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ABSTRACT 
Additive manufacturing (AM) is a powerful technology that 

can create complex metallic parts and has the potential to 

improve the economic bottom line for various industries. 

However, due to process instabilities, and the resulting material 

defects that impact the part quality, AM still isn't as widely used 

as it could be. To overcome this situation, it is crucial to develop 

an environment for easy, in-process monitoring and real-time 

control to detect process anomalies and predict part defects as 

quickly as possible.  AM in-process monitoring measures various 

process variables and the sensors generate large volumes of 

structured or unstructured, 1D, 2D, and 3D data, some of which 

are acquired at very high frequencies. Integration of such data 

and their analysis are necessary for effective in-process 

monitoring and real-time control, but they are facing many 

challenges due to the characteristics of AM in-process data. This 

paper provides an overview of different in-process monitoring 

data sources and their connection methods and addresses the 

integration issues associated with acquiring and fusing the data 

for both on-fly control and offline analysis.   The paper also 

presents a guideline to help high-speed data integration. This 

guideline can help users to decide the best data-integration 

configuration for a specific use case. 
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1. INTRODUCTION 
 Technology advancements have enabled the 

exponential growth of data that are being generated in the smart 

manufacturing field. Thousands of Exabytes of manufacturing 

data are generated annually and this amount is expected to grow 

[1]. Data provide insights for a better understanding of 

manufacturing processes and are critical for operation and 

business decisions. Consequently, data, as well as their analysis 

and control, have become a key aspect of smart manufacturing.  

Nowadays, manufacturers are dealing with big data, which 

is far more challenging than the data managed and analyzed in 

traditional manufacturing. Big data refers to large amounts of 

multi-source, heterogeneous data, which are characterized by the 

5 Vs: volume, variety, velocity, veracity, and value [2]. 

Integrating big data is needed for operation and business decision 

making and results in improved manufacturing performance and 

efficiency [28]. But existing, manufacturing-automation 

solutions face great challenges when integrating big data, 

especially when high-speed and high-dimensional data sources 

are present. Research engineers and industry practitioners are 

working to address these challenges.  

Laser powder bed fusion (LPBF) additive manufacturing 

(AM) is a relatively new technology that generates significant 

amounts of data.   This technology produces parts from 

computer-aided-design (CAD) 3D models by fusing together 

powdered material with a moving energy source. Unlike 

subtractive manufacturing, where quality control can be 

performed by controlling samples from a series of final products, 

AM quality control and part certification are required for every 

part due to many factors that can affect the part quality. LPBF-

built part quality heavily depends on powder properties, 

machine’s capabilities, process parameters, and their associated 

process characteristics. During the build, a material is being 

heated enough to change the material properties, which can lead 

to the part defects that can’t be easily perceived without 

extensive quality control procedures. 

Due to the multitude of factors that affect in-process stability 

and part quality, monitoring is critical for understanding and 

controlling an LPBF process. A wide range of sensors are 

instrumented on AM machines. These sensors generate large 

volumes of measurement data, which could be structured or 

unstructured, and at high frequencies. Successful integration of 
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such data and their analysis will enable effective in-process 

monitoring and real-time control. 

Currently, LPBF in-process data from various sources are 

often acquired independently and archived manually. Such 

isolated data acquisitions make real-time monitoring and 

decision-making hard.  In addition, manual data curation relies 

heavily on reverse engineering and repopulating legacy or 

existing databases. Both processes are labor-intensive, error 

prone, and cost-inefficient. As a result, there is a need to 

streamline AM in-process, data integration, which is challenging 

for many reasons.  Sensor data of high dimensions and sampling 

frequencies must be captured, stored, shared, and properly 

managed for quick analysis and easy querying. For example, 

melt pool images are generated with a frequency up to 20KHz. 

To perform real-time analysis and control, one must capture, 

analyze, decide, act, and store each image in 50 microseconds. 

Also, sample and event data generated by different systems are 

not synchronized in time, leading to additional difficulties in data 

integration and fusion. 

This paper identifies the gaps that limit the integration of in-

process AM data, and the requirements for data-source 

integration. It starts with an overview of varying data sources 

that are installed for LPBF AM process monitoring, covering the 

available interfaces, data acquisition characteristics, and use 

scenarios related to both on-fly control and offline analysis. To 

integrate the data, several steps are required, and the paper 

proposes options for implementing each step. The paper also 

provides a guideline to help users decide which data-integration 

configuration is best to follow for a specific use case.  

The paper outline is as follows.  Section 2 surveys what AM 

in-process data are collected and presents the challenges 

regarding their integration. Section 3 describes a methodology to 

address those challenges. Section 4 illustrates that methodology 

based on a specific use case. Section 5 discusses a use-case based 

integration requirements and standards issues related to 

integration.  Section 6 summarizes the paper and proposes future 

work. 

 
2. LPBF IN-PROCESS DATA SOURCE OVERVIEW 

Large volumes of structured and unstructured data are 

generated through the AM part development lifecycle.  Data that 

are produced from various measurements, are associated with 

material characterization, process monitoring, and part 

qualification. Integrating measurement data is critical for 

streamlining and accelerating part development and certifying 

parts for fast deployment.  

The need for in-process monitoring in AM is motivated by 

the fact that a defect in any layer, if not detected and promptly 

corrected, could remain permanently embedded during the 

deposition of subsequent layers.  These defects in AM are linked 

to anomalies in process control, chamber environment variables 

and process variables. A single sensor is not capable of detecting 

all these anomalies, such as deviating laser power, fluctuating 

gas flow and poor melt pool geometries. Nor is a single 

measurement data capable of controlling the process stability. 

Thus, researchers use heterogeneous sensing modalities. [3] 

These heterogeneous sensing modalities have led to more 

diverse and richer AM data types. Table 1 below gives a brief 

description of nine different in-process data types, which are 

separated into three groups - Process Input, Environment 

Monitoring, and Build Behavior Monitoring. Table 1 presents 

their characteristics including data formats, sampling rates, data 

sizes and data usages. 

As shown in the table, some commonly used, in-process, 

monitoring sensors generate up to 600 MB of data per second, so 

we need to deal with terabytes of data daily. Also, there is a 

variety of data types, from simple integers to complex images to 

3-D tensors. Next to being different formats, they are generated 

and acquired by different systems, which makes integration more 

challenging. Data are being generated in frequencies of up to 

many kilohertz, which means that we have to process data on a 

microsecond level. For data to be useful, both data and metadata 

should be considered for integration.  Metadata are data that are 

used to describe and give information about other data [27]. 

 
TABLE 1: IN-PROCESS DATA CHARACTERISTICS 

Data Format and 

Rate

Data Transfer 

Speed
Data Usage

Laser Beam 

Position and 

Actual Power

Time series; 

~100KHz
100MB/s

Machine/process 

anomaly 

detection[Krauss]; part 

defect diagnosis

Chamber 

Monitoring

Temperature, 

pressure, humidity, 

flow measurement 

in Time series; 

~1KHz

1MB/s

Machine/process 

anomaly detection;  

part defect diagnosis

Acoustic/

Ultrasonic 

Emission

Time series; 

100Khz-10 MHZ

10MB/s-

100MB/s

Process anomaly 

detection, part defect 

detection

Melt Pool 

Temperature

Time series; 

~100KHz – 1MHz

1MB/s-

10MB/s

Process anomaly 

detection; Process 

physics study; 

feedback control

Meltpool Imaging

2D images, sub 10-

100 micron/pixel, 

small FoV; ~1-

20KHz 

14.4MB/s-

288MB/s

Melt pool 

characteristics; Process 

anomaly detection; 

Process physics study; 

feedback control

Exposure Optical 

Tomography

Captures the entire 

build space and 

measures the 

quality-relevant 

heat emissions in 

real time. ~10Hz

~100MB/s

Process anomaly 

detection; part defect 

prediction; part defect 

diagnosis

Surface 

Morphology

2D images, surface 

height profile; ~10 

um width, ~20-100 

um height; per 

layer

600MB/layer

Powder bed defect 

detection; Part defect 

diagnosis; Part 

qualification

Powder Bed 

Imaging

2D images; One or 

a few per layer
16MB/layer

Powder coating quality 

monitorin

Tomographic 

Images – Optical 

coherence

A stack of images, 

penetrating 200-

400um, from 512 × 

480 pixels up to 

1024 ×885 pixels; 

150 frames/sec;  

per layer

320MB/s

Void, crack or un-

melted powder 

detection [UK]

High-speed 

synchrotron X-ray 

imaging and 

diffraction

X-Ray images; 

~50KHz 
3.28GB/s

AM process 

understanding; AM 

process modeling

Process Measurements

Measurement Type

Process 

Input and 

Environment 

Monitoring 

Build 

Behavior 

Monitoring
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Sensor types and integration methods vary from vendor to 

vendor. Some offer monitoring based on photodiodes, others 

combine photodiodes and cameras. Still others use a pyrometer 

that is integrated directly into the build chamber.  Each sensor 

type can be on- and off-axis. On-axis refers to the technique of 

installing sensors in the beam path of the laser.  Off-axis refers 

to installing sensors onto the roof of, or directly inside, the build 

chamber. Most machine-embedded, in-process sensing systems 

have lower sampling frequencies compared to customer-built 

monitoring systems. For example, one vendor provides a camera 

that captures 10 frames per second, which gives images of the 

whole layer. [4] 

Questions remain. How to integrate data with different 

sampling frequencies? How to select and collect useful data? 

How to process them after the collection? What are the available 

storages? This paper will present a guideline for high-speed data 

integration which can help users decide which data-integration 

configuration is best to follow for a specific use case. 

 
3. IN-PROCESS DATA INTEGRATION METHOD 

The challenges of automating data integration are the top 

roadblocks to AM real-time monitoring and control. Data 

integration is the process of combining data residing in different 

sources and providing users with a unified access and view of 

them. This section will present a guideline to help high-speed 

data integration by discussing existing, industry, integration 

standards and pointing out the missing ones associated with 

various manufacturing and enterprise applications.  

Figure 1, which relies heavily on our earlier seven-step 

framework [7], shows four groups of activities involved in data 

integration: Data Identification, Data Acquisition, Data 

Processing and Data Archiving.  When combined, these four 

groups provide a big-data, integration system that 1) enables 

real-time monitoring and control as well as 2) long-term data 

archiving for offline analyses. In addition to discussing these 

groups, this paper also discusses available standards and 

approaches from real-time, near real-time, and offline points of 

view. 

 

FIGURE 1: DATA INTEGRATION PROCESSES 

 

3.1 Data Identification 
In Data Identification, it's crucial to identify, define and 

characterize all the sources that generate in-process data. If these 

sources are not well defined and described, they can cause data 

integration and data usability issues throughout the whole AM 

process. For that purpose, a standardized definition can be 

created by providing three, important descriptions for each data 

source [7]: Source description, Data description, and Load 

description. Table 2 provides clear definitions of each. 

Source Description provides information about the 

measurement devices being used for in-process sensing. This 

information highly impacts the type of data, which is defined in 

the Data Description part, and the available integration 

approaches. The Data Identifier field links to a specific data 

instance. Possible options include 1) AM system name or 

identifier, 2) device identifier, 3) the exact position of the device 

in the coordinate system of the source, and 4) a unique timestamp 

when a measurement is conducted. The final part of data 

definition is Load Description, which provides important 

information for data acquisition. This information is crucial for 

data integration.  
Description Data Definition Field Data Definition Field Meaning 

 

 
 

 

 

 
Source 

Description 

Source Identifier Identifier of a data source. 

Source Name Name of a data source 

Source Type Type of a data source 

Device Identifier 
Identifier of a measurement device 

used. 

Device Type Type of measurement device used. 

Device Manufacturer 
Manufacturer of a measurement 

device used. 

Device Model 
Model of a measurement device 

used. 

Device Configuration 
Configuration of a measurement 

device used. 

 
Data 

Description 

Data Identifier Identifier of a data instance. 

Data Category 
How is data generated: Sample, 

Event, or Condition. 

Data Type Type of data. 

 
 

Load 

Description 

Trigger Method PUSH or PULL. 

Data Size Size of one data instance. 

Protocol Protocol used for data collection. 

Sampling Frequency 
Frequency in which data is 

generated. 

 

TABLE 2: GUIDELINE FOR DATA DEFINITION 

 

Source Description and Data Description present metadata 

that can help users uniquely identify the specific data instance 

more easily. Load Description serves as a metadata also. But as 

noted, it’s more important for data acquisition since it gives 

information about the data size and sampling frequency. 

Moreover, users can add their own metadata fields that can help 

identify their specific data instances more clearly. Other research 

presented a wide range of additional metadata fields for data 

registration for in-situ monitoring of LPBF processes [5]. 

 
3.2 Data Acquisition 

In AM processes, in-process data are generated by in-situ, 

ex-situ, and machine sensors. New communication and sensor 

technologies have enabled ubiquitous, physical connectivity 

among intelligent devices, machines, sensors, and actuators [8]. 

This has resulted in many standards that can be used to collect 

data from the point-of-generation and pass them on to be further 

processed. Deciding on which standard to use highly depends on 
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the use-case scenario. Comparing available protocols and 

standards for data acquisition provides insights for this paper.    

Data generated from traditional field devices such as PLCs, 

process instruments, actuators and intelligent I/Os are collected 

using standards such as IEC 61158 [24], CAN [25], and Modbus 

[26]. These standards are not interchangeable, so they can create 

communication challenges when using IoT devices. Today, 

MTConnect and OPC UA are at the forefront of harmonizing 

data exchange between shop floor equipment and software 

applications. [8] 

There are a variety of other standardized, session-layer 

protocols for IoT data exchange.  The most important one is 

Message Queuing Telemetry Transport (MQTT). MQTT is a 

publish/subscribe protocol with minimal overhead and reliable 

communications.  It is good for supervisory control and data 

acquisition (SCADA) and remote networks. It enables efficient 

data transmission, and it is quick to implement, due to its being 

a lightweight protocol. [8] 

Acoustic and Ultrasonic Emission sensors have sampling 

frequencies that vary from 100KHz to 10MHz (see Table 1). For 

collecting this kind of data, a USB standard can be used. 

Deciding on which version of the USB standard to use depends 

on the data volume that is generated during the build process. 

Table 3 compares USB standard versions by data rate and 

transfer speed [16].  

 
TABLE 3: COMPARISON OF USB STANDARDS 

 

During the LPBF process, a melt pool forms by laser beam 

irradiation on the metal powders, and then solidifies to the 

consolidated structure [15]. Melt pool monitoring is a necessary 

and important part of AM process monitoring and control. The 

easiest way to monitor its geometry and features is by using 

optical cameras that collect a variety of different images. 

Integrating these different images is challenging due to the 

combination of the high-sampling frequencies and the large 

amount of data they generate.  The NIST AM Metrology Testbed 

[ammt.nist.gov] has instrumented a CMOS camera that 

generates melt pool images at 20KHz, where each frame is 

120x120 pixels approximately 15KB in size. This leads to almost 

300MB of just optical imaging data per second. Table 4 

compares currently available standards for optical-imaging data 

acquisition. 

Five standards for collecting data from industrial cameras 

address speed, cable length, receiver device and connector. 

Camera Link provides a speed of up to 850 MB per second when 

used with two cables [17]. CoaXPress provides high-speed rates 

and longer cable possibilities; because of that, it outperforms the 

CameraLink standard. The highest rate that it offers is more than 

1500 MB per second with CXP-12 version [18]. For even higher 

demands, the CameraLink HS offers the highest speed of up to 

2100 MB/s, with CX4 connector [19].  The last two standards 

differ from the previous one by having a direct connection to a 

PC.  While there is no need for a frame grabber device, they will 

have a much lower speed rate.  

These standards are suitable for cameras that are producing 

125 to more than 400 MB per second of video or image data 

[20][21].  Which standard to use depends on both the amount of 

data that must be integrated and the decision regarding chosen 

receiver device. If the camera generates less than 125 MB/s then 

there is no need to invest in a receiver device because both, Gig-

E and USB3 Vision can be used. If more data are generated, other 

options must be evaluated. Here, the decision will be made based 

on the speed and cable length needed. 

 
TABLE 4: OPTICAL IMAGING DATA INTEGRATION 

STANDARDS 

 

3.3 Data Processing 
Data Processing is an essential part of data integration. It 

includes retrieving, transforming, or classifying raw, in-process, 

measurement data into useful information. During the data- 

processing phase, many activities are conducted, starting with 

collecting data from receiver devices to registering, fusing, 

analyzing, and sending data to long-term storage. 

 
TABLE 5: GUIDELINE FOR USING DATA PROCESSING 

APPROACHES FOR DATA ANALYTICS PURPOSES 

Standard Maximum Transfer Rate Maximum Data Rate

USB 3.0 5 Gbps 625 MB/s

USB 3.1 10 Gbps 1250 MB/s

USB 3.2 20 Gbps 2500 MB/s

USB 4 40 Gbps 5000 MB/s

Standard Speed
Receiver 

Device
Cable Length Connectors

CameraLink

255 MB/s for 

one cable and 

up to 850 

MB/s for two 

cables

Frame 

grabber
7-15m

MDR 26-pin 

connector; SDR, 

HDR 26-pin 

connector (Mini 

Camera Link); HDR 

14-pin connector 

(PoCL-Lite).

CameraLink 

HS
2100 MB/s

Frame 

grabber
15-300m SFP, SFP+, CX4

CoaXPress 1562.5 MB/s
Frame 

grabber
30m

BNC Connector and 

smaller DIN 1.0/2.3

Gig-E Vision

125 MB/s or 

250 MB/s 

with two 

cables

PC 

(direct)

100m (copper) 

and 5000m 

(fyber optic) 

using a single 

camera 

Copper Ethernet; 

Copper Ethernet 

with vision locking 

screws; 10 Gigabit 

Ethernet direct 

attach cable; 

Ethernet fiber optic 

cable

USB3 Vision 437.5 MB/s
PC 

(direct)

Standard passive 

copper cable 3-

5m; active 

copper cable 

8+m; fiber optic 

cable 100m

USB3 Vision type 

connectors: host 

side (standard A 

locking) and device 

side (micro B 

locking)

Type of 

Analysis
Batch Streaming ETL ELT

Grouping 

Data

Parallel/

Distributed 

Computing

Lambda 

Architecture
Queueing

Offline Yes No No Yes
Layerwise

Partwise
No No No

Real-

Time
No Yes Yes No

No 

grouping
Yes Yes Yes

Near 

Real-

Time

Yes

(micro 

batch)

Yes

(micro 

batch or 

native)

Yes No Layerwise Yes Yes Yes
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There is no universal approach to processing high-velocity, 

AM measurement data. What approach should be followed 

depends on the use case. As noted, AM in-process data are 

collected and used mainly for control and monitoring. This paper 

proposes three data-processing approaches: offline, near real-

time and real-time analysis. Table 5 presents a guideline for each 

approach. Based on the use case, users would want to perform 

one of the mentioned analyses. This guideline can help users 

understand what requirements they need to fulfill to conduct the 

intended analysis. Before discussing each proposed approach in 

detail, a short explanation of the methods and paradigms is 

provided in Table 5.   

The batch-processing approach is used when a large volume 

of data is collected all at once [9]. The stream-processing 

approach is used when data are being generated continuously [9].  

The ETL (extract-transform-load) data integration method 

includes 1) extracting data from various heterogeneous sources, 

2) applying different process rules to the extracted data in the 

middle class, then 3) loading the transformed data into storage 

[11]. In the ELT (extract-load-transform) data integration 

method, after the extract process, stores data in a large storage 

device where scalable computations can be made [11].  

Parallel computing on a single computer uses multiple 

processors to execute tasks in parallel.  Distributed parallel 

computing, however, uses multiple computing devices to 

execute those same tasks. The Lambda architecture combines 

batch and stream processing paradigms to implement multiple 

paths of computation [9].  There is a streaming path for fast and, 

possibly, approximate results.  And there is a batch, offline path 

that could be used for long-term archiving purposes [9]. 

 

3.3.1 Offline Analysis 
Offline analysis has no time constraints. So, it can be 

conducted after a build is finished. AM in-process monitoring 

data are used to provide, or improve, the current understanding 

of AM processes through offline data analysis. Not having time 

constraints potentially relaxes the time requirements for data- 

integration when compared to real-time or near real-time data 

analysis. Still, executing that integration within a certain time 

constraint can be challenging, if a manual operation is involved. 

Figure 2 presents a proposed architecture for an offline-analysis 

data-integration approach. 

 

 
 FIGURE 2: OFFLINE ANALYSIS DATA INTEGRATION 

APPROACH 

 

Since there is no need for real-time data processing, the batch 

data-processing paradigm is a better option than the streaming 

one. It is an extremely efficient way to process large amounts of 

data that are collected over a long period of time, such as an AM 

build. But there is no need to process each data sample in real-

time. A batch data-processing task can be scheduled as soon as 

the build ends.  Or they can be scheduled, if needed, a few times 

during the build.  

A distributed-computing approach is a useful way to split a 

single, large, data-processing task into several smaller ones.  

Each smaller task can be executed on a different computer, 

thereby speeding up the entire task. A Lambda architecture and 

queueing are unnecessary as well.  

For offline analysis, it’s easier to use the ELT integration 

approach to avoid performing high computational tasks on data 

before storing them – assuming there is available storage. If 

that’s not the case, some transformations and data cleaning must 

be performed before sending data to long-term storage for 

archiving.  After storing data, data registration and data fusion 

tasks should be performed. Researchers proposed methods for 

doing both, when 1) those data are melt-pool monitoring data 

[12] [13] and 2) the analyses are done on layer- and part-wise 

data. 
 

3.3.2 Real-Time Analysis 
Real-time analysis and control of AM processes is still in its 

infancy, but it continues to be an important AM goal and research 

topic. Figure 3 proposes an architecture for a data integration 

approach that can help perform real-time data analysis. 

 
FIGURE 3: REAL-TIME ANALYSIS DATA INTEGRATION 

APPROACH 

 

Clearly, batch processing isn’t useful for processing high-

speed, streaming data because it cannot process incoming events 

fast enough [10]. For that reason, a streaming paradigm should 

be used whenever every data sample must be analyzed. Images 

are one example, especially since they are collected continuously 

in real-time. The high dimensionality of the monitoring data 

makes it extremely difficult to get real-time analysis for many 

AM control applications. 

To overcome this processing problem, distributed or parallel 

computing algorithms must be incorporated into the system 

architecture. Which algorithm to choose depends on the time 

available for one data sample to be processed. Section 4 presents 

a system where real-time analysis is achieved using a parallel-

computing approach to process data with a frame rate of 2500 

FPS.  

In this use case, the Lambda architecture is proposed. Data 

are collected, then sent to a data dimensionality reduction 

component and a message queue.  The data dimensionality 

reduction component serves for reducing the dimensionality of 

collected data. For example, it can calculate the design features 

in the data and sends them to the data-analysis component and to 

persistent, longtime storage. In parallel, to prevent 
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overwhelming the storage, raw, high frequency data are sent to 

the message queue. From there, the queued data are used as 

inputs for offline analysis.  

The proposed Lambda architecture associated with Figure 3 

represents a form of edge computing.  Edge computing plays an 

enormous role in using AM data because it is extremely fast.  

Edge computing takes parts of the computing process to various 

physical locations, moving the processed data close to where 

there are needed and collected. Edge computing is needed for 

control. But   users need persistent storage for more sophisticated 

analysis, based on tools such as machine learning. Note, there 

are some new, vendor solutions that offer edge computing for 

process monitoring and cloud integration [14]. 

 

3.3.3 Near Real-Time Analysis 
Near real-time analysis of AM build data allows some latency, 

which makes data integration slightly easier. The range for 

latency can vary and mostly depends on the use case. Latency 

can be defined by how many points, tracks, or layers behind data 

analysis can happen. The approaches for this analysis are the 

same as the real-time analysis approaches.   So, Figure 3 is 

relevant for this use case. The difference in this case is that the 

streaming paradigm isn’t always the only option. If time allows, 

batch processing could be also used; but only by processing the 

data in micro-batches. This will, to a certain point, imitate the 

streaming paradigm. For example, Apache Spark leverages 

micro batching for streaming, which provides near real-time 

processing [29]. Micro batching divides event streams into small 

batches and triggers the computations. In AM, latency is allowed 

to a certain extent, so data can be analyzed per layer.  

 

3.4 Data Archiving 
Data integration is considered finished when data are in a 

persistent storage. Subsequently, data fusion and software 

integration, which are outside the scope of this paper, happen. 

This paper will compare three types of persistent storage that can 

facilitate better data analytics: time series databases, data lakes 

and cloud storage. Table 6 presents a guideline on when to use 

each of the proposed storage methods based on user needs. 

 
Time Series Database Data Lake Cloud Storage 

Meaningful time-series 

measurement 

Storing unstructured, 

semi-structured, and 

structured data 

Storing unstructured, 

semi-structured, and 

structured data 

Data analysis in specific 

time periods 
Scalability and flexibility 

Storing all data in one 

place 

Storing image features, no 

images 

Storing all data in one 

place 

Easy data access by 

multiple users 

Avoid queueing data 

during the integration 
In-house solution 

Easy maintenance and 

fast recovery 

Fast data querying 
Full control over data 

access 
Cost-efficiency 

 

TABLE 6: GUIDELINE FOR CHOOSING A PERSISTENT 

STORAGE 

 

Time-series databases are a good option for dealing with IoT 

data. Most IoT devices collect data constantly and report that 

data at regular intervals. Time-series analysis can provide 

timestamped data points, making it possible to identify unusual 

behaviors during AM builds. Also, since all data samples have a 

timestamp value, it’s easier to fuse various data sources if their 

acquisition systems are synchronized. Time-series data can be 

analyzed for a specific time period. Time-series databases can 

handle highly concurrent and high throughput “writes” so the 

user could avoid using message queues during data integration 

activities [22]. Data are organized in a way that allows users fast 

and easy data querying. The main disadvantage of using this type 

of persistent storage is that it’s not recommended to store raw, 

image data for further analysis since the purpose of time series 

data is to monitor measures acquired in time. One can store 

image features instead of images, but that requires 1) calculating 

all possibly needed features before storing them or 2) storing raw 

image data in another storage, which causes data-federation 

problems. 

The other two storages, Data Lake and Cloud Storage, are 

similar. Both can be used for storing unstructured, semi-

structured, and structured data in one place [23, 24]. By choosing 

these storage types, one can avoid data federation problems and 

it would be easier to make connections between different data 

sources. Also, both storages provide unlimited scalability. What 

makes the difference in these options are cost and ownership. As 

an in-house solution, a Data Lake can be more flexible, but it 

requires knowledge to set it up and further administration.  It also 

requires a higher investment at the beginning. Everything is 

developed in-house, so data privacy is higher than in cloud 

storage. Cloud storage is more cost-efficient, because users pay 

for the storage and for each executed query [24].  Moreover, and 

importantly, the maintenance and recovery, in case of failure, are 

the responsibility of the storage provider. 

Data archiving comes with the challenges of synchronizing 

different frequencies and associating the different dimensions 

and resolutions of data sources. As noted previously, data can be 

joined based on the timestamp value, or added id value for each 

instance. For example, if a user has one coaxial image and three 

pyrometer values at the same time frame there are two options 

for the resulting data set. A data set could have one row with two 

columns: first column for image data, and the second one for 

some aggregated value of pyrometer values. Another option is to 

have three rows with repeated values for image column, and raw 

values of pyrometer data. More challenging is to associate 

different dimensions and resolutions of data sources and that 

represents a data fusion problem that was analyzed in the paper 

[30]. 

 

4. AN AM USE CASE 
The data-integration ideas and processes presented earlier in 

this paper will be applied to the “Intelligent Metrology 

Architecture (IMA) for Metal Additive Manufacturing” 

proposed in [6]. This architecture helps extract significant 

features from the large amount of in-process AM data collected 

by the metrology systems (a collection of sensors). These 

features are used to effectively estimate the intermediate part 

quality. Here, integrating those sensor data is necessary to create 
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the inputs for the virtual metrology software that analyzes in-

process measurement data and makes layerwise, part-quality 

estimates.  In this use case, that estimate is the surface roughness.  

 

FIGURE 4: INTELLIGENT METROLOGY ARCHITECTURE 

FOR METAL AM [6] 

 

Figure 4 shows the IMA architecture [6] for our AM use 

case. The main parts of the architecture are the AM Machine with 

instrumented sensors, In-situ Metrology for extracting features 

from data, and Automated Virtual Metrology (AVM) for 

analyzing those features. AM Machine has two sensors: CMOS 

camera and pyrometer. In-situ Metrology collects data from the 

sensors, extracts features needed for prediction and sends those 

features to AVM. AVM uses a model to predict surface roughness 

from the features sent from In-Situ Metrology part of the 

architecture. More details of the architecture are explained in the 

paper [6].  
 

4.1 Data Identification 
Two types of data must be integrated before they are 

analyzed for the purpose of estimating surface roughness and 

generating layerwise rescan strategy. As shown in Figure 4, the 

AM machine is equipped with a 500W laser with a wavelength 

1070 ± 10 nm, a coaxial CMOS camera, and a pyrometer. The 

coaxial CMOS camera can capture images during a build at the 

rate of 2500 frames/sec; and each image size is 160x160 pixels.  

The temperature measured by the pyrometer is sampled at 100 

kHz. Both sampled data series are uniquely defined by 

timestamps.  

 

4.2 Data Acquisition 
As noted in section 4.1, those two data inputs must be 

collected at 2500 frames/sec and 100 kHz; the first is for the 

coaxial CMOS camera and the second is for the pyrometer. Next, 

the actual, laser-spot position is collected. Yang [6] states that the 

laser-spot position is provided by the controller via an OPC-UA 

interface to the ISM module. In parallel, the image and 

temperature of the melt pool are captured using the CMOS 

camera and the pyrometer respectively. Images are collected 

using the CameraLink protocol; temperature signals from the 

pyrometer are in the range of 4–20 mA.  After the analog 

pyrometer signal is converted to digital, the USB 

communications standard is used to send the resulting data to a 

data store.  These data are used as inputs to data processing.  

 

4.3 Data Processing 
The first, data-processing task extracts features from the 

image data by using the Matrox imaging library. Details of 

feature extraction are described in [6]. After the image features 

are extracted, they are fused with current, laser-spot position and 

temperature data.  Fusion is based on the corresponding 

timestamp in all three data sources. Data are then analyzed using 

the AVM component [6] to make surface-roughness predictions 

for each intermediate layer based on a predictive model.  

Extracted features are stored in a relational database for the 

purpose of data analysis. Data analysis happens in both near real-

time and offline. Offline, predictive-model training can be 

conducted on archived data. To create a training data set, a build 

was made to capture both in-process data and the surface 

measurement data from the as-built parts. Both the features of 

the in-process data and the surface measurement data are 

captured in the relational database and used for predictive model 

training. The resulting model is saved in the database as well for 

the AVM to make intermediate-layer, surface-roughness 

predictions. The estimation can be used for near-real-time, 

layerwise, decision making, for example, continue the build, 

pause the build, or rescan the layer.  

Since this use case has a near-real-time, analysis component, 

the architecture’s streaming approach is conducted, and data 

samples are processed in parallel. Data are sent directly for 

analysis in AVM component so there is no need for queuing data, 

which would only slow down the process. As noted, raw data are 

transformed (calculation of image features) and later fused with 

other sources, so this architecture presents an ETL process. The 

first step is data extraction from the sensors, then data 

transformation and loading into the storage.  

 

4.4 Data Archiving 
The architecture doesn’t show storing of the raw data, only 

features extracted during the Data Processing. The goal of this 

architecture is to estimate the quality of AM parts during the 

build process; it doesn’t focus much on the long-term archiving 

for future analysis. It is possible to create an additional 

architectural component that would archive the collected raw 

data before using them for offline analysis. Since data instances 

have a timestamp value, all three, proposed, storage options can 

be used.  But, note, that original images shouldn’t be stored in a 

time series database.  

 
5. DISCUSSION 

The general, data integration framework defines a workflow 

for AM in-process, big-data integration. The detailed 

configuration for each integration step depends on the 

application.  To advance the AM process understanding, the 

current, process-monitoring strategy is to collect as much data as 
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possible and as fast as possible. Better understanding of the 

fundamentals of AM processes will help identify which data are 

most important for part-quality control. Also, data analysis will 

help to evaluate the veracity and value of the collected data. 

These characteristics are interconnected because veracity 

impacts the value that data offer. Veracity and value can be 

evaluated during in-process data integration by, for example, 

using expert system rules, but the downside is that would affect 

the processing time. This represents a challenge for real-time or 

near real-time data integration approaches due to time 

constraints. Eventually, data integration requirements should be 

driven by use cases. Consequently, AM in-process data 

integration performance is going to be assessed based on the 

process control, optimization requirements, and the part yield 

rate in each use case.  

Interoperability is a key issue for in-process data integration. 

Both AM machine builders and in-process, monitoring 

technology providers need to take responsibility for the 

integrability of their sensing systems. Standard communication 

protocols and information models should be developed and 

adopted in support of easy and cost-effective in-process data 

integration. In addition to standard data formats, standard 

metadata should be used to enable data sharing and reuse. 

In addition, a standard reference architecture for in-process 

data integration will be helpful for part producers to adopt the 

framework, so are some reference implementations to provide 

best practices. 

 
6. CONCLUSION AND FUTURE WORK 

AM data integration faces many challenges due to the high 

volume, velocity, veracity, and variety that accompanies AM in-

process data. These characteristics make automated data 

integration very challenging. To overcome the data integration 

challenges in LPBF additive manufacturing this paper proposed 

a guideline to help high-speed data integration. The guideline 

covers four essential processes for data integration – Data 

Identification, Data Acquisition, Data Processing and Data 

Archiving. Each process is discussed in detail, providing 

approaches to label data for further analysis, choosing 

appropriate standards for data acquisition, selecting what 

architectural approach to follow for data processing, and 

choosing the appropriate data storage based on the use case.  

Future work will consist of identifying existing 

interoperable standards for data integration and the gaps to fill. 

We intend to develop a reference architecture, which can define 

the data integration functions and their interactions required for 

various in-process data pipeline setup. In addition, a reference 

implementation will be conducted at NIST to automate NIST 

AMMT data acquisition, transfer, and archiving, as well as to 

enable intelligent process monitoring and alarm management. 

 

DISCLAIMER 
Certain commercial systems are identified in this paper. 

Such identification does not imply recommendation or 

endorsement by NIST; nor does it imply that the products 

identified are necessarily the best available for the purpose. 

Further, any opinions, findings, conclusions, or 

recommendations expressed in this material are those of the 

authors and do not necessarily reflect the views of NIST or any 

other supporting U.S. government or corporate organizations. 
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