude of the drive signals.

In Fig. 2d, we verify that the coupling acts as de-
scribed in detail in the Supplementary Material and does
not cause excess motional decoherence, by first creating
a superposition 1/

√
2 (|0〉A + |1〉A), followed by either a

delay or a coupling pulse that results in a single swap or
a double swap. Afterwards, the state of the Alternating
mode is written onto the Mg+ internal states, followed by
a microwave π/2 pulse with variable phase φ. With just
the delay, the whole experiment amounts to a Ramsey
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sequence, with a sinusoidal dependence of the probabil-
ity P (|↓〉M ) on φ (purple data points). When swapped
into the Stretch mode, the motional superposition can-
not be written onto the Mg+ ion and the subsequent π/2
pulse leads to P (|↓〉M ) ≈ 1/2 independent of φ (grey data
points). When double-swapped (green data points), the
motional superposition returns to the Alternating mode,
but also picks up an approximate phase shift of π relative
to no swap.

Full characterization of entangling operations re-
quires the detection of correlations between the entan-
gled degrees of freedom. The distinct resonant wave-
length of each ion species in the BMB crystal allows
us to map joint probabilities of select number states
of two normal modes onto the internal states and de-
tect them through state-dependent fluorescence on both
species. We read out the populations in the sub-
space S spanned by the nine orthonormal product states
{|0〉A , |1〉A , |2〉A}

⊗
{|0〉S , |1〉S , |2〉S}. A sideband RAP

pulse maps the Stretch mode states on the two Be+ ions
according to |0〉S → |↓↓〉B , |1〉S → |↑↓〉B + |↓↑〉B , and
|2〉S → |↑↑〉B . A sequence consisting of Alternating side-
band RAP pulses and microwave pulses on the Mg+ ion
maps a chosen state among {|0〉A , |1〉A , |2〉A} onto the
bright state |↓〉M , and transfers the other two number
states to other hyperfine levels that appear dark during
detection. Each experimental trial yields a measurement
of whether or not the Alternating mode state was in the
number state that was mapped to |↓〉M . By perform-
ing repeated experimental trials with different choices of
the number state to be measured, we obtain approximate
populations of all nine product states in S (see Supple-
mentary Material for more details).

Panels e-j of Fig. 2 show the correlated dynamics of
the coupled modes for four initial states: |n〉A |m〉S =
{|0〉A |0〉S , |1〉A |0〉S , |1〉A |1〉S , |0〉A |2〉S}. The interac-
tion Eq. (1) ideally conserves the total number N of mo-
tional quanta in the two modes. Experimentally, only
populations of states with the same N were found to
be substantial. These populations are shown as dots in
Fig. 2e-j along with simulations (lines) [60] based on ex-
perimental parameters determined from separate mea-
surements, including coupling strength, initial state pop-
ulations, and heating rates. Dynamics of all states span-
ning the subspace S are shown in Fig. 7-10 in Supple-
mentary Material.

With the system initialized in |0〉A |0〉S (N=0) the
population mostly remains in this state, which is the
only one with N=0. We observe a slow decay out
of |0〉A |0〉S primarily due to heating of the Alternat-
ing mode (Fig. 2e), which results in the populations
of |0〉A |1〉S and |1〉A |0〉S slowly increasing. In Fig. 2f,
with |1〉A |0〉S as the initial state (N = 1) the popu-
lation swaps into the other state |0〉A |1〉S and we ob-
serve two anti-correlated sinusoidal population oscilla-
tions with similar amplitude. The single phonon is

swapped to the Stretch mode at ts with a popula-
tion error of 1.4(1)% obtained from a separate mea-
surement that repeatedly applies swap pulses (see error
estimation in Fig. 10 in Supplementary Material). At
tBS ≈ 50µs, the coupling pulse realizes a beamsplitter
(BS) operation U = exp[i(π/4)(âb̂†+ b̂â†)], which we ex-
pect to generate a NOON-type entangled motional state
1√
2
(|1〉A |0〉S + |0〉A |1〉S) [61]. We observe approximately

equal population in |0〉A |1〉S and |1〉A |0〉S at tBS and
verify the coherence between these two components by
performing a phonon interferometry experiment consist-
ing of two BS operations with variable phase difference
φ. The resulting interference fringes are shown in Fig. 2i
and have similar contrast as the time scan data in Fig. 2f,
indicating that motional coherence is preserved and an
approximate NOON state is generated by the first BS
pulse.

The initial state |1〉A |1〉S evolves into |0〉A |2〉S and
|2〉A |0〉S with nearly equal population, while the popu-
lation in |1〉A |1〉S is reduced almost to zero at tBS by
destructive interference (Fig. 2g). This behavior is anal-
ogous to Hong–Ou–Mandel (HOM) interference [3]; here
the interference is between phonons at different frequen-
cies. The NOON state 1√

2
(|2〉A |0〉S + |0〉A |2〉S) is gener-

ated at tBS , and the phase coherence of this state is also
verified by a phonon interferometry experiment (Fig. 2j).
When |0〉A |2〉S is prepared (Fig. 2h), the two phonons
are almost fully transferred into the Alternating mode
(|2〉A |0〉S) at ts, but they also partially populate |1〉A |1〉S
for 0 < t < ts.

High-fidelity swap operations between the protected
Stretch mode and the Alternating mode, the latter of
which has substantial participation of the Mg+ ion, al-
low us to write information about a motional state in the
Alternating mode onto Mg+ and then swap the motional
state into the Stretch mode to preserve it during readout
of the Mg+ ion. Preservation of the motional state en-
ables the measurement to be repeated to achieve greater
confidence in the result. Here, we implement a mea-
surement that can non-destructively distinguish a num-
ber state |n〉 ∈ {|0〉, |1〉} of ion motion using the circuit
shown in Fig. 3a. While |n〉 is stored in the Alternating
mode, information can be mapped onto the Mg+ internal
state with a Cirac-Zoller sequence (schematically shown
in grey box, see Supplementary Material for details) that
contains a motion-subtracting-sideband (MSS) 2π pulse
surrounded by two carrier π/2 pulses. This MSS pulse
ideally will leave both |0〉 and |1〉 unaffected and will in-
troduce a π phase shift between the internal states only
when the motional state is |1〉 [62]. When the phase of
the second π/2 pulse φ2 = 0, we map |0〉 and |1〉 to a
dark (d) and bright (b) state respectively, i.e. |0〉 → d
and |1〉 → b, and we label this mapping as M1. By set-
ting φ2 = π, we realize |0〉 → b and |1〉 → d, labelled as
M2. The state |n〉 is swapped to the Stretch mode before
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FIG. 2. Coherent coupling dynamics. a, Experimental sequence for characterizing Alternating-Stretch coupling. The
modes are cooled to near the ground state, then prepared in a certain state by Raman laser interactions. A coupling pulse
sequence (white box) coherently exchanges the states between modes. Motional states are mapped onto one or both of the
ion species by Raman laser interactions (green box, see details in text) followed by state-dependent fluorescence detection.
The respective initial motional states and coupling pulse sequences (blue boxes represent single coupling pulses) are indicated
in b-j. Lines in b-d are fits to the data, while lines in e-j are from numerical simulation using experimentally calibrated
parameter values. b, When a single phonon is prepared in the Alternating mode, the probability of finding the phonon in the
Alternating mode is high unless the coupling frequency ω is tuned near resonance, where the probability then becomes high
for the phonon to be exchanged into the Stretch mode (blue squares). c, With the coupling held on resonance, a single phonon
coherently swaps between the two modes as the coupling time τ increases. Vertical dashed lines in different colors indicate the
pulse durations for beamsplitter (BS), swap, and double-swap operations respectively. d, Motional coherence verification after
a coupling pulse. A superposition of |0〉A and |1〉A undergoes a swap operation (grey stars), a double-swap operation (teal
dots), or a delay (purple squares) equivalent to the duration of the double-swap operation. Then, the motional superposition is
mapped onto Mg+ hyperfine states |↑〉M and |↓〉M with a variable phase φ. e-h, Probability of finding certain states in S as the
exchange duration τ is swept for four different initial states. i,j, Phonon interference for initial states |1〉A |0〉S and |1〉A |1〉S .
Results in (f, i) and (g, j) verify two-mode entanglement generated by a beamsplitter for initial states |1〉A |0〉S and |1〉A |1〉S
respectively. Results in (g, j) correspond to Hong-Ou-Mandel-type interference between two phonons at different frequencies.

Mg+ fluorescence detection. Due to the limited collec-
tion and detection efficiency of our apparatus, we detect
approximately 30 photons on average when in the bright
state, while the total number of photons scattered into
all directions is several thousand. In each measurement,
we declare the Mg+ ion to be bright or dark depend-
ing on whether or not the number of detected photons is
greater than nine. The in-phase (INPH) mode and the
Alternating mode are cooled to near their ground states
and another swap pulse transfers the number state back
to the Alternating mode to permit the next measurement.
This particular measurement cannot distinguish number
states with n > 1, but can be adapted in principle to
reveal any single bit of information about the state of
the motion by simply modifying the mapping sequence,
which may make it amenable to syndrome extraction in
bosonic error correction codes [17, 19, 63, 64].

As a demonstration, the Alternating mode is sideband
cooled to a thermal distribution with an average oc-

cupation of n̄= 0.023(1), with more than 99.9% of the
population in |0〉 (p0=0.978(1)) and |1〉 (p1=0.022(1)).
We repeat the motional state measurement up to three
times and obtain a series of outcomes {o1, ..., oi, ..., oN}
with oi ∈ {d, b}, i=1,...,N . For M1, we declare the
state is |0〉 or |1〉 if all N outcomes are the same (all d
or all b, respectively), and discard the other outcomes
because the state is not distinguished faithfully. The
relative frequencies of finding |0〉 and |1〉, defined as
p̃0 = p({d}N )/(p({d}N ) + p({b}N ) and p̃1 = 1 − p̃0,
should match with the initial distribution {p0, p1}, where
p({d}N ) and p({b}N ) are the probabilities of all N out-
comes being d and b respectively. For M2, the roles of d
and b are exchanged. We examine the final state of the
Alternating mode by applying a π pulse on the motion-
adding-sideband (MAS) transition |↓〉M |0〉 ↔ |↑〉M |1〉 or
a pulse of the same duration on the MSS transition, fol-
lowed by Mg+ fluorescence detection. The n̄ conditioned
on various measurement outcomes can be estimated with
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FIG. 3. Repeated measurements of quantum ground state of trapped-ion motion. a, Diagram of measurement
for non-destructively distinguishing number states {|0〉, |1〉}. The Alternating mode is initialized in a thermal distribution at
n̄= 0.023(1), with > 0.999 of the population in |0〉 (p0=0.978(1)) and |1〉 (p1=0.022(1)). These states can be distinguished
with the operations in the grey box (see text) and read out on Mg+ after swapping the motional state into the Stretch mode to
protect it from the recoil of the Mg+ ion during detection and sideband cooling (SBC). Another swap pulse brings the motional
state back to the Alternating mode such that this measurement can be repeated. In each repetition, Mg+ is declared either
bright (b) or dark (d) by comparing the detected photon number with a threshold of nine. We obtain a series of binary outcomes
{o1, ..., oi, ..., oN}, oi ∈ {d, b} with the measurement performed N times. When φ2 = 0, we realize the mapping (M1): |0〉 → d,
|1〉 → b, while φ2 = π exchanges the roles of b and d, (M2): |1〉 → d, |0〉 → b. We verify the motional state after a certain
sequence by measuring MAS and MSS excitation. b and c, Repeated measurement outcomes match the initial distribution.
For M1 (b), we declare the state is |0〉 (|1〉) if all N outcomes are d (b), which occurs with probability p({d}N ) (p({b}N )). The
relative frequencies of finding |0〉 and |1〉, {p̃0 (light orange bars), p̃1 (dark orange bars)} extracted (see text) from p({d}N )
(light blue bars) and p({b}N ) (dark blue bars), are consistent with {p0, p1} (dashed line). As N increases, {p̃0, p̃1} become
closer to the initial distribution but use less data, i.e. the sum of p({d}N ) and p({b}N ) decreases. For M2 (c), we identify
the state as |0〉 or |1〉 if all N outcomes are b or d and observe similar results. d, Alternating mean occupation number (n̄)
post-selected on all N outcomes being d for M1 (blue dots) or b for M2 (blue diamonds) are lower than the corresponding n̄
with no post-selection (red symbols). “No exchange” n̄ (black squares), which are measured after applying a delay with the
duration of N measurement blocks without swapping into the Stretch mode, are substantially higher than other results due to
the higher heating rate of the Alternating mode. Data points are laterally offset from nominal N values for legibility and error
bars for some points are smaller than the plot symbols.

MAS and MSS transition probabilities, if the conditioned
state is close to a thermal state, or if the population is
predominantly in |0〉 and |1〉 [52].

In Fig. 3b, using M1 and N=1, we detect {d} herald-
ing |0〉 and obtain p̃0 (light orange bar)= p({d})N=1

(light blue bar)= 0.960(3) while p̃1 (dark orange
bar)= p({b})N=1 (dark blue bar) = 0.040(3). The {p̃0,
p̃1} are close to the initial state populations {p0, p1} (in-
dicated by dashed line) respectively with a small differ-
ence of about 0.02, which indicates a detection error.
With N = 2, the {p̃0, p̃1} are only different from {p0, p1}
by 0.002(2) because the state is heralded twice, largely
suppressing erroneous declarations. However, we discard
about 7.8% of the total trials (gap between light blue and
dark blue bars) where the outcomes from the two rounds
disagree. This number is larger than the detection error

of a single round, indicating that the motional state is
slightly changed during the measurements, likely due to
heating. With N = 3, the {p̃0, p̃1} are also close to the
initial distribution, but another 3% of the total trials are
discarded. In Fig. 3c, we implemented M2 and observed
that {p̃0, p̃1} also match well with the initial distribu-
tion. Compared to M1, more data were discarded due to
disagreement between repeated measurements, suggest-
ing that Mg+ scattering may introduce additional dis-
turbance to the motional state. For larger N with either
M1 or M2, the leakage into higher number states also
increases because of heating and may lower the readout
fidelity.

The n̄ values of final motional states as determined by
MAS/MSS transition rates are shown in Fig. 3d. The
black data points represent n̄ after waiting an equiva-
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lent duration as is required for mapping, swapping, read-
out and cooling during the repeated measurement blocks.
The increase in n̄ is predominantly due to heating of the
Alternating mode. The red dots and red diamonds rep-
resent trials where the measurement blocks are executed
with mapping M1 and M2 respectively, but no further
action is taken before determining n̄. The n̄ values are re-
duced compared to the black points because of the lower
heating rate in the Stretch mode, where the motional
state is stored part of the time. The remaining data
show n̄ post-selected on the measurement heralding |0〉
N times. The blue dots are for M1 and the blue dia-
monds for M2. In all cases, M1—where |0〉 is heralded by
no photons scattered on Mg+—yields the lowest n̄. How-
ever, the case post-selected on scattering photons when
in |0〉 (M2) also yields lower n̄ than the unconditioned
data. This shows that the measurements where photons
are scattered do not perfectly preserve the motional state,
but still yield useful information and can keep the state
closer to the ideal outcome despite many recoils suffered
by the Mg+ ion during readout. The difference between
using M1 and M2 is likely due to a small amount of re-
coil heating in the Stretch mode, caused by non-ideal odd
anharmonic terms in the trapping potential (see Supple-
mentary Material). Complete MAS and MSS results for
all N and all outcomes can be found in Table I-III and
Fig. 12b in Supplementary Material.

Coherent coupling of normal modes of a mixed-species
ion string can be applied for cooling [65], indirect state
preparation [66], and precision spectroscopy of charged
particles based on quantum logic [7]. The required time-
varying potentials couple to the charge of the particles
only, leaving electronic and spin states unaffected to a
high degree. The coupling remains robust over weeks
with very little calibration in our setup and can be
enhanced and refined in smaller traps with more con-
trol electrodes. Coherent mode coupling can extend
existing techniques, such as providing two-mode oper-
ations for continuous-variable quantum computing [5].
Higher-order coupling potentials permit Kerr-type cou-
plings [67, 68] or can act on more than two modes simul-
taneously. Any of these techniques can be combined with
well-developed spin-motion control techniques to enable
simulations of more complicated physical models [69, 70].
Protected modes can be exploited for more general mea-
surements that leave a motional state intact. We note
that similar work on protected modes of trapped ion crys-
tals is underway in other research groups [71].
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G. Johansson, I. Fuentes, and C. M. Wilson, Phys. Rev.
Applied 10, 044019 (2018).

[38] F. Hakelberg, P. Kiefer, M. Wittemer, U. Warring, and
T. Schaetz, Physical Review Letters 123, 100504 (2019).

[39] D. An, A. M. Alonso, C. Matthiesen, and H. Häffner,
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Supplementary Material: Coherently coupled mechanical oscillators in the quantum
regime

COUPLING HAMILTONIAN DERIVATION

We consider a mixed-species linear string consisting of N ions with different masses Mn and charges Qn (n = 1, ..., N),
trapped in a three-dimensional potential well U0(r). We choose a coordinate system that is aligned with the principal
axes of the equipotential ellipsoids that characterize U0(r) near its minimum position, which we define as the origin
of the coordinate system. As shown in Fig. 1b, x and y are defined by the control and rf electrodes, and z is along
the trap axis which runs parallel to the electrode edges. The coordinate origin is in the plane parallel to and midway
between the electrode wafers and coincides with the minimum of the harmonic potential (black line) sketched in
Fig. 1c. The coordinate axes line up with the eigenvectors of three groups of normal (decoupled) motional modes,
with N modes in each group that we will derive next. The total potential energy summed over ions at positions
rn = (rx,n, ry,n, rz,n)T is given by

Upot(r1, ...rN ) =

N∑
n=1

QnU0(rn) +

N∑
n=1

N∑
n′=n+1

QnQn′

4πε0|rn − rn′ |
. (5)

By solving ∂Upot/∂rn = 0, we obtain each ion’s equilibrium position r
(0)
n . Expanding Upot to second-order in small,

mass-weighted coordinate changes qi,n = (ri,n − r
(0)
i,n)/
√
Mn with i ∈ {x, y, z} around r

(0)
n and diagonalizing the

resulting Hessian matrix, we obtain 3N mutually decoupled normal modes of ion motion with frequencies ωi,m and
quantized normal mode coordinates

ui,m =

√
~

2ωi,m

(
âi,m + â†i,m

)
,

where ωi,m, â†i,m, and âi,m are the motional frequency, creation operator, and annihilation operator respectively of
the m-th mode along axis i ∈ {x, y, z}. In the normal mode coordinates, the Hamiltonian of the motion of an ion
string consists of 3N uncoupled HOs and can be written as

H0 =
∑

i∈{x,y,z}

N∑
m=1

~ωi,m
(
â†i,mâi,m + 1/2

)
.

Each ion oscillates around its equilibrium position, but does not participate in all normal modes equally in general
and may not participate at all in some modes. For the nth ion the displacement along the i-th axis, q̂i,n can be
written in terms of the m-th normal mode creation and annihilation operators as

q̂i,n =

N∑
m=1

√
~

2Mnωi,m
ξ(i)n,m

(
âi,m + â†i,m

)
, (6)

where ξ
(i)
n,m is the transformation matrix element between the spatial coordinates of the nth ion displacement qi,n

along axis i and the normal mode vector component along the same axis for the m-th eigenmode.

To couple two particular normal modes, mode a oscillating at frequency ωia,a along axis ia and mode b at
frequency ωib,b along axis ib, we can apply an oscillating perturbing potential Upert(r, t) = U(r) cos(ωt + φ) with ω
close to the frequency difference of the modes we would like to couple, ω ≈ ωia,a − ωib,b. Expanding U(r) up to
second-order around a certain position r0, we obtain

U(r0 + δr) ≈ U(r0) +
∑

i∈{x,y,z}

∂U

∂i
|r=r0

δri +
1

2

∑
i,j∈{x,y,z}

∂2U

∂i∂j
|r=r0δriδrj . (7)

Anticipating that only terms proportional to δriaδrib of the two normal modes we desire to couple will rotate slowly
in the interaction picture with respect to H0, we can drop all other terms in U(r) to simplify the following steps,

U(r0 + δr) ≈ 2−δ(ia,ib)
∂2U

∂ia∂ib
|r=r0δriaδrib ,
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where δ(ia, ib) = 1 for ia = ib and 0 otherwise and we have used ∂2U/(∂ia∂ib) = ∂2U/(∂ib∂ia). In practice, the
dropped terms may cause undesirable distortion of the potential and excess ion motion and should be minimized when
designing the perturbing potential. Again only keeping near-resonant terms, inserting the displacement operators for
displacements of the nth ion in modes a, b, namely δria,n = q̂ia,n, δrib,n = q̂ib,n, abbreviating ∂2U/(∂ia∂ib)|r=r(0)

n
= αn

and inserting Eq. (6), the Hamiltonian from the perturbing potential can be approximated as

H =

N∑
n=1

QnUpert(rn, t)

≈
N∑
n=1

Qn2−δ(ia,ib)αnq̂ia,nq̂ib,n cos(ωt+ φ)

=

N∑
n=1

Qn2−δ(ia,ib)αn

[
N∑
m=1

√
~

2Mnωia,m
ξ(ia)n,m

(
âia,m + â†ia,m

)]

×

[
N∑
l=1

√
~

2Mnωib,l
ξ
(ib)
n,l

(
âib,l + â†ib,l

)]

× 1

2

(
e−i(ωt+φ) + ei(ωt+φ)

)
=

N∑
n,m,l=1

2−δ(ia,ib)
~Qnαn

4Mn
√
ωia,mωib,l

ξ(ia)n,mξ
(ib)
n,l

(
âia,m + â†ia,m

)(
âib,l + â†ib,l

)(
e−i(ωt+φ) + ei(ωt+φ)

)
.

(8)

We analyze this expression in the interaction frame with respect to H0 by replacing âi,m → âi,me
−iωi,mt,

â†i,m → âi,me
iωi,mt. When ω ≈ ωia,a − ωib,b, we can neglect all terms that are not rotating at ± [ω − (ωia,a − ωib,b)],

which simplifies the coupling Hamiltonian (8) to

H = ~g0
(
eiφâb̂† + e−iφâ†b̂

)
(9)

where we use ωia,a = ωa, ωib,b = ωb, âia,a = â and âib,b = b̂ for simplicity from this point onward. Note that coupling

two modes along the same axis, ia = ib, results in two near-resonant cross-terms proportional to ξ
(ia)
n,a ξ

(ia)
n,b and ξ

(ia)
n,b ξ

(ia)
n,a

that both contribute to the coupling equally and cancel the factor 2−δ(ia,ia). The coupling strength is

g0 =

N∑
n=1

gn =

N∑
n=1

Qnαn
4Mn

√
ωaωb

ξ(ia)n,a ξ
(ib)
n,b . (10)

This is identical to Eq. (4) in the main text.

TIME EVOLUTION OF COUPLED MOTIONAL STATES

When two modes represented by ladder operators â and b̂ are coupled by the Hamiltonian Eq.(9), their states of motion
will become entangled and, after an exchange of population, disentangled, in a periodic fashion. The time-dependent
states can be found by first performing a basis transformation

ĉ+ =
1√
2

(
â+ e−iφb̂

)
ĉ− =

1√
2

(
â− e−iφb̂

)
, (11)

which diagonalizes the interaction Hamiltonian

~g0
(
eiφâb̂† + e−iφâ†b̂

)
= ~g0

(
ĉ†+ĉ+ − ĉ

†
−ĉ−

)
. (12)
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The right hand side represents two harmonic oscillators with energies separated by twice the interaction energy ~g0.
In the interaction frame of reference, these oscillators have simple equations of motion

ĉ†±(t) = ĉ†±(0) exp(±ig0t). (13)

Writing â†(0) = â†, b̂†(0) = b̂† for brevity and inserting the time dependence into the equations for â(t) and b̂(t) yields

â†(t) = â† cos(g0t) + ieiφb̂† sin(g0t)

b̂†(t) = b̂† cos(g0t) + ie−iφâ† sin(g0t). (14)

Any state of the oscillators at time t can be written as a superposition of number states with complex amplitudes
cmn by acting with different combinations of creation operators on the vacuum state |0〉a |0〉b,

|Ψa(t)〉 |Φb(t)〉 =

∞∑
m,n=0

cmn√
m!n!

[
â†(t)

]m [
b̂†(t)

]n
|0〉a |0〉b , (15)

such that the time dependence is fully captured in the creation operators. For general times t this implies a rather
complicated entangled state of the modes, which becomes simpler for certain evolution times. For example when
setting τBS = π/(4g0) the trigonometric factors sin(g0τBS) = cos(g0τBS) = 1/

√
2 and Eq.(14) turns into a beamsplitter

relation [72] that can be used to demonstrate the Hong-Ou-Mandel effect, here for two modes at different frequencies
in a mixed-species string of ions (See the main text and Fig. 2g and 2j).

Eq.(14) simplifies even more for τk = kπ/(2g0) with k a positive integer. For k odd this yields

â†(τk) = iei(g0τk+φ)b̂†

b̂†(τk) = iei(g0τk−φ)â†, (16)

which implies that |Ψa(τk)〉 |Φb(τk)〉 with k odd has the original states of modes a and b swapped and shifted by a
phase g0τk ± φ. This phase difference arises relative to that of the uncoupled evolution of the modes and can be
thought of as a consequence of the coupling that modifies the energies of the eigenstates with the additional factors
due to the phase φ of the applied drive. For k even

â†(τk) = eig0τk â†

b̂†(τk) = eig0τk b̂†, (17)

which signifies one or several complete forth-and-back exchanges and a phase shift due to the coupling energy. Up
to this phase shift, the state |Ψa(τk)〉 |Φb(τk)〉 with k even is identical to the one at t = 0 in the interaction frame of
reference.

EXPERIMENTAL METHODS

Coupling drive generation and control
We use a segmented linear Paul trap consisting of a pair of RF electrodes and 47 control electrodes [58]. The voltages
of the control electrodes are produced by 47 independent arbitrary waveform generators (AWGs) with a 50 MHz
clock rate [73]. Each AWG output is connected to a control electrode through a two-stage low-pass filter with a
3 dB corner frequency of about 50 kHz to suppress noise at motional frequencies. The oscillating potential U(r, t) for
creating mode-mode coupling is produced by the twelve electrodes nearest to the ions controlled by their AWGs. The
oscillating signals are added to the static voltages that produce the axial confinement. The AWGs are not actively
synchronized, but have approximately equal clock speeds, so we reset their phase at the beginning of each experiment
to make sure all the drives oscillate in phase. Coupling of motional modes becomes ineffective for motional frequency
differences larger than 1 MHz due to attenuation from the low-pass filters and the 1 MHz bandwidth of the AWG
output amplifiers.

We shape the amplitude envelope of coupling pulses to suppress the excitation of nearby normal modes due
to spectral side-lobes of square pulses. The pulse amplitude ramps up as approximately sin(2πft)2 (with f= 12.5
kHz and 0≤ t ≤ 20µs) at the beginning of the pulse and ramps back to zero using the time-reversal of the ramp-up.
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We observe significant off-resonant excitation of the axial in-phase mode (at ∼ 1.5 MHz) of a BMB crystal when using
a square coupling pulse around the resonant frequency of the Alternating-Stretch coupling, while such excitation is
largely suppressed with shaped pulses.

We determine the coupling drive amplitudes for the twelve electrodes using a trap potential simulation [58]
to generate a potential for which the desired spatial derivative is maximized while the unwanted components are
minimized. These unwanted terms typically include the gradients ∂U/∂i, i ∈ {x, y, z}, which displace and potentially
heat the ion motion, and the curvatures ∂2U/∂i2, i ∈ {x, y, z} which modulate motional frequencies. Higher-order
derivatives of the potential are typically negligible in our trap and are not considered in the simulations.

Alternating

Stretch

Be+
0 𝑆

Coupling pulse at 𝜔

↓↓ 𝐵

𝜏
0 𝐴

Raman pulse

↓ 𝐵 1 𝐴/𝑆 ↔ ↑ 𝐵 0 𝐴/𝑆

Mg+ ↓ 𝑀

Shelving

Motional 𝜋/2-pulse

𝜋/2-pulse, 𝜙 = 0

a

c

d

2S1/2

𝑚𝐹 = -2 -1 0 +1 +2

𝐹 = 2

𝐹 = 1

𝐹 = 3

𝐹 = 2
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1.5~2.0 GHz

Microwave Microwave

Stretch 0 𝑆

Alternating 0 𝐴

Mg+ ↓ 𝑀 Raman 𝜋-pulse

↑ 𝑀 0 𝐴 ↔ ↓ 𝑀 1 𝐴

Motional 𝜋/2-pulse
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↓ 𝐵 ↔ ↑ 𝐵

2P3/2 3, 3 𝐵 2P3/2 4, 4 𝑀
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𝒌𝑴𝟏 𝒌𝑴𝟐

𝒌𝑩𝟏 𝒌𝑩𝟐

𝚫𝒌𝑴𝟏𝟐 = 𝒌𝑴𝟏 − 𝒌𝑴𝟐

𝚫𝒌𝑩𝟏𝟐 = 𝒌𝑩𝟏 − 𝒌𝑩𝟐
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Double-swap/

Delay/Swap
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197 GHz
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2P1/2 3, 3 𝑀

~200 GHz

~300 GHz

2P1/2 2, 2 𝐵
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↓ 𝑀 0 𝐴 ↔ ↑ 𝑀 1 𝐴

B field ≃ 0.0119 T

Shelving↓ 𝑀 ↔ ↑ 𝑀↓ 𝑀 ↔ ↑ 𝑀

FIG. 4. a, Relevant electronic states of 9Be+ and 25Mg+ at an applied magnetic quantization field of | ~B| ≈ 0.0119 T. b,
Configuration of Raman laser beams for Be+ (red) and Mg+ (green). c, Experimental sequence for calibrating coupling resonant
frequency and rates (results in Fig. 2b,c) of the Alternating-Stretch coupling. d, Experimental sequence for a motional Ramsey
interference experiment between |0〉A and |1〉A (results in Fig. 2d) with a delay, or a coupling pulse for a single swap or a double
swap inserted between the motional π/2 pulses.

Ion species and state manipulation
We trap two ion species, 9Be+ and 25Mg+, at a quantization magnetic field of ∼ 0.0119 T. The relevant electronic
states of both species are illustrated in Fig. 4a. A σ+-polarized ultraviolet (UV) laser beam near 313 nm optically
pumps Be+ ions to |↓〉B = 2S1/2 |F = 2,mF = 2〉B , while Doppler cooling and state-dependent fluorescence detec-
tion are implemented with a second UV laser beam driving the 2S1/2 |2, 2〉B ↔ 2P3/2 |3, 3〉B cycling transition,
causing photons to be emitted from the ion when Be+ is in the “bright” state |↓〉B . Similarly, Mg+ ions are
optically pumped to the bright state |↓〉M= 2S1/2 |3, 3〉M with a σ+-polarized laser beam near 280 nm. A second UV
laser beam is used to drive the 2S1/2 |3, 3〉M ↔ 2P3/2 |4, 4〉M transition for Doppler cooling and fluorescence detection.

State-dependent fluorescence detection is accomplished with resonant UV light illuminating the ions for a du-
ration of 330µs for Be+ and 200µs for Mg+, with a fraction of the ion fluorescence collected by an achromatic
imaging system and detected by a photomultiplier tube. To distinguish two hyperfine states of interest, we apply
a “shelving” sequence that consists of microwave π pulses to transfer one hyperfine state to the bright state and
the other to a dark state (a hyperfine state away from the bright state in the 2S1/2 manifold) before fluorescence
detection. The microwave transitions used in the shelving sequence are indicated with grey double-arrows in



13

Fig. 4a. The detected photon counts approximately follow Poisson distributions with a mean of ∼ 30 counts for
each ion when they are in the bright states |↓〉B and |↓〉M . The ions scatter only a few photons per detection
when in any other hyperfine states. In particular, we detect a background of ∼ 2 photons for Be+ and ∼ 1 pho-
tons for Mg+ (dominated by background scatter) when ions are in the “dark” states, 2S1/2 |1,−1〉B and 2S1/2 |2,−2〉M .

In the coupling calibrations, we analyze the photon counts of a reference dataset by using maximum likeli-
hood estimation (MLE) to determine the Poissonian mean photon counts of N= 0,1,2 Be+ ions in the bright state.
Then, we determine the probability Pb(N) of N Be+ ions in the bright state for the coupling calibration data using
MLE with the fixed and pre-determined Poissonian means. Correlations of the populations in different motional
modes need to be evaluated within a single experimental trial. We choose photon count thresholds such that the
number of bright ions is distinguished with minimal error for both ion species in each trial and obtain the probability
of the joint state over many experiment repetitions. For two Be+ ions, the ions are identified to be both in the
bright state when the counts cBe > 46; and only one bright Be+ ion when 13 ≤ cBe < 46; zero bright ions otherwise.
A single Mg+ ion is determined to be in the bright state when the photon count cMg > 9, and in the dark state
otherwise. The histogram for one bright ion has an overlap of about 1.4% with that of two bright ions and has
nearly zero overlap with that of zero bright ions assuming ideal Poisson distributions. In the repeated motional state
measurements, the single Mg+ ion population is determined by using the threshold method.

We employ stimulated Raman transitions with two laser beams which coherently manipulate the internal
states of the ions and the normal modes of the ion string. The Raman beams together with resonant repumping light
are used to sideband-cool motional modes close to their ground states, and the Raman beams are used to prepare
initial motional states and map the final motional states onto internal states of ions for readout. As illustrated in
Fig. 4b, two pairs of Raman beams, one pair for Be+ near 313 nm (red arrows) and the other pair for Mg+ near
280 nm (green arrows), have their wave vector difference aligned with the z axis, such that sideband transitions
only address axial modes. The Alternating mode and the Stretch mode are cooled to an average quantum number
of n̄ ≈ 0.07 and 0.02 respectively, while the third axial normal mode, the in-phase mode (at ∼ 2π×1.5 MHz), is
cooled to a higher n̄ ≈ 0.25, because the cooling competes with a larger heating rate of ∼750 quanta per second
in this mode. We measure the heating rates of the Alternating mode and the Stretch mode to be ∼ 60 and ∼ 1
quanta per second, respectively. In the repeated motional state measurements, the Alternating mode is cooled to a
lower n̄ ≈ 0.02 than stated above, mainly due to increased Mg+ Raman laser power compared to the other experiments.

When determining correlations between populations in different modes, we tailor the frequency and pulse
shape of the Raman beams to realize sideband rapid adiabatic passage (RAP) pulses [59] that can implement nearly
complete quantum state transfers |↓〉 |n〉 ↔ |↑〉 |n− 1〉 simultaneously for a range of n, despite sideband transitions
having different n-dependent Rabi frequencies for different number states. For example, the initial state |↓↓〉B |2〉S of
two Be+ ions and the Stretch mode can be fully transferred to |↑↑〉B |0〉S by an ideal RAP pulse, while a pulse with
fixed frequency and square intensity envelope cannot transfer the full population between these two states. Similarly,
the states |↓〉M |n〉A of a Mg+ ion and the Alternating mode can be transferred to |↑〉M |n− 1〉A simultaneously
for all relevant n > 0 with a single RAP pulse. To experimentally generate a RAP pulse, we shape the amplitude
of two Raman beams to follow a truncated Gaussian envelope Ai exp(−t2/t2width) with Ai=1,2 the maximum pulse
amplitudes of the two Raman beams at t=0 when the pulse amplitude is at peak, and twidth the pulse width. During
this pulse, the relative detuning of one of the beams from the Raman resonance of the target transition is linearly
swept from −δmax to δmax such that it is on resonance at t = 0. The Gaussian envelope is truncated to zero at
±2 twidth. The Be+ RAP pulse uses twidth = 400µs, δmax= 0.25 MHz for the Stretch mode sideband transition and
the fidelity of single transfer is estimated to be ∼ 95% through independent experiments. The Mg+ RAP pulse on the
Alternating mode sideband transition uses twidth = 100µs, δmax = 0.3 MHz and the fidelity is estimated to be ∼ 94%.

Alternating-Stretch coupling characterization
In order to characterize the Alternating-Stretch mode coupling (experimental sequence in Fig. 4c), we prepare both
modes in the ground state and all three ions in their bright states |↓〉B/M . We create a single phonon in the Alter-

nating mode with a π pulse on the |↓〉M |0〉A ↔ |↑〉M |1〉A MAS transition of the Mg+ ion. Next, we apply a coupling
pulse of variable frequency or duration to transfer the single phonon between modes. The probability of finding the
single phonon in the Alternating mode P (nA=1) or the Stretch mode P (nS=1) varies as a function of coupling
pulse frequency or duration. After the coupling pulse, we apply a MSS pulse on the |↓〉B |n〉A/S ↔ |↑〉B |n− 1〉A/S
transition with a duration tmax, which is calibrated by finding the maximum probability of |↑↑〉B after applying a
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sideband pulse onto the two Be+ ions prepared in |↓↓〉B . Before state-dependent fluorescence detection of Be+, we
exchange the population between |↑〉B and |↓〉B with a microwave π pulse, then apply a shelving sequence to transfer
|↑〉B to the dark state. We obtain the probabilities Pb(N) of N bright Be+ ions for N = 0,1,2 by using MLE described
above with the fluorescence histogram averaged over 300 experimental trials. We then use Pb(N) to determine the
populations of the three number states based on numerical simulation of the system. The numerical model assumes
a square MSS pulse with a duration of tmax that addresses both Be+ ions with equal Rabi frequency and limits the
state space of the Alternating and Stretch modes to the lowest three number states, i.e.

∑2
n=0 P (nA/S)=1. The

model predicts P (nA/S=1) =Pb(1)/0.942, P (nA/S=2) =Pb(2)/0.889, and P (nA/S=0) = 1-P (nA/S=1)-P (nA/S=2).
For example, when the mode is in |n = 1〉, the model predicts a probability of one of two ions flipping to be
Pb(1) = 0.942.

The results of a frequency scan are shown in Fig. 2b of the main text, where the coupling resonance is dis-
cernible from the probability P (nA=1) with a nearly complete exchange P (nS=1) around the frequency difference
of the two modes, as expected. The data points from both modes are fitted to P (ω) = AΩ0 sin2(ΩT/2)/Ω2 + P0

with Ω =
√

Ω2
0 + (ω − ω0)2 to yield a resonant frequency ω0 ≈ 2π× 0.283 MHz. When setting the coupling frequency

at ω0 and scanning the coupling duration, we obtain the results shown in Fig. 2c, where two anti-correlated
sinusoidal oscillations of P (nA=1) and P (nS=1) were observed and fit with P (τ) = A sin(ΩCτ +φc) exp(−τ/τc) + y0.
The data sets for both modes yield the same exchange rate ΩC/(2π) ≈ 5.1 kHz, A ≈ 0.46 and y0 ≈ 0.47. The
coherence time is τc,E= 24(14) ms for P (nA=1) and τc,S= 19(11) ms for P (nS=1), both are approximately 200
times longer than the duration of a swap. The maximum P (nA/S=1)≈ 0.93 deviates from the ideal value of 1,
predominantly due to imperfect ground state cooling and imperfect single phonon injection into the Alternating mode.

To examine whether motional coherence is preserved after a coupling pulse, we perform a motional Ramsey-
like experiment on the Alternating mode with the pulse sequence shown in Fig. 4d. We prepare both modes in the
ground state and the Mg+ ion in |↓〉M . Then, we apply an effective motional π/2 pulse consisting of a microwave
carrier π/2 pulse on |↓〉M ↔ |↑〉M and a subsequent sideband π pulse on |↑〉M |0〉A → |↓〉M |1〉A which creates the
superposition 1√

2
(|0〉A + |1〉A) in the Alternating mode and rotates the Mg+ back to |↓〉M . Next, we either apply

a double-swap operation (Double-swap), a single swap operation (Swap), or just a delay of the same duration as
the double-swap pulse (Delay). Afterwards, a second sideband π pulse transfers the superposition of number states
back onto a superposition of Mg+ internal states. Then, a microwave carrier π/2 pulse with phase difference φ with
respect to the first π/2 pulse maps the motional phase difference between |0〉A and |1〉A onto the internal state
populations of |↓〉M and |↑〉M , which are then measured. In Fig. 2d of the main text, we show the data for the three
cases discussed above, while the lines represent fits to P (φ) = B sin(φ) + y0. The fit to the double-swap signal has a
contrast (defined as B/y0) of 0.95(1), higher than the contrast of 0.92(1) when performing a delay, indicating that the
coupling drive causes no damage to the motional coherence but rather helps in preserving it longer, since the state is
swapped into the Stretch mode where it experiences a lower heating rate. We also observe a phase shift of roughly
π between those two traces because a double-swap pulse not only exchanges the motional population between two
modes back and forth, but also leads to number-state-dependent phase shifts as predicted by Eq. (17). The rest of
the contrast loss is mainly due to imperfections in state preparation and readout. When a single swap operation is
performed, the state of the Alternating mode is replaced with the approximate Stretch mode ground state, removing
the possibility for Ramsey interference and yielding roughly equal populations of both internal states, independent
of the relative phase of the second π/2 pulse.

Joint motional population measurement
To uncover correlations between the populations of the Alternating and Stretch modes, one needs to determine
their joint populations within a single experiment. Individual addressing of the Mg+ and Be+ ions with distinct
wavelengths for laser-driven operations allows the Alternating and Stretch mode states to be mapped onto and
detected via internal states of the two species respectively.

We prepare four different joint number states |0〉A |0〉S , |1〉A |0〉S , |1〉A |1〉S , and |0〉A |2〉S . The internal states
of all three ions are initialized (and reset) in the |↓〉B/M state before (and after) motional state preparation. The
details of the preparation of each state are as follows:

• |0〉A |0〉S is prepared by sideband cooling all three axial modes close to their ground states, with an infidelity
of 0.09, estimated by using the average occupations n̄ of the Alternating and Stretch modes, determined from
sideband ratio measurements.
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FIG. 5. Diagram of motion-to-spin mapping for determining joint populations of motional modes. Circles in different colors
represent the initial population in |n = 0〉 (red), |1〉 (green), |2〉 (blue) at the beginning of the illustrated step and solid dots at
the end. Transitions are indicated by arrows and forbidden transitions are indicated by a prohibitory symbol at the tip of the
arrow.

• |1〉A |0〉S is prepared from |0〉A |0〉S with a microwave π pulse on the |↓〉M → |↑〉M transition, followed by a
sideband π pulse on |↑〉M |0〉A → |↓〉M |1〉A, which injects a single phonon into the Alternating mode and leaves
Mg+ in |↓〉M . The microwave pulse has negligible error and the sideband π pulse has an error of about 0.03,
in large part due to the Debye-Waller effect from the axial in-phase mode [51]. When such an error occurs, the
sideband π pulse is incomplete and leaves the Mg+ ion partially in |↑〉M . Therefore, we apply an additional
dissipative laser repumping pulse to ensure the Mg+ ion is reset to |↓〉M before joint state mapping.

• |1〉A |1〉S is prepared by initializing in |1〉A |0〉S , as described above. Then, a calibrated swap pulse transfers
(with an infidelity of approximately 0.01) the single phonon from the Alternating mode to the Stretch mode
(|0〉A |1〉S). Then, another single phonon is injected into the Alternating mode using the same method described
above, resulting in |1〉A |1〉S |↓〉M .

• |0〉A |2〉S is prepared from |0〉A |0〉S by injecting two phonons into the Stretch mode by globally addressing two
Be+ ions with a microwave carrier π pulse on |↓〉B → |↑〉B , followed by a sideband RAP pulse (with an error of
approximately 0.05) on the transition |↑〉B |n〉S → |↓〉B |n+ 1〉S . Afterwards, a Be+ repumping pulse is applied
to reset the internal states to |↓↓〉B in case the RAP pulse did not leave the ions in that state.

For motional state analysis, we map the population of joint-number states in the subspace S =
{|0〉A , |1〉A , |2〉A}

⊗
{|0〉S , |1〉S , |2〉S} onto the internal states of two ion species. Two steps, Alternating-to-Mg+

mapping and Stretch-to-Be+ mapping, are sequentially implemented. The mapping is described in detail in the
following and illustrated in Fig. 5.

• Alternating-to-Mg+ mapping: One of three different mapping sequences (Fig. 5a, b) maps the population in
one of the three lowest number states respectively onto the bright state |↓〉M and shelves the other two number
states to dark states, |2,−1〉M and |2,−2〉M . Repeated experimental trials with different choices of mapping
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sequences are used to build statistics for the populations of |0〉, |1〉, and |2〉.

The mapping 1 for |0〉A → |↓〉M (Fig. 5a) is as follows: 1) A MSS RAP pulse on the |↓〉M |n〉A → |↑〉M |n− 1〉A
transition flips the internal state of the Mg+ ion from |↓〉M to |↑〉M if the Alternating mode is in |1〉A (green
dot) or |2〉A (blue dot) while also subtracting one quantum of motion, but leaves |↓〉M |0〉A (red dot) unchanged.
2) A microwave pulse shelves the population in |↑〉M (the initial population of |1〉A and |2〉A) to |2,−2〉M .

The mapping 2 for |1〉A → |↓〉M and the mapping 3 for |2〉A → |↓〉M (Fig. 5b) start similarly. 1) A
MSS RAP pulse separates the population of |0〉A from |1〉A and |2〉A. 2) Then, a microwave π pulse
|↑〉M ↔ |↓〉M is applied. 3) A microwave shelving sequence then transfers the population in |↑〉M (the initial
population of |0〉A) to |2,−2〉M . 4) A second MSS RAP pulse separates the initial population of |1〉A from that
of |2〉A. 5A) The last step of mapping 2 is to apply a microwave shelving sequence which transfers the initial
population of |2〉A (now in |↑〉M ) to another dark state |2,−1〉M and leaves the initial population of |1〉A still
in |↓〉M . 5B) For mapping 3, a microwave π pulse of |↑〉M ↔ |↓〉M , inserted between the second RAP pulse and
the final shelving sequence, maps the population in |2〉A onto |↓〉M instead. 6) The initial population of |1〉A is
shelved to |2,−1〉M .

• Stretch-to-Be+ mapping (Fig. 5c) uses a RAP pulse on the |↓〉B |n〉S → |↑〉B |n− 1〉S transition, flipping both
Be+ ions from |↓〉B to |↑〉B if |n〉S = |2〉, which realizes |↓↓〉B |2〉S → |↑↑〉B |0〉S ; only one ion flips if |n〉S = |1〉,
|↓↓〉B |1〉S → 1/

√
2(|↑↓〉B + |↓↑〉B) |0〉S ; and the two ions remain in |↓↓〉B when |n〉S = |0〉. Before fluorescence

detection, the population in |↑〉B of both Be+ ions is shelved to the dark state |1,−1〉B (not shown in Fig. 5c).

State-dependent fluorescence detection of Mg+ and Be+ is performed sequentially after the mapping steps described
above to obtain photon counts of both species. We perform three sets of experimental trials with different
Alternating-to-Mg+ mappings with N=1000 trials per set. In each experimental trial, the Be+ counts cBe are
compared to thresholds {13, 46} to determine the number of the bright ions NBe, which in turn indicates the Stretch
mode state based on the mapping

cBe > 46 → NBe = 2 → nS = 0; 13< cBe ≤ 46 → NBe = 1 → nS = 1; cBe ≤ 13 → NBe = 0 → nS = 2.
When mapping |n〉A → |↓〉M , the Alternating mode is declared to be in |n〉A if the Mg+ counts are beyond a threshold
of nine. Experiments with the Mg+ counts below the threshold of nine are discarded because the Alternating mode
is likely in one of the other two number states and we cannot distinguish them in such cases. We calculate the

populations of the nine joint states {|n〉A|m〉S} (n,m = 0, 1, 2) according to P
(0)
i =N

(0)
i /Nrep, (i=0,...,9) with N

(0)
i

the occurrence of the i-th joint state and Nrep the total number of successful repetitions of a certain mapping. The

populations are then normalized to their sum using Pi = P
(0)
i /(

∑9
i=1 P

(0)
i ) to yield the final data. Uncertainties are

calculated assuming that projection noise is the dominant noise source, ∆Pi =
√
Pi(1− Pi)/Nrep.

Experimental results shown in Fig. 2e-j have appreciable state preparation and measurement (SPAM) errors.
State preparation errors are from imperfect sideband cooling and imperfect phonon injection, as mentioned above.
Measurement errors arise from imperfect mapping operations consisting of RAP pulses (∼5% error per RAP pulse)
and microwave pulse sequences. Since the mapping process takes between 2.6 ms and 3.8 ms, heating during mapping
can change the motional state, with the Alternating mode being more affected than the Stretch mode. The motional
state measurement error from heating varies for different number states and scales approximately with nA + 1/2
since the Alternating mode heating rate is much higher than that of the Stretch mode. The readout error due to the
threshold method is estimated to be negligible. Precise determination of how SPAM errors compound for each joint
state is complicated, so we did not attempt this. The error sources discussed here approximately explain the SPAM
errors observed in the experiments.

Minimization of Mg+ participation in the Stretch mode
Anharmonicity in the external trap potential and higher-order terms (beyond the term linear in ion displacement) of
the Taylor expansion of Coulomb force can impact mode participation of a multi-ion string [74]. In our experiments,
we consider three types of anharmonic terms including the radial gradients ∂U/∂x and ∂U/∂y, the twist curvature
term ∂2U/(∂x∂z), and the axial cubic term ∂3U/∂z3. Non-zero values for these terms lead to non-zero participation
of the Mg+ ion in the Stretch mode, which will then be coupled to recoil from Mg+ scattering events. To minimize
these terms, we cool the Stretch mode to its ground state and apply “shim” voltages (shims) found based on trap
simulations to mimimize relevant anharmonic terms, using a minimal amount of heating of the Stretch mode from
Mg+ photon scattering as the figure of merit. Radial gradients are controlled by a differential voltage shim on the
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pair of control electrodes closest to the ions and an additional voltage shim applied to a bias electrode on a third-layer
wafer outside the two main wafers [58]. The twist term is controlled by the two pairs of electrodes next to the two
electrodes closest to the ions. By applying a differential voltage shim of v on the pair of electrodes on one side and
−v on the other, the twist of the ion string in the x− z plane relative to the trap axis can be minimized. The cubic
term z3 is controlled with the same electrodes used for creating the Alternating-Stretch coupling. The optimal shim
values are determined as follows: All three axial modes are sideband cooled close to their ground states, then the
voltage shim controlling one of the anharmonicity terms is set to a certain strength. Mg+ resonant light is pulsed for
1 ms to cause scattering on Mg+, then the applied anharmonicity shim is set back to zero and probability of a state
change of Be+ when driving a MSS pulse is determined. The shim with minimal MSS spin-flip probability is retained
as optimal and applied for subsequent experiments. Since the shims are not perfectly decoupled from each other, we
iterate the minimization of all three anharmonic terms for several rounds to find the overall best shims. However, we
still observe small residual heating of the Stretch mode due to scattering on Mg+. This could be because the anhar-
monicity is still not totally eliminated. Another potential source is radiation pressure on the Mg+ ion, which shifts
its position relative to the Be+ ions slightly during photon scattering and breaks the mirror symmetry of the ion string.

Calibration of the Cirac-Zoller mapping for repeated motional state measurements
In the repeated motional state measurements, a Cirac-Zoller (CZ) sequence maps information about the Alternating
mode state onto the Mg+ internal state. The basic principle is that a motion-subtracting-sideband 2π pulse does not
change motional states |0〉 and |1〉 but leads to a motional-state-dependent phase shift on the Mg+ internal state.
The Mg+ is prepared in |3, 1〉M with optical pumping, followed by a microwave π pulse sequence. Then, a microwave

carrier π/2 pulse of |3, 1〉M ↔ |2, 0〉M generates a superposition state 1/
√

2 (|2, 0〉M + |3, 1〉M ). Next, the population
in |3, 1〉M is transferred to |2, 2〉M by a microwave π pulse followed by a MSS 2π pulse of |2, 2〉M |1〉A ↔ |3, 3〉M |0〉A.
For |n = 0〉A, the MSS pulse does not change the Alternating mode or the Mg+ internal state, and the system

remains in 1/
√

2(|2, 0〉M + |2, 2〉M ) |0〉A. For |n = 1〉A, the MSS pulse drives |2, 2〉M |1〉A to |3, 3〉M |0〉A and back to

− |2, 2〉M |1〉A, flipping the sign of this component. The state is changed to 1/
√

2(|2, 0〉M − |2, 2〉M ) |1〉A in this case.
After the MSS pulse, the population in |2, 2〉M is transferred back to |3, 1〉M with a microwave π pulse. Subsequently,
a second microwave π/2 pulse of |3, 1〉M ↔ |2, 0〉M with a relative phase φ2 with respect to the first π/2 pulse is
applied. The populations in |3, 1〉M and |2, 0〉M are shelved to |3, 3〉M (the bright state) and |2,−2〉M (the dark
state) respectively by a microwave sequence before Mg+ fluorescence detection.

The probability of Mg+ being measured in bright (b) or dark (d) is given by P (b) = (1 − cos(φ2))/2 and
P (d) = (1 + cos(φ2))/2. By setting φ2 = 0, |0〉A is mapped to d while |1〉A is mapped to b. The mapping |0〉A → b
and |1〉A → d is realized by setting φ2 = π. The particular transitions chosen in the CZ mapping implementation
yield the shortest duration of the sequence in our apparatus, which reduces errors due to heating and dephasing.
The phases φ2 are calibrated periodically to account for experimental drifts. We calibrate φ2 with the Alternating
mode prepared in |0〉A and |1〉A, which yields two out-of-phase sinusoidal signals as a function of φ2, as shown in
Fig. 12a; we use the φ2 yielding maximal or minimal fluorescence for realizing the respective mappings. When the
Alternating mode contains population in states with |n > 1〉A, the MSS pulse no longer accomplishes a 2π rotation
and changes the Alternating mode state. Therefore, this particular measurement does not preserve the motional
state if it contains any population outside {|0〉A , |1〉A}.

State verification after repeated motional state measurements
The final state after N motional state measurements is examined with MAS and MSS π pulses. In Fig. 12b, with
N = 1 and M1, we detect {o1} = {d} heralding |0〉 with a probability of 0.960(3), close to p0 but with a small
difference indicating a readout error of about ε0≈ 0.02. The MAS (pink bar) and MSS (violet bar) results conditioned
on {d} are close to their ideal values (hatched bars) for |0〉, suggesting that this conditioned final state is preserved
during the measurement and close to |0〉. However, the sideband results conditioned on {o1} = {b} heralding |1〉
significantly deviate from their ideal values for |1〉. This is because the probability of getting a false outcome for
|0〉, p0ε0 ≈ 0.02, is comparable to p1, thus causing a noticeable effect on the heralded results for |1〉. Erroneous
declarations can be reduced by repeating the measurement. When N = 2, the sideband results conditioned on
{o1, o2} = {b, b} are significantly closer to the ideal expectation for |1〉 even though Mg+ scatters double the amount
of photons. When N = 3, the final states conditioned on {o1, o2, o3} = {b, b, b} match the expectation values even
more closely. The post-selected results for |0〉 also show improved accuracy relative to the MAS/MSS analysis when
increasing the number of measurements. We observed similar performance when implementing M2 but with the roles
of |0〉 and |1〉 flipped.
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Characterization of heating associated with repeated motional state measurements
We perform a series of tests to characterize the heating from each element in the motional state measurement
sequence. All three axial modes are sideband cooled to near their ground states and the Mg+ ion is prepared in
|↓〉M . Then, modified measurement sequences are implemented with different combinations of CZ mapping, swap
pulses, Mg+ detection, and Mg+ sideband cooling of the INPH and Alternating modes. Elements that are not
applied are sometimes replaced with a delay of equal duration to account for anomalous heating. This is followed by
either applying a Alternating MAS or MSS π pulse and determining the respective spin-flip probabilities PMSS and
PMAS. The ratio of spin-flip probabilities r = PMSS/PMAS is then used to estimate the average motional occupation
n̄ = r/(1− r) of the Alternating mode. This estimate is accurate if the motional state is well-described by a thermal
distribution or if the probability for number states with n > 1 can be neglected. More details and results of these
tests are shown in Table IV.

We measure the mean occupation of the Alternating mode immediately after sideband cooling to be n̄SBC = 0.023(1)
as a reference value. In the “no swaps” test, the two swaps are replaced with two delays of equal duration, which
yields n̄= 0.040(3), higher than n̄SBC by ∆n̄= 0.017(3) due to the heating of the Alternating mode acting over
the delay replacing the second swap. This test also approximately sets a lower bound for n̄ when at least one
measurement is performed and no outcome is used for post-selection. Next, we perform the swap test where only
two swap pulses are applied after sideband cooling. We find a rise in n̄ by ∆n̄= 0.021(4) from two swaps. In the CZ
heating test, a delay of equal duration as a CZ mapping sequence is inserted before swaps and further increases n̄ by
∆n̄ ≈ 0.005. To estimate the ∆n̄ due to heating of the Stretch mode during Mg+ detection and SBC of the other
two modes, we apply a delay equal to the duration of Mg+ detection followed by Mg+ sideband cooling and find an
increase of ∆n̄= 0.010(5). In the recoil heating test, we apply Mg+ detection to investigate the additional heating of
the Stretch mode from recoil of photons scattered on Mg+. We estimate ∆n̄ ≈ 0.012(5) added to n̄ from scattered
photons alone. An ion typically scatters on the order of a few tens of photons during sideband cooling while on the
order of 103 photons are scattered during fluorescence detection. Assuming recoil heating is proportional to scattered
photon number, scattering during sideband cooling only causes a negligible gain in n̄ on the order of 10−4. Lastly,
we implement a test (labelled as “No exchange” in Fig. 3d) of the main text) that replaces N=1, 2, 3 measurement
blocks with an equal delay and obtain n̄= 0.25(3), 0.51(6), 0.8(1), respectively, which are significantly higher than
n̄SBC, because the motional state resides longer in the Alternating mode at a higher heating rate, compared to N
measurement blocks where the mode is swapped to the Stretch mode for substantial parts of the experiments.
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Exp. M1 (N = 1) M2 (N = 1)
{o1} {d} {b} Overall {d} {b} Overall
MAS 0.931(4) 0.76(3) 0.924(3) 0.84(2) 0.915(4) 0.910(4)
MSS 0.030(2) 0.49(3) 0.048(3) 0.33(2) 0.044(3) 0.064(3)
Prob. 0.960(3) 0.040(3) 1 0.066(3) 0.934(3) 1

TABLE I. Sideband transition probabilities conditioned on different motional state measurement outcomes for
N=1. The table shows the probability of a spin flip after a MAS or MSS π pulse, conditioned on {o1}={d} and {b} for
mapping M1 and M2 and the probability of outcomes d and b. The overall sideband spin-flip probabilities with no conditioning
on measurement outcomes are also shown.

Exp. M1 (N = 2) M2 (N = 2)
{o1, o2} {d, d} {d, b} {b, d} {b, b} Overall {d, d} {d, b} {b, d} {b, b} Overall
MAS 0.924(4) 0.78(2) 0.88(2) 0.57(4) 0.908(4) 0.56(4) 0.91(2) 0.73(2) 0.929(4) 0.903(4)
MSS 0.027(2) 0.46(3) 0.08(2) 0.77(4) 0.066(3) 0.73(4) 0.05(1) 0.53(2) 0.044(3) 0.102(4)
Prob. 0.900(4) 0.049(3) 0.029(2) 0.022(2) 1 0.025(2) 0.042(3) 0.083(4) 0.850(5) 1

TABLE II. Sideband transition probabilities conditioned on different motional state measurement outcomes for
N = 2. Similar to table I, listing results for all combinations of two measurement outcomes.

Exp. M1 (N = 3)
{o1, o2, o3} {d, d, d} {d, d, b} {d, b, d} {d, b, b} {b, d, d} {b, d, b} {b, b, d} {b, b, b} {Majority d} {Majority b} Overall

MAS 0.935(2) 0.74(2) 0.89(2) 0.64(3) 0.93(2) 0.60(8) 0.75(6) 0.59(4) 0.926(2) 0.63(2) 0.912(3)
MSS 0.025(2) 0.51(2) 0.13(2) 0.78(2) 0.03(1) 0.78(7) 0.22(6) 0.82(3) 0.047(2) 0.74(2) 0.08(2)
Prob. 0.876(6) 0.036(2) 0.020(1) 0.024(1) 0.021(1) 0.0028(5) 0.0046(6) 0.016(1) 0.952(1) 0.048(1) 1

Exp. M2 (N = 3)
{o1, o2, o3} {d, d, d} {d, d, b} {d, b, d} {d, b, b} {b, d, d} {b, d, b} {b, b, d} {b, b, b} {Majority d} {Majority b} Overall

MAS 0.48(9) 1.0 0.8(1) 0.92(3) 0.66(5) 0.88(4) 0.72(4) 0.927(7) 0.64(4) 0.908(7) 0.891(7)
MSS 0.80(8) 0.07(7) 0.4(2) 0.03(2) 0.76(5) 0.04(2) 0.46(4) 0.045(5) 0.68(4) 0.077(6) 0.118(7)
Prob. 0.015(3) 0.004(1) 0.006(2) 0.034(4) 0.043(5) 0.042(5) 0.075(6) 0.783(9) 0.067(4) 0.933(4) 1

TABLE III. Sideband transition probabilities conditioned on different motional state measurement outcomes
for N = 3. Similar to the previous two tables. In addition, majority d or b is conditioned on at least two out of three outcomes
being d or b.
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CZ mapping Swaps Mg detection Mg SBC n̄ ∆n̄
SBC No No No No 0.023(1) 0

No-swaps test Yes Replaced with delay Yes Yes 0.040(3) 0.017(3)
Swap test No Yes No No 0.044(3) 0.021(4)

CZ heating test Replaced with delay Yes No No 0.049(4) 0.026(5)
Stretch heating test Replaced with delay Yes Replaced with delay Yes 0.059(4) 0.036(5)
Recoil heating test Replaced with delay Yes Yes Yes 0.071(5) 0.048(5)

No exchange (N = 1) Replaced with delay Replaced with delay Replaced with delay Replaced with delay 0.25(3) 0.23(3)
No exchange (N = 2) Replaced with delay Replaced with delay Replaced with delay Replaced with delay 0.51(6) 0.49(6)
No exchange (N = 3) Replaced with delay Replaced with delay Replaced with delay Replaced with delay 0.8(1) 0.8(1)

TABLE IV. Experiments to characterize heating associated with certain parts of the motional state measure-
ment. A series of tests to delineate heating of different elements of the measurements, including CZ mapping, swaps, Mg
detection, and Mg SBC. Each element is either applied (“Yes”), omitted (“No”), or “Replaced with delay” of the same dura-
tion as the element in these tests. The Alternating mode n̄ of all tests and the relative increase ∆n̄ = n̄− n̄SBC are listed.

Exp. M1 (N = 1) M1 (N = 2)
Condition {o1}={d} No post-selection {o2}={d} {o1, o2}={d, d} No post-selection

n̄ 0.034(3) 0.055(3) 0.032(3) 0.030(3) 0.078(4)

Exp. M1 (N = 3)
Condition {o3}={d} {o2, o3}={d, d} {o1, o2, o3}={d, d, d} {Majority d} No post-selection

n̄ 0.032(2) 0.028(2) 0.027(2) 0.053(2) 0.095(3)

TABLE V. Mean occupations of the Alternating mode conditioned on different motional state measurement
outcomes with mapping M1 (|0〉 → d, |1〉 → b).

Exp. M2 (N = 1) M2 (N = 2)
Condition {o1}={b} No post-selection {o2}={b} {o1, o2}={b, b} No post-selection

n̄ 0.050(3) 0.075(4) 0.049(3) 0.049(3) 0.127(6)

Exp. M2 (N = 3)
Condition {o3}={b} {o2, o3}={b, b} {o1, o2, o3}={b, b, b} {Majority b} No post-selection

n̄ 0.050(6) 0.050(6) 0.050(6) 0.093(8) 0.15(9)

TABLE VI. Mean occupations of the Alternating mode conditioned on different motional state measurement
outcomes with mapping M2 (|0〉 → b and |1〉 → d).
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FIG. 6. Characterization of the Alternating-Stretch coupling. a, With the Alternating and Stretch mode prepared
in |1〉A |0〉S , the probabilities of the Alternating (orange dots) and Stretch (blue squares) modes in number state n=0 (top),
n=1 (middle, also partially shown in Fig. 2c), n=2 (bottom), oscillate as the coupling pulse duration is varied while the
coupling frequency is held on resonance. As references, we repeat the experiment by replacing the coupling pulse with a delay
of the same duration to investigate effects of heating, and show the corresponding probabilities of certain number states in the
Alternating (magenta stars) and Stretch (cyan triangles) modes in the three panels. The population mostly stays in n=0 and
n=1, while oscillating out of phase between the two modes at Ωc = 2g0. In the bottom panel, the populations in n=2 of the
two modes show small oscillations (due to imperfect state preparation) on top of a slowly growing background that is roughly
the average heating rate of the two coupled modes, as independently verified by the reference data (magenta stars and cyan
triangles). Solid lines are fits to the data and dashed lines are the guides to the eye. b, The population exchange rate Ωc can
be varied by controlling the amplitude of the coupling potential with a relative factor 0 ≤ β ≤ 1, such that U(r) = βUmax(r).
This is accomplished by scaling the oscillating potential amplitude of electrode i with Vi = βVmax,i for all twelve electrodes
(i = 1, 2, ..., 12). We choose β=0.286 for all other results presented in this work. Using higher β causes larger unintended
excitation of the INPH mode.
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FIG. 7. Joint-motional population dynamics: Coupling time scans I. The two normal modes are prepared in (a)
|0〉A |0〉S or (b) |1〉A |0〉S . The plots show population in the nine joint number states of the Alternating mode and the Stretch
mode as a function of coupling time τ in five separate panels with (from top to bottom) 0 to 4 total quanta of motion in the
two modes. Imperfect state preparation and measurement cause the population of the target initial state to deviate from one
at τ = 0 while the other state populations may start with a non-zero value. More detailed descriptions of the experiments can
be found in the main text.
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FIG. 8. Joint-motional population dynamics: Coupling time scans II. The Alternating and Stretch modes are prepared
in (a) |1〉A |1〉S , (b) |0〉A |2〉S .
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FIG. 9. Joint-motional population dynamics: Coupling phase scans. Phonon interference with the initial states (a)
|1〉A |0〉S and (b) |1〉A |1〉S . The results in the second panel of a and the third panel of b are also shown in Fig. 2i and j of the
main text.
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FIG. 10. Joint-motional population dynamics during repeated swap operations. a, With the two modes prepared
in |1〉A |0〉S , we apply M swap pulses and measure the populations of the two-mode joint states. The second panel shows that
the injected single phonon is swapped between the two modes. The sum of populations in the second panel decreases as the
number M of swap operations increases, while the populations of the states shown in the first and third panel grow because of
heating. b, Data from a reference experiment where the coupling pulses are replaced with delays of equal duration to illustrate
the effect of heating. In this case, no population is exchanged and only a slow population leakage from the initial state (red
dots in the second panel) to primarily |0〉A |0〉S (dots in the first panel) and |2〉A |0〉S (blue dots in the third panel) is observed.
This is due to a much larger heating rate in the Alternating mode compared to the Stretch mode. Solid lines in a and b serve
as guides to the eye. c, With the population of all nine joint states, we estimate the fidelity of the final density matrix σ
compared to the target density matrix ρ where ideal swaps are applied to an initial density matrix (data at M = 0 in a). We
treat the density matrices σ and ρ as a fully decohered mixture of nine joint number states (only diagonal terms are non-zero)
and estimate the fidelity with F = (Tr

√√
ρσ
√
ρ)2. We fit the fidelities (blue triangles) to F (M) = (1− ε)M to extract an error

ε per swap operation to be 1.4(1)%. d, The same analysis is performed for the reference experiment data (orange triangles)
where the fidelity to the initial density matrix (data at M = 0 in b) is shown and fitted, yielding an error per swap time of
0.9(1)%. The error of the swap operation is dominated by heating, which can be suppressed by increasing the coupling strength
to reduce the swap time, or by lowering the heating rate, for example by operating in a similar trap at cryogenic temperatures.
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FIG. 11. Effects of recoil heating on the protected mode. a, Circuit diagram for Mg+ recoil heating test. The test
sequence consists of two swap pulses that exchange the states between the Stretch (“protected”) and the Alternating mode,
Mg+ detection, and a sideband cooling sequence for the INPH mode. Mg+ detection can be replaced with a delay of the
same duration as required. b, Circuit diagram for testing survival of motional population from Mg+ scattering. We prepare
the Alternating mode and the Mg+ ion in |0〉A |↓〉M (results shown in c), |1〉A |↓〉M (d), and α |0〉A |↑〉M + β |1〉A |↓〉M where
|α|2 ≈ |β|2 ≈ 0.5 (e), then apply the recoil test sequence with or without Mg+ scattering, and finally apply a Alternating MAS
pulse with a varying duration followed by Mg+ fluorescence detection. In c and d, without (orange squares) and with (green
triangles) scattering thousands of photons from the Mg+ ion, we obtained nearly identical MAS excitation traces, implying
that the motional state is not perturbed substantially by the Mg+ ion recoil while stored in the Stretch mode. e, The blue dots
are the MAS oscillation results averaged over all experimental trials while disregarding the detection outcome from Mg+ in the
middle of the experiment, with a rapid decay of contrast due to the mixture of motional states that remains after detection.
However, if the MAS results are sorted based on the middle detection outcomes, we obtain two traces for when |↑〉M and |↓〉M
are detected that project the motional state onto |0〉A (orange squares) and |1〉A (green triangles) respectively. The sorted
trace for |0〉A (|1〉A) is nearly identical to the trace in c (d) where |0〉A (|1〉A) is directly prepared without a measurement on
Mg+. The decay of contrast in these oscillation curves is mainly caused by fluctuations in the Rabi-frequency (Debye-Waller
effect) due to substantial heating of the in-phase mode. f, Circuit diagram for testing survival of motional coherence between
|0〉A and |1〉A during Mg+ scattering. A carrier π/2 pulse of |↓〉M ↔ |↑〉M with a subsequent red-sideband (RSB) π pulse of

|↓〉M |1〉A ↔ |↑〉M |0〉A prepares the Alternating mode in a superposition state 1/
√

2(|0〉A + |1〉A) and Mg+ in |↓〉M . After the
recoil heating test sequence, another RSB π pulse and carrier π/2 pulse with varying phase φ relative to the first π/2 pulse
close the motional Ramsey interferometer. g. The motional Ramsey fringes with (green triangles) or without (orange squares)
Mg+ scattering have similar contrast which indicates the motional coherence is preserved despite scattering many photons
while detecting the internal state of Mg+. The imperfect Ramsey contrast of these two curves is likely caused by imperfect
preparation, motional dephasing and readout errors. h. With a fixed duration τ0 = 800µs between the first swap and recooling
of the INPH mode, we vary Mg+ scattering time τ . We observe the detected photon number (orange squares, normalized to
N0 = 51.6) linearly increases over τ while the motional Ramsey contrast (green dots, normalized to the contrast of 0.41(4) for
τ = 0µs) remains unchanged within the experimental uncertainty as more photons are scattered.
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FIG. 12. Cirac-Zoller mapping phase calibration and sideband transition probabilities conditioned on different
motional state measurement outcomes. a, With the Alternating mode prepared in |0〉A (orange) or |1〉A (blue), we obtain
two sinusoidal curves that oscillate out of phase as a function of the phase φ2 of the second π/2 pulse relative to the first
π/2 pulse in the CZ sequence. The two vertical dashed lines indicate the phases for realizing mappings M1 and M2. b, MAS
and MSS transition probabilities conditioned on the outcomes shown above each panel; measurements are repeated N = 1,
2, 3 times under both M1 and M2. The grey hatched bars denote the ideal probabilities for |0〉 and |1〉 which are compared
with experimental results (colored bars). For M1 (M2), when |0〉 is heralded by detecting d (b) N=1, 2, 3 times, the sideband
results match well with the ideal values. When |1〉 is heralded once (N=1), the sideband results deviate significantly from
the ideal values for |1〉 because of false declaration events for |0〉 (see text in Supplementary Material). After performing the
measurement more times (N=2 and 3), the sideband results when |1〉 is heralded are substantially closer to the ideal expectation
values because the detection error is reduced.
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