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An Overview of Advances in Signal Processing Techniques
for Classical and Quantum Wideband Synthetic Apertures

Peter Vouras, Kumar Vijay Mishra, Alexandra Artusio-Glimpse, Samuel Pinilla, Angeliki Xenaki,
David W. Griffith and Karen Egiazarian

Abstract—Rapid developments in synthetic aperture (SA) systems,
which generate a larger aperture with greater angular resolution than
is inherently possible from the physical dimensions of a single sensor
alone, are leading to novel research avenues in several signal processing
applications. The SAs may either use a mechanical positioner to move
an antenna through space or deploy a distributed network of sensors.
With the advent of new hardware technologies, the SAs tend to be
denser nowadays. The recent opening of higher frequency bands has
led to wide SA bandwidths. In general, new techniques and setups are
required to harness the potential of wide SAs in space and bandwidth.
Herein, we provide a brief overview of emerging signal processing
trends in such spatially and spectrally wideband SA systems. This
guide is intended to aid newcomers in navigating the most critical
issues in SA analysis and further supports the development of new
theories in the field. In particular, we cover the theoretical framework
and practical underpinnings of wideband SA radar, channel sounding,
sonar, radiometry, and optical applications. Apart from the classical SA
applications, we also discuss the quantum electric-field-sensing probes in
SAs that are currently undergoing active research but remain at nascent
stages of development.

Index Terms—Ptychography, quantum information engineering, radar,
channel sounding, synthetic apertures.

I. INTRODUCTION

Over the past several decades, an array of imaging sensors have
been employed to create a single synthetic image by simulating
a sensor with a much wider aperture and shallow depth-of-field.
This synthetic aperture (SA) processing technique has led to a
wide variety of cutting-edge applications in radar [1], sonar [2],
radio telescopes [3], channel sounding [4], optics [5], radiometry
[6], acoustics [7], quantum [8], microscopy [9] and biomedical
applications, including ultrasound [10], magnetic resonance imaging
(MRI) [11], magnetometry [12], and computed tomography (CT)
[13]. The SAs offer savings in cost, hardware, and power while
also providing a better view of occluded objects, improvement in
signal-to-noise ratio (SNR), and enhanced resolution. The SAs may
be constructed through motion of the sensor/object or distributed
deployment of sensors. Originally invented for the radar systems in
the 1950s, SAs were first implemented using digital computers in the
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late 1970s [1]. More advanced techniques were introduced in the late
1980s before widespread adoption in other applications throughout
the 1990s [14].

The angle and delay resolution of a metrology system that collects
information from the environment by steering a high-gain antenna
to different directions in space is determined by the physical size of
the antenna and by the instantaneous bandwidth of the transmitted
signal. As the size and cost of the sensors have come down, denser
and wider arrays have become feasible. Similarly, with the advent of
several remote sensing and communications applications for higher
frequency bands such as millimeter-wave [15] and Terahertz (THz)
[16], SA systems with extremely wide bandwidths are currently
being investigated. For example, millimeter-wave SA radar (SAR)
is revolutionizing the rapid developments in the automotive industry
toward building the next-generation autonomous vehicles [17]. In
quantum applications, Rydberg state sensors are garnering significant
interest for wideband receivers [8]. In SA sonar (SAS), existing
algorithms are being adapted for widebeam and wideband systems to
discern new properties of sea-bottom scattering [2]. In optics, coded
diffraction patterns are now used to acquire several snapshots of the
scene by changing the spatial configuration [18].

Novel signal processing techniques are essential for
implementations of wideband SA techniques. In this paper, we
provide a tutorial overview of methods to improve the spatial
(angular) and delay resolution by synthesizing, respectively, a
virtual aperture larger than the physical antenna and a measurement
bandwidth greater than the instantaneous signal bandwidth. This
paper brings together wideband SA techniques across different
disciplines. Table 1 lists the SA systems considered along with
a brief description of generation of the spatial aperture and the
type of signal bandwidth available, e.g. instantaneously wideband,
narrowband, or synthesized wideband. We remark that the wideband
SAs have become more pervasive in various other fields such as
seismology, biomedical, and acoustics. However, it is not possible
to cover all applications in this paper and, hereafter, we only focus
on the major developments in some salient applications.

In Section IV, we provide a background on SAR techniques
along with some of the wideband SAR applications, including
millimeter-wave SAR, wideband autofocusing, and quantum systems
for SAR. Section V presents new results for systems that leverage
the same antenna aperture, hardware platform, and waveforms to
combine radar detection processing with data communications. In
Section VI, we discuss another important SA application of channel
sounding. In modern 5G/6G communications, channel sounding plays
an important role in establishing system performance, especially for
single-carrier modulated systems. With multiple-carrier modulations,
such as Orthogonal Frequency Division Multiplexing (OFDM), a
guard interval is added between symbols, which mitigates the impact
of multipath and intersymbol interference (ISI). The SAs have been
used in channel sounding to accurately characterize the scattering
of electromagnetic fields propagating through a wireless channel.
This paper describes SA channel sounders that sample the frequency
response of a wireless channel. A brief introduction to possible



2

TABLE I
COMPARISON OF MAJOR WIDEBAND SA SYSTEMS

System Spatial Aperture Bandwidth

SAR Aperture created via aircraft motion Wide instantaneous bandwidth

ISAR Aperture created via object motion Wide instantaneous bandwidth

InSAR Aperture created via phase difference from multiple
passes

Wide instantaneous bandwidth

SA sounder via frequency domain sampling Aperture created using mechanical positioner such as
a robot

Instantaneously narrowband but synthesized
wide bandwidths

SAS Aperture created along vessel’s trajectory Instantaneously wide fractional bandwidth

Optical SA Aperture created via mechanical positioner Narrow instantaneous bandwidth

SA Radiometry Large SA from sparse spatial samples Wide synthesized bandwidth

Quantum SA via Rydberg probe Aperture created via mechanical positioner Instantaneously narrowband but can
synthesize wide bandwidths

Quantum entanglement-based SAR Aperture created via aircraft motion Narrow instantaneous bandwidth but
excellent noise suppression

SA ultrasound Aperture created by acquiring near-field data from
parts of a stationary array

Narrow instantaneous bandwidth

SA MRI/CT Aperture created via low-resolution images acquired
from a moving field-of-view (FoV)

Narrow instantaneous bandwidth but
synthesized wide bandwidths

SA acoustics Aperture created with microphones on a mobile
platform

Wide instantaneous bandwidth

future paths of research describes time-domain SA sounders that
utilize novel quantum sensors to measure the intensity of impinging
electric fields. Then, Section VIII explains the use of various
lensng techniques in optics to generate wideband apertures. In
Section VIII, we introduce and discuss new developments in SAS
such as wideband processing, micronavigation, and multiple-input
multiple-output (MIMO) systems. New innovations and capabilities
enabled through the use of machine learning techniques in SA
systems are briefly summarized in Section IX. Section IV described
SA applications in radiometry. We conclude in Section XI.

II. WAVE PROPAGATION

– plane waves – spherical waves

III. ARRAY ARCHITECTURES

– cylindrical arrays – polygonalization – spherical arrays at
acoustic freqs – wideband DBF

IV. WIDEBAND SAR

When a radar illuminates an object, conventional processing
techniques, such as beamforming and matched filtering, are utilized
to obtain downrange resolution along the radar line-of-sight (RLoS).
If the object is also moving relative to the radar, then the Doppler
frequency gradient is used to obtain cross-range resolution that is
much finer than the radar’s beamwidth. The motion of the object is
generated in a variety of ways but ultimately this motion is related
to the simplified case of a stationary monostatic radar illuminating a
rotating object.

In Fig. 1, a three-dimensional (3-D) object illuminated by the radar
signals is projected onto the x-y plane with the object rotating about
the z-axis with uniform angular velocity. If the object is contained
within the main beam of the radar and rotating about the point A at
ω radians per second with the radar at a line-of-sight (LoS) distance
R1 from A, then the distance to a point on the object with initial
coordinates (R0, θ0, z0) at time t = 0 is

R = [R2
0 +R2

1 + 2R1R0 sin(θ0 + ωt) + z20]
1
2 . (1)

If the distance to the object is much larger than the size of the object,
i.e. R1 >> R0, z0, then a good approximation is

R ≈ R1 + x0 sin(ωt) + y0 cos(ωt), (2)

and the Doppler frequency of the returned signal is

fd =
2

λ

dR

dt
= 2x0ω

λ
cosωt − 2y0ω

λ
sinωt, (3)

where λ is the radar wavelength. If the radar data are processed over
a short time interval centered at t = 0, the range to (x0, y0) and the
Doppler frequency shift is approximated as

R = R1 + y0, fd =
2x0ω

λ
. (4)

It follows that the downrange component y0 of the position of
a point scatterer is estimated by analyzing the delay of the radar
return and the cross-range component x0 is obtained by analyzing
the Doppler frequency shift [19–25]. This framework captures the
conventional range-Doppler imaging technique used in SAR. An
implicit assumption is that the LoS distance R1 from the radar
antenna to the center of the rotating object is a constant and known
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Fig. 1. Range-Doppler imaging through radar using the synthetic aperture
principle. Signal bandwidth and Doppler frequency resolution determine
downrange and cross-range resolutions, respectively. The graphic shows a
moving target for a stationary antenna. This is the principle of inverse SAR
(ISAR). In SAR, the SA is created with a moving array sensor and stationary
target.

value. If R1 is time varying, then the effects of changing range must
be compensated for in the signal processing. The parallel lines in
Fig. 1 perpendicular to the radar LoS are surfaces of constant delay
or range. The surfaces of constant Doppler are the lines parallel to
the plane formed by the RLoS and the rotation axis.

A. Resolution Performance

The downrange resolution ∆R of the monostatic radar illuminating
a rotating object is determined by the instantaneous bandwidth B
of the transmitted waveform, ∆R = c/2B, where c is the speed of
light. The factor of two arises because an incremental delay ∆t = 1/B
corresponds to an incremental downrange distance ∆R = c∆t/2. Fine
range resolution is achieved with a single pulse and the corresponding
processing is termed fast-time processing, meaning that the input data
rate is equal to the analog-to-digital converter (ADC) sampling rate.

It follows from (4) that a cross-range resolution ∆x is achieved if
Doppler frequency is measured with a resolution of

∆fd =
2ω∆x

λ
. (5)

A resolution of ∆fd requires a coherent processing interval of
approximately ∆T = 1/∆fd. The cross-range resolution is

∆x = λ

2ω∆T
= λ

2∆θ
, (6)

where ∆θ = ω∆T is the angle through which the object rotates
during the coherent processing interval. Fine cross-range resolution
requires multiple pulses and the corresponding processing is often
called slow-time processing because the input data rate is equal to
the pulse repetition frequency (PRF) of the transmitted waveform.

Fig. 2. Cross-range resolution of physical antenna (top) and SA (bottom).

B. Configurations

The range-Doppler imaging principle leads to several different
SAR configurations [26]. Strictly speaking, SAR is a method only
useful for improving cross-range resolution. One particular SAR
configuration is stripmap SAR where the radar is mounted on an
airborne platform and looking down from the side of the aircraft
towards terrain. Assume the aircraft is moving in a straight line at a
constant altitude with a speed V for a duration T along the direction
perpendicular to the LoS. The length of the SA, L = V T , is small
compared to the range R1 to the center of the target region, so the
angle subtended by the SA is approximately ∆θ ≈ L/R1 = V T /R1.

From the viewpoint of the radar, the scene appears to be
rotating with angular velocity ω = V /R1. During the duration T ,
the total angle through which the scene appears to rotate is
∆θ = ωT = V T /R1. A point scatterer in the scene will appear to have
a LoS velocity of ωx relative to the radar, where x is the cross-range
distance of the scatterer from the radar LoS. This apparent LoS
velocity v will create a Doppler frequency of fd = 2v/λ = 2ωx/λ.

If the Doppler frequency can be measured with a resolution of
∆fd, then the corresponding cross-range resolution is

∆x = λ

2ωT
= λ

2∆θ
≈ λR1

2L
= λR1

2V T
. (7)

Equations 6 and 7 yield the same result but are derived using
different approaches. Equation 6 suggests that cross-range resolution
results from the Doppler shifts created by the different apparent LoS
velocities of point scatterers in the scene [27]. Equation 7 indicates
that cross-range resolution is a result of the larger aperture size as
measured by its length L. Both interpretations are valid and show
that synthesizing larger apertures and using coherent processing can
increase cross-range and angular resolution.

Fig. 2 compares the cross range resolution, defined as the distance
from the mainlobe peak to the first null in the antenna pattern, for
a physical antenna and for a SA of the same size. The beamwidth
of the physical antenna is approximately given by θB ≈ λ/D, where
D is the cross-range length of the antenna, which in this scenario
is D = L. The figure illustrates that for the case of range-Doppler
imaging the cross-range resolution that can be achieved by a SA is
one-half the cross-range resolution possible using a physical antenna
of the same size.

SAR resolution performance will be degraded if point scatterers
in the scene move through different range or Doppler resolution
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Fig. 3. Imaging geometry of the FLoSAR. The receive antenna array is
flanked on both sides by a transmit antenna. As the radar traverses a curvilinear
downward motion, it exploits the virtual array along the height dimension [33].

cells. Errors caused by range or Doppler bin migration will have
to be removed in the signal processing or by shortening the coherent
processing interval. Other errors that affect performance include a
variable angular rotation rate or a radar LoS that is not orthogonal
to the axis of rotation.

In the following, we describe the popular and recent wideband
SAR configurations.

1) Wideband Tomographic SAR: The tomographic SAR follows
the principle of CT in medical imaging through the use of diversity
in the scan geometry. The transmitters and receivers are deployed in
multiple locations to provide additional angular information about the
targets leading to spatial diversity. This is useful for both SAR-based
ground-penetrating radar (GPR) as well as space-based SAR or
inverse SA radar (ISAR) [28]. For wideband tomographic SAR [29],
the transmitter emits a step-frequency waveform leading to a different
wavelength and resolution at each step. This method trades-off the
image resolution at each stepped-frequency for the computational
cost. Coherent processing of all low-resolution images obtained at
each stepped frequency is then used to construct a high-resolution
tomographic image of the scene.

2) Ultrawideband SAR: Low-frequency ultra-wideband (UWB)
SAR has become very popular recently largely because it offers
a unique capability of detecting complex hidden objects such as
landmines and other explosive hazards. However, the sizes of the
targets-of-interest are relatively small compared to the wavelengths
of the radar signals within the operating frequency band. As a
result, in the reconstructed SAR image, these targets (even when
detected) only show up in a few pixels as point-like targets without
any specific structure. Moreover, other manmade and clutter objects
of a similar size as the targets-of-interest also result in point-like
responses in SAR images. Thus, discriminating these targets from
confusers or clutter objects in SAR imagery is a highly challenging
task in the emerging low-frequency UWB SAR technology used
for this application [30]. In general, techniques ranging from
dictionary learning to neural networks (NNs) are employed for object
classification in this wideband SAR mode [31, 32].

3) Millimeter-Wave SAR: Toward higher frequencies, there is
growing interest in millimeter wave (mm-Wave) forward-looking
SA radar (FLoSAR) technology because the very wide, unlicensed
bandwidth available at mm-Wave band has potential for very
high-resolution applications. In addition, the mm-Wave components
have reduced dimensions and the signal experiences little attenuation
at close-ranges. Yet substantial challenges remain in deploying such
a system on airborne platforms whose motion is not stable within
subwavelength levels because the coherent SAR processing requires
subwavelength knowledge of platform position from pulse to pulse
relative to the target scene. In general, coherent SAR processing
relies on motion sensors such as an inertial measurement unit
(IMU) or the global positioning system (GPS) for this information
[34]. However, at mm-Wave, GPS accuracy is insufficient thereby
leading to inaccurate or defocused image reconstructions. Therefore,
it becomes imperative to resort to signal or data-driven motion
compensation algorithms to autofocus SAR images [35, 36].

4) THz SAR: The free space path loss and atmospheric attenuation
are severe at THz spectrum. Hence, THz band is currently explored
for short-range applications such as automotive, non-destructive
testing, food processing, body scanners, and indoor room profiling.
The THz band offers contiguous wide bandwidths up to 15 GHz. In
automotive SAR, the forward looking mode is not very useful because
of relatively slight change in aperture motion. The side-mounted
SAR is rendered ineffective for guiding the driver in the incoming
traffic. Therefore, squint-mode with side-mounted SAR has been
the preferred mode for THz automotive SAR [17]. Apart from the
high-resolution, THz EM waves exhibit good penetration depth and
are, therefore, employed for applications such as through-material
scans. The near-optical performance of the resultant images makes
these devices very useful. The spatial resolution is further enhanced
through the use of MIMO-SAR at these frequencies [37].

C. Wideband Autofocusing

There is a large body of literature on SAR autofocus algorithms
(see e.g. [38] and references therein). The principle of autofocusing
algorithms is as follows. The range measurement introduces two
artifacts: defocusing in the azimuthal domain arising from azimuth
phase errors and 2-D defocusing due to range cell migration. At
mm-Wave wavelength λ, wherein 4π/λ≫ 1, the azimuth defocusing
is a more serious effect and, as long as the range measurement error is
less than the range resolution itself, range cell migration is negligible.
Most autofocusing techniques estimate an equivalent phase error in
the measured signal by modeling the effect of the position error as
a linear time-invariant filter [39].

There are several approaches toward data-driven SAR image
autofocus processing. The most common phase gradient autofocus
(PGA) [40, 41] does not assume any specific model of the phase
error function and estimates phase errors from echoes reflected from
multiple strong scatterers. The method has several variations such
as the eigenvector method [39] and its fast computation counterparts
[42]. Alternatively, a few approaches consider minimizing the image
entropy to obtain a sharp image. These algorithms exploit the fact that
a focused image will yield lower entropy than its blurry counterparts
[38]. More recently, autofocusing techniques based on compressed
sensing [43], blind deconvolution [44], and deep learning [45] have
been proposed. In the context of autofocusing in FLoSAR, very
few works exist [46, 47]; further, there have not been in-depth
investigations into autofocus algorithms for mm-Wave FLoSAR.

D. Multi/Hyper-Spectral Processing

Modern SARs produce valuable information content especially if
they operate in multichannel [49], multi-polarization [50, 51], or
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Fig. 4. Example of (a) noisy and (b) denoised SAR images using Lee filters
for a window of size 5 × 5. In this particular example, component images
from channels 5 and 11 are used of the Sentinel-2 multispectral imager [48].

multi-temporal mode [52]. The multispectral SAR typically provides
images with higher spatial resolution but poorer spectral resolution.
On the other hand, hyperspectral SAR acquires images in the form
of a set of reflectance spectra in many contiguous and very narrow
bands thereby yielding a high spectral resolution but trading off
the spatial resolution. Sometimes, the SAR may be fitted with both
sensors and employ techniques for hyperspectral and multispectral
image fusion [49]. These applications often suffer from the presence
of a multiplicative, non-Gaussian and spatially correlated [53] speckle
noise [50] in SAR images. Mathematically, a noisy image Z ∈ Rm×n

is modeled as

Z = Y ⊙ ζ, (8)

where Y ∈ Rm×n is the target clean image, ζ ∈ Rm×n stands
for multiplicative noise with assumed variance equal to σ2

µ, and ⊙
represents point-wise multiplication. The image/noise model relies on
general information about SAR image/speckle properties [48].

In practice, it is desired to remove this specific noise ζ in (8) (see
Fig. 4(a)) through denoising or despeckling filters [52]. However, it is
not always possible, at least not without degrading useful information
[52, 54]. In other words, a positive effect of speckle suppression takes
place simultaneously with a negative effect of smearing of image
edges and details. Depending on the properties of an image, the filter
used and characteristics of speckle, there can be different proportion
of positive and negative effects. When this proportion is about equal,
despeckling becomes an unreasonable procedure [54].

Thus, it is important to predict the filtering performance before
applying image filtering. A recent successful example is the Lee filter,
which its output is expressed as

ZLee[i, j] = Ẑ[i, j] +
σ2
i,j

Ẑ
2[i, j]σ2

µ + σ2
i,j

(Z[i, j] − Ẑ[i, j]), (9)

where ZLee[i, j] is the filtered image, Ẑ[i, j] denotes the local mean
in the scanning window centered on the i, j-th pixel, Z[i, j] denotes
the central element in the window, and σ2

i,j is the variance of the pixel
values in the current window. In Fig. 4(b) we present an example of
Lee filter outputs.

In [55], it was demonstrated that such a prediction is possible for
filters based on the discrete cosine transform (DCT) with application
to SAR images acquired by the Sentinel-1 sensor. Here, data
provided by the Sentinel-1 sensor have been already used for several
important applications [56]. Then, there are numerous papers dealing
with estimation of image quality [57] including visual quality and
prediction of filtering efficiency [55]. For the corresponding methods,
there is a clear tendency to apply neural networks (NNs) [55]. Then,

it is increasingly popular to employ visual quality metrics in analysis
of image original quality and filter performance [55]. Finally, it has
been shown that filtering efficiency can be predicted for different
types of noise (additive, pure multiplicative, and, in general, signal
dependent; white and spatially correlated) and for different types of
filters [58].

Filtering based on the DCT [55] is one type of filtering used to
remove speckle. Meanwhile, there are many other methods to deal
with SAR image denoising and the prediction of filter efficiency.
Thus, we have tried to design and apply a predictor based on a
trained NN for the well-known Lee filter [59] that is included in
many existing tools for SAR image despeckling.

E. Quantum Systems for SAR

While, at present, a fully quantum SAR system is yet to be
demonstrated, steps toward practical quantum SAR have been made
in recent years that bear mentioning. A quantum SAR (QSAR) system
is any SAR system that exploits the effects of quantum mechanics.
Generally speaking, QSAR systems employing entanglement are the
primary schemes being considered by the community. The benefit of
entanglement QSAR is the enhanced ability to distinguish signals
from noise especially in low SNR scenarios. This allows for the
use of very weak transmitter powers with such systems showing
excellent potential for covert applications (see, e.g., [60]) or cases
where radiation dose must be limited, e.g., imaging of human tissue
and other biomedical applications.

Entanglement QSAR is based on the principle that two entangled
signals have a higher degree of correlation than their classical
counterparts. This enhanced correlation means that any matching that
takes place following the injection of noise through a measurement
activity is more robust and likely to return a correct positive
match. Even though the process of launching one of the two
entangled signals into free space destroys the entanglement, from
the combination of noise and loss mechanisms, successful detection
is still enhanced by the degree of entanglement [61]. For example,
consider the engtangled state ΨSI = (1/

√
d)Σk ∣k⟩S ∣k⟩I for a

signal photon, sent in the direction where an object is expected
to be, and idler photon, where d is the number of signal and
detector modes. Assuming noise is injected into the system, where
b is the number of noise photons, an object with reflectivity η is
likely to be detected when η/b > 1 whether entanglement is used
in the measurement or not. However, when η/b < 1, the SNR
is low and a simple analysis [61] shows that on average 8b/n2

photons must be collected to distinguish the signal from noise in
a classical measurement, whereas only 8b/n2d photons on average
are needed when entanglement is used. In other words, the degree
of entanglement defined by the number of modes d enhances the
SNR and reduces the number of trials needed to distinguish a signal
photon from noise.

Following a theoretical study using SNR and error detection
probability calculations, Lanzagorta et al. predicted the benefit
of entanglement-based QSAR over coherently integrated classical
SAR [62]. They define SNR as

SNR = PG2λ3σ0δr
2(4π)3R3kbT0Fnlav cos(θ) , (10)

where P is the average transmitted power in the classical regime
or P = Mh̵ω in the quantum regime defining M signal photons of
frequency ω and h̵ = h/2π, h is Planck’s constant. In this expression,
G is the antenna gain, λ is the radar wavelength, σ0 is the target radar
cross-section, δr is the range resolution, R is the range to the target,
kb is Boltzmann constant, T0 is the normal scene noise temperature,
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Fn is the dimensionless noise figure, la is the loss due to atmospheric
attenuation, v is the speed of the radar platform, and θ is the grazing
angle. They also define the detection error probability of the classical
and quantum systems, respectively, in the low brightness, high noise,
low reflectivity regime as

εc =
1

2
e−SNR/4, εq =

1

2
e−SNR. (11)

Comparing the classical and quantum detection error probabilities,
advantages of QSAR are found in range, speed, target size, and
grazing angle. For example, by defining a clear image as one having
an SNR of at least 5 dB, QSAR returns clear images over a range
of 125 km while classical SAR does not in their analysis. This and
other theoretical studies of microwave entanglement applied to radar,
ranging, and SAR motivate the investigation of practical realizations
of these quantum systems.

In quantum illumination (QI) [61], a signal and idler pair of
entangled photons are generated by some parametric converter. The
signal is sent into free space while the idler is held in memory at the
point of the receiver. At the time when the signal is expected to return,
the received signal is compared with the saved idler to determine if
what was received is noise or the returned signal. Holding the idler
in quantum memory is non-trivial and generally limits the detection
range due to losses in that memory. Therefore, two groups have
demonstrated schemes where a quadrature measurement is made on
the idler to digitize its information for more convenient storage.

Luong et al. presented experimental measurements in 2019
demonstrating their so-called quantum two-mode squeezing (QTMS)
technique where the in-phase (I) and quadrature (Q) voltage signals
of the retained idler and returned signal are mixed to enhance
sensitivity [63]. They used a Josephson parametric amplifier to
generate an entangled pair at 6.1445 GHz (idler) and 7.5376 GHz
(signal). Both signals were first passed through a chain of amplifiers
before being split into two paths, detected, and compared. The
experimental demonstration did not include a target as the transmitter
and receiver horns of the radar system were pointing directly at each
other; nevertheless, they demonstrated the process of a detection
by performing matched filtering between the stored 6 GHz and
launched 7 GHz signals. The technique showed some quantum
benefit when the team exchanged the quantum signal generator (the
Josephson parametric amplifier) with a classical signal generator. The
correlated classical signals underwent the exact same amplification
and propagation chains followed by the same matched filtering. Based
on receiver operating characteristic curves, Luong et al. found that, at
low SNR, the classical measurement required longer integration time
to reach the signal performance of the QTMS measurement [63].
The authors note there are similarities between their QTMS radar
technique and noise radar in [64] and discuss spaces for future
development of this and related quantum radar systems in [65].

In 2020, Barzanjeh et al. published a thorough investigation of a QI
setup with a digital receiver [66]. Their use of the digital detection
scheme, where again I and Q voltages are obtained of the signal
and idler, circumvents the memory requirements of the traditional
QI schemes [67]. In this setup, a Josephson parametric converter
(JPC) was used to generate the entangled signals through three-wave
mixing producing the signal photons at ωS/2π = 10.09 GHz and idler
photons at ωI/2π = 6.8 GHz. Following amplification, the signal and
idler are down converted to an intermediate frequency of 20 MHz and
digitized with a sample rate of 100 MHz. They applied a fast Fourier
Transform (FFT) and postprocessing to obtain I and Q voltages for
the signal and idler paths, respectively. These quadrature voltages are
related to the complex amplitudes aj and their complex conjugate a∗j

of the signal (j = S) and idler (j = I) modes at the output of the JPC
by

aj =
Ij + iQj√
2h̵ωjBΩGj

, a∗j =
Ij − iQj√
2h̵ωjBΩGj

, (12)

where Ω = 50 ohms is the resistance, B = 200 kHz
is the measurement bandwidth, and (GS ,GI) =
(93.98(01),94.25(02)) dB is the measured system gain for
each channel. They also measured the added system noise to be
(nS , nI) = (9.61(04),14.91(1)) referenced to the JPC output.
The degree of entanglement is measured using the nonseparability
criterion ∆ ∶= ⟨X̂2

−⟩ + ⟨P 2
+ ⟩ < 1, where X̂− = (âS + â†

S − âI − â
†
I)/2,

P̂+ = (âS − â†
S + âI − â

†
I)/(2i), ⟨Ô⟩ defines the mean of the operator

O, and O† is the transpose conjugate of the operator O. They
measure ∆ as a function of the signal photon number NS = ⟨â†

S âS⟩,
and find that at low photon number, ∆ is below one meaning the
outputs of the JPC are entangled, while at larger photon number
obtained with large pump powers, entanglement gradually degrades
and vanishes at NS = 4.5 photons/sHz.

With this confirmation of entanglement, Barzanjeh et al. then
analyzed the SNR of the QI detection (Eq. 13) with comparisons
to classical illumination (also Eq. 13), subjected to the same noise
and loss conditions as the QI measurement, and to a coherent-state
illumination scheme (the classical benchmark) with digital homodyne
(Eq. 14) and digital heterodyne (Eq. 15) detection also following the
same measurement chain, signal bandwidth, and signal power. Their
analysis showed marginal quantum enhancement of the SNR over the
classical benchmark with perfect microwave photon counting of the
idler, which they simulate by calibrating the idler path.

SNRQI/CI =
(⟨N̂1⟩ − ⟨N̂0⟩)

2

2 (
√
σ2
N1

+
√
σ2
N0

)
2

(13)

SNRhomoCS =
(⟨X̂det

S,1⟩ − ⟨X̂det
S,0⟩)

2

2(
√
σ2
Xdet
S,1

+
√
σ2
Xdet
S,0

)
2

(14)

SNRhetCS =
(⟨X̂det

S,1⟩ − ⟨X̂det
S,0⟩)

2 + (⟨P̂ detS,1 ⟩ − ⟨P̂ detS,0 ⟩)
2

2(
√
σ2
Xdet
S,1

+ σ2
Pdet
S,1

+
√
σ2
Xdet
S,0

+ σ2
Pdet
S,0

)
2
, (15)

where N̂j = â†
j,+âj,+ − â†

j,−âj,− is the annihilation operator of the
mixed signal and idler modes in the absence (j = 0) or presence
(j = 1) of a target, where âj,± = (âdet†S,j +

√
2âv ± âdetI )/

√
2, âv is

the vacuum noise operator, âdetS,j is the detected radiation, and σ2
O

is the variance of the operator O. Also, X̂det
S,j = (âdetS,j + âdet†S,j )/

√
2

and P̂ detS,j = (âdetS,j − âdet†S,j )/
√
i2 are the field quadrature operators. To

calibrate the number counting of the idler, Barzanjeh et al. reduce the
variance in the denominator of Eq. 13 by the calibrated idler vacuum
and amplifier noise as ⟨â†

I âI⟩ = ⟨âdet†I âdetI ⟩ /(GI − (nI + 1)).
There are significant challenges still to overcome before QSAR

becomes a reality. The generation of entangled microwave signals
and the quantum detection of those signals, both likely requiring
cryogenic temperatures and, for the moment struggling with heavy
amplification noise, are the main technological barriers to practical
implementations of QSAR or any quantum illumination application in
the microwave regime [68–71]. Plus, the synchronization of the signal
and idler places some constraints on the measurement acquisition
process that are noteworthy [72]. That said, new innovations are
consistently put forward, meaning there is reason to continue to track
developments in this field and look forward to new advancements.
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Fig. 5. Simplified illustration of BFSK transmit chain. Wideband SAR
systems are suitable for combining such a communications system in the
existing hardware.

V. SINGLE APERTURE JOINT COMMUNICATIONS-RADAR

Historically, there has been strong interest in combining the
functions of radar and data communications using a single aperture
[15]. If one considers only the output of a single beamformer channel
and the waveforms that are generated by modulating one carrier,
then it seems possible to combine the detection functions of a
radar and a communications systems into a single aperture. This
capability is especially practical for software defined systems where
the transmitted and received signals are digitized as close to the
antenna as possible, allowing for much of the necessary functionality
to be built into software. Ideally, digitization would occur behind
each element of a phased array, as in digital beamforming (DBF)
architectures, such that software selects the necessary processing
functions for executing a desired task. This section provides a brief
description of the processing similarities and differences between
a notional radar as compared to a digital communication system
assuming both systems rely on a binary frequency shift keying
(BFSK) waveform. The situation is more complex for multi-carrier
waveforms or for systems that can generate multiple beamformer
output channels, including simultaneous beams. Since wideband SAR
systems also operate at high power levels they are well suited for high
data-rate communications. References are provided to highlight some
of the recent advances in joint radar-communications processing.

For the case of BFSK modulation, a notional block diagram
describing the transmit chain is shown in Fig. 5. With BFSK two
tones at f0 and f1 are used to transmit two symbols A and B.
The symbol rate, R, is known as the Baud rate and ∣f1 − f0∣ is the
frequency excursion. The modulation index h is,

h = ∣f1 − f0∣
R

. (16)

If the tone spacing equals one-half the symbol rate, then h = 0.5
and the modulation is known as minimum shift keying (MSK). The
minimum value that h can take is 0.5 because any smaller values will
violate the orthogonality of the tones f0 and f1. Notice that since
∣f1 − f0∣ = 2R for the case of MSK, transmitting at higher data rates
will require a higher signal bandwidth.

Referring to Fig. 5, the precoder converts the input data d[n]
into a discrete sequence of bits b[n] with values of 0 or 1.
Absolute encoding is used if the bit sequence b[n] corresponds
directly to points in a symbol constellation. Differential encoding is
used if the values of b[n] correspond to the changes in the data
sequence d[n]. For a radar, typical values for b[n] might be a
pseudo-noise (PN) sequence with low autocorrelation sidelobes. The
PN codes allow peak-power constrained radars to illuminate targets
with high average-power, long-duration waveforms that also provide
high delay resolution after matched filtering. The Amplitude block

in Fig. 5 converts the precoded bits b[n] into amplitude levels −1
or 1 according to a[n] = (−1)b[n]. The pulse generator creates a
continuous-time waveform of pulses p(t) which are then filtered by
the pulse shaper to control the waveform’s bandwidth. The filter’s
output m(t) drives a voltage controlled oscillator (VCO) whose
frequency varies between fc − f0 and fc + f1. The final transmitted
signal s(t) can be represented as,

s(t) =mI(t) cos(2πfct + θc) −mQ(t) sin(2πfct + θc) (17)

= Re [(mI(t) + jmQ(t))(cos(2πfct + θc) + j sin(2πfct + θc))]
= Re [(mI(t) + jmQ(t))ej(2πfct+θc)] .

The term (mI(t) + jmQ(t) is known as the complex envelope of the
signal with in-phase component mI(t) and quadrature component
mQ(t). The complex envelope contains all the information of the
signal. For the case of BFSK,

Symbol A→ a[n] = −1→mI(t) = cos(2π(fc − f0)t + θ(t)), (18)

Symbol B→ a[n] = +1→mQ(t) = cos(2π(fc + f1)t + θ(t)),

where the phase θ(t) may change randomly or deterministically with
each symbol depending on the VCO.

A. Intersymbol Interference

The role of the pulse-shaping filter in the transmit chain highlights
the major differences between the mission requirements of a radar and
a digital communication system. An optimal waveform for a radar
produces a thumb-tack ambiguity diagram (to be described later) and
measures the Doppler and range of a target unambiguously. Typically,
a matched filter is used on receive because it achieves the maximum
output SNR for a signal in additive white noise.

In digital communications, especially in environments with
congested spectrum, such as with cellular telephones or wireless
local area networks (LANs), transmitting a sequence p(t) of ideal
brick-wall pulses that never overlap in time would require infinite
bandwidth due to the sin(f)/f spectrum for each pulse. Since there
is an inverse relationship between bandwidth and the temporal extent
of a signal, limiting the signal bandwidth will increase the duration
of each symbol and cause it to interfere with neighboring symbols,
creating ISI. Choosing an appropriate pulse-shaping filter limits the
ISI created when a finite bandwidth pulse spreads into the time bin
of an adjacent pulse.

In general, the maximum possible symbol rate without ISI for a
baseband receiver with frequency bandwidth of fSY Hz is fSY = 1/T
symbols per second, where T is the Baud interval or duration of a
single symbol. Note that 1/T is the symbol or Baud rate, not the bit
rate, since there may be multiple bits per symbol. This result is known
as the Nyquist bandwidth constraint and should not be confused
with the Nyquist sampling criterion which states that a signal can be
reconstructed from its samples provided that the sampling frequency
fSAM ≥ 2fMAX, where fMAX is the highest frequency component of
the signal.

Three spectral-shaping filters are typically used to control the
spectral splatter of symbols and to limit ISI. The zero-ISI sin(t)/t
or sinc(t) filter for a symbol rate fSY is

hSINC(t) =
sin(πfSY t)
(πfSY t)

. (19)

This filter produces a sin(t)/t-shaped pulse which is equal to unity
at time t = 0 and is also zero at the sampling instants corresponding
to

t = n

fsy
, n = . . . − 2,−1,0,1,2, . . . (20)
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A more common spectral control filter is generated by multiplying
the sin(t)/t function by a raised cosine. This filter provides less
passband ripple and lower sidelobes in the pulse spectrum. The
impulse response is given by,

hCOS(t) =
sin(πfSYt)
(πfSYt)

⋅ cos(βπfSYt)
1 − 4β2t2f2

SY
, (21)

where β is a rolloff factor that describes how steeply the filter’s
passband transitions. If fBW denotes the null-to-null bandwidth of
the filter’s frequency response, then β = (fBW − fSY)/fSY. Values of
β > 0 allow excess bandwidth that enable the receiver to recover
the symbol or Baud timing from the transmitted waveform. Typical
values of β are in the range 0.3 to 0.5.

The raised cosine waveform is ideal but it is not possible to
matched filter such a signal and still maintain zero ISI. Therefore,
the square root of the raised cosine frequency response H0.5

COS(f) is
applied at the transmitter and also at the receiver to yield the desired
raised cosine response HCOS(f).

B. Radar Ambiguity Function and Matched Filtering

For radar the primary objective of any waveform is measuring
the velocity and range of a target. To maximize SNR the receive
waveform is often processed using a matched filter. The detection
performance of a radar waveform is often analyzed using the concept
of an ambiguity function. The ambiguity function represents the
output of a matched filter for all possible target delays and Doppler
shifts.

The ambiguity function Ψ(τ, fd) for a transmit waveform with
complex envelope u(t) is defined as the squared magnitude of the
autocorrelation function χ(τ, fd),

Ψ(τ, fd) = ∣χ(τ, fd)∣2, (22)

where τ represents relative time delay and fd is Doppler shift. The
autocorrelation function χ(τ, fd) for u(t) is defined as,

χ(τ, fd) =
∞

∫
−∞

u(t)u∗(t + τ)ej2πfdtdt. (23)

The value of the ambiguity function at the origin is equal to (2E)2
where E is the energy of the bandpass signal corresponding to u(t),
and the volume under the ambiguity function is also equal to (2E)2.

The impulse response of a filter matched to a waveform u(t) is
given by

hmf(t) = u∗(−t). (24)

The output y(t) of a matched filter to an input signal
s(t) = u(t)ej2πfdt with zero time delay and Doppler shift fd is given
by the convolution of s(t) with the matched filter impulse response
hmf(t),

y(t) =
∞

∫
−∞

u(t′)u∗(t′ − t)ej2πfdt
′

dt′. (25)

Comparing this result with the definition of the autocorrelation
function shows that the matched filter response can be expressed
as,

y(t) = χ(−t, fd). (26)

Thus, the matched filter output for a target with Doppler frequency
fd is a time-reversed version of the autocorrelation function.

The ambiguity function computed from the magnitude squared
autocorrelation of the baseband radar waveform u(t) can be used to

Fig. 6. The I/Q demodulator for wideband signals replaces the standard
decimator after filtering by a polyphase filter bank.

describe the resolution performance of the waveform. For example,
assume u(t) is normalized to have unit energy,

∞

∫
−∞

∣u(t)∣2dt = 1, (27)

and two targets are located in the same angular direction and with
equal radar cross sections. If one target is located at the origin of the
delay-doppler plane with zero Doppler and zero relative time delay,
then the value of the ambiguity function is unity, Ψ(0,0) = 1. If
a second target is located at a slightly different Doppler frequency
fd and delay offset τ , then it is not resolvable at locations in the
delay-Doppler plane that place the peak value of Ψ(τ, fd) within the
mainlobe of the reference target at Ψ(0,0).

C. Wideband Signal Basebanding

Demodulating a received communications signal is not the same
process as traversing the transmit chain backwards. The demodulator
must recover the carrier frequency and the baud rate from the
received signal. In the absence of any multipath or interference, the
received signal r(t) is equal to the transmitted signal s(t) given
in (17). The transmitted data is contained in the complex envelope
of the modulation m(t) which must be recovered from r(t). If the
carrier frequency fc and carrier phase φc are perfectly known, then
multiplying r(t) by cos(2πfct + φc) and sin(2πfct + φc) yields,

r(t) cos(2πfct + φc) (28)

= 0.5 [mI(t) [1 + cos(2π2fct + 2φc)] −mQ(t) [sin(2π2fct + 2φc)]] ,

and

− r(t) sin(2πfct + φc) (29)

= −0.5 [mI(t) sin(2π2fct + 2φc) +mQ(t) [1 − cos(2π2fct + 2φc)]] .

Thus, low pass filtering these products yields 0.5mI(t) and
0.5mQ(t). Typically, the filter output is then also decimated to
a lower sample rate. This process is summarized in Fig. 6. For
wideband signals sampled at a high rate, decimation is not performed
after filtering since that wastes computations. Instead, a polyphase
filter bank is used to split the input signal r[k] into D sub-bands
operating at a sample rate reduced by a factor of D. Rather than
convolving all signal samples with a filter and then retaining only the
Dth sample, the polyphase filter bank only calculates the convolution
samples that are retained [73]. Note that if the system designer has
the flexibility to choose the sampling frequency in relation to the
intermediate frequency (IF) according to

fs =
4fIF

2M − 1
, (30)
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where M is an integer, then digital downconversion schemes can
generate I and Q samples directly from the output r[k] of the ADC
[74, 75].

If the estimated carrier phase φ̃c does not equal the true value φc,
then multiplying r(t) by cos(2πfct + φ̃c) and sin(2πfct + φ̃c) and
low-pass filtering as before yields,

m̃I(t) = 0.5 [mI(t) cos(φc − φ̃c) −mQ(t) sin(φc − φ̃c)] , (31)

m̃Q(t) = 0.5 [mI(t) sin(φc − φ̃c) +mQ(t) cos(φc − φ̃c)] .

In the complex plane, (m̃I(t), m̃Q(t)) is a rotated version of
(mI(t),mQ(t)). Thus, the effect of not correctly compensating for
carrier phase is that after demodulation is complete, the symbol
constellation will appear rotated.

Alternatively, if the estimated carrier frequency f̃c does not equal
the true value fc, perhaps due to oscillator drift, then multiplying
r(t) by cos(2πf̃ct + φc) and sin(2πf̃ct + φc) and low-pass filtering
as before yields,

m̃I(t) = 0.5 [mI(t) cos(2π(fc − f̃c)t) −mQ(t) sin(2π(fc − f̃c)t)] ,
(32)

m̃Q(t) = 0.5 [mI(t) sin(2π(fc − f̃c)t) +mQ(t) cos(2π(fc − f̃c)t)] .

Geometrically, the point (m̃I(t), m̃Q(t)) will rotate continuously in
the complex plane at a rate equal to the frequency error, fc − f̃c. In
short, the impact of not knowing the carrier frequency correctly is
that the symbol constellation will appear spinning after demodulation.

The process of estimating the complex envelope
m(t) =mI(t) + jmQ(t) can also be performed after digitizing
the real-valued receive signal mixed down to the IF. When sampling
a wideband signal, the analog-digital-converter (ADC) ideally
operates at the lowest practical sampling rate without aliasing the
signal. The top-left corner of Fig. 7 illustrates the spectrum of the
real-valued received signal after mixing down to the IF. Because the
signal is real, the spectrum is double-sided. If the Nyquist sampling
criterion is obeyed then the analog-to-digital sampling frequency
must be at least twice the highest frequency component of the
signal. However, such a high sampling rate is unnecessary given
that the signal only occupies a band-pass region and the information
in the positive and negative frequency sidebands is redundant. To
reduce the required sampling frequency, the two sidebands could
be moved closer together until they touch at 0 Hz as shown in the
top right. If the sidebands move any closer, they will overlap which
creates aliasing as shown in the bottom left. The optimal solution is
to eliminate one of the sidebands (since retaining both is redundant)
and then shift the remaining sideband to 0 Hz. This signal could
then be represented at the lowest sampling rate and is equivalent to
the desired complex envelope of the transmitted signal. Equivalent
implementations that use band-pass instead of low-pass filtering can
be constructed using the Hilbert transform [73].

D. Fewer-Bit Sampling of Wideband Signals

In narrowband digital receivers the primary consideration driving
the choice of ADC hardware is dynamic range. Typically, the system
design chooses an ADC with the maximum available dynamic range
that also satisfies constraints on sampling rate, power dissipation, and
cost. In wideband applications however, it may be desirable to sample
with fewer bits so as to increase the sample rate [77–83].

Fig. 8 illustrates the contributions to the dynamic range of an ADC
that samples input signals at a rate of 1/Ts, where Ts is the sample
period and is chosen proportionally to signal bandwidth. The output
of the ADC is quantized to one of 2B levels, where B is the number
of bits. The amplitude quantization intrinsic to an ADC creates a

Fig. 7. Complex basebanding of wideband signals. The ADC employs
subsampling techniques [76] at the receiver.

Fig. 8. Receiver dynamic range contributions. A receiver with a wide dynamic
range is able to handle high in-band power levels. Although there are several
techniques to increase the dynamic range of a digital receiver [76, 85, 86], it
is primarily decided by the choice of the ADC.

random error known as quantization noise. The quantization noise
power for a sinusoidal input signal is approximately equal to [84]

NQU = LSB2

12
= 1

12
(VFS

2B
)
2

, (33)

where LSB denotes the least significant bit voltage value and VFX

is the peak-to-peak full scale range at the ADC input. If the input
signal is a full scale sinusoid, the ideal output signal power is V 2

FS/8
which implies the SNR at the output of the quantizer is

SNROUT =
V 2

FS/8
NQU

= 1.5(22B) = 6.02B + 1.76 dB. (34)

A more common figure of merit is the signal-to-noise-and-distortion
ratio (SNDR or SINAD), which includes the power contribution from
nonlinear distortions at the ADC output. Substituting SNDR in (34)
yields an expression for the effective number of ADC bits (ENoB),

ENoB = SNDROUT − 1.76

6.02
. (35)

The ADC’s full-scale output power and quantization noise floor
determine the upper bound of receiver dynamic range. The total
gain from the RF and IF components should be chosen such that
the maximum input signal to the ADC is less than full-scale by
about 1 to 10 dB to avoid signal distortion. The RF gain should be
sufficiently large so that the receiver’s thermal noise is dominated by
the noise figure and noise bandwidth of the RF front end rather than
the thermal noise contributions from gain or loss in the IF section
or ADC input stages. The thermal noise power adds linearly to the
quantization noise floor as shown in Fig. 8. It is often desirable to
design the thermal noise to be approximately 10 dB higher than the
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quantization noise power in order to guarantee dithering the LSB
and to preclude any hysteretic effects. Jitter noise from the sample
clock and RF waveform can further degrade the noise floor at the
output of the ADC [87]. The resulting SNDR, or ENOB, establishes
the useful dynamic range of the receiver prior to any digital signal
processing gain. The maximum power of any spurious tone within
the full Nyquist bandwidth then defines the spurious free dynamic
range (SFDR).

Many of these narrowband principles are not accurate for few-bit
or monobit ADCs [77]. For example, the conventional rule-of-thumb
that ADC output SNDR increases by about 6.02 dB/bit for sinusoidal
inputs, is only approximate for less than 4 bits and mostly invalid for
the quantization of low-SNR signals. Also, two-tone intermodulation
distortion is a significant issue for ADCs with less than 4 bits
operating in the presence of strong in-band interfering signals. Lastly,
if the ADC sample rate is not sufficiently high, the noise floor at
the ADC output increases since wideband noise will fold into the
bandwidth of the ADC.

E. SAR Processing of Communication Waveforms

A substantial amount of recent research has been devoted to joint
communication and radar sensing (JCRS) system design [88–90].
Applications at the higher mmWave band frequencies between 70
to 100 GHz include environmental sensing for autonomous vehicles
[15, 91]. In some designs the radar and communication functions
proceed along separate paths through the receive chain. Other designs
strive to implement both functions on a common platform to reduce
system cost, size, weight and power (SWAP) [15, 92]. In systems
with the available hardware design flexibility, a powerful approach
is to jointly optimize the transmit waveform and the receive filter
such that constraints on power amplifier outputs and radar detection
performance are satisfied [16]. Other schemes for JCRS leverage a
full-duplex capability that allows for the simultaneously transmitting
and receiving signals [93]. Novel approaches for cancelling the
self-interference between transmit and receive antennas are described
in [94–98]. The IEEE 802.11ad wireless standard for 60GHz has
also been explored for JCRS because of its available 2 GHz
bandwidth [91, 99–102]. Some recent wideband JCRS designs
employ intelligent reflecting surfaces for non-line-of-sight (NLoS)
sensing and communications [103–105].

As described previously, the matched filter is the optimal detector
for a single target with known impulse response in additive
white Gaussian noise since it maximizes SNR at the output.
However, matched filtering waveforms that use typical modulations
for wideband digital communications, such as Phase Shift Keying
(PSK) or OFDM, can result in high range sidelobes that mask nearby
weak targets. In these scenarios matched filtering is suboptimal and
a mis-matched filter is preferred.

To eliminate the effects of masking, the receive filter must be
adaptively estimated from the received signal independently for every
delay bin. The re-iterative minimum mean-square error (RMMSE)
algorithm described in [106, 107] alternates between estimating the
true range profile impulse response and the respective receive filters.
For every delay bin k the RMMSE algorithm minimizes the standard
minimum mean-square error (MMSE) cost function,

J(k) = E{∣x(k) −wH(k)y(k)∣2}, (36)

where x(k) is the sample of the range profile to be estimated, y(k)
is a blocked vector of received signal samples, w(k) is the adaptive
filter for the kth bin, and E{⋅} is the statistical expectation operator.

The optimal MMSE filter that minimizes J(k) is the standard Wiener
solution,

w(k) = (E{y(k)y(k)H})−1E{y(k)x∗(k)}. (37)

More approaches to adaptive filtering in the range domain include
for ISAR, interferometric SAR (InSAR), and interferometric ISAR
(InISAR) applications [108, 109]. Additional methods for range
processing adaptively subtract off the effects of large targets via the
CLEAN algorithm [110, 111].

VI. SA CHANNEL SOUNDING

Communication at millimeter-wave frequencies with high
bandwidths and high data transfer rates is enabling a new era
of wireless applications. To effectively utilize the wider channel
capacities available at millimeter wave frequencies the signal
propagation environment must be comprehensively analyzed.
Multipath signals at the receiver created by numerous propagation
paths can significantly increase bit error rate and degrade data transfer
performance. Alternatively, multipath can be leveraged to improve
spatial diversity and to enable multiple-input multiple-output (MIMO)
communications. The most important method for characterizing
the signal propagation environment is channel sounding. Channel
sounding refers to the process of estimating the impulse response of
a communication channel and yields information on the source of
signal echoes caused by reflections, the extent of diffuse scattering
and diffraction, and the amount of shadow effects or signal blocking
created by stationary objects or moving people and vehicles in the
scene.

To illustrate the impact of multipath consider the case
where two signals arrive at the receiver. The direct path
signal is VD(t) = cos(ω0t). The scattered multipath signal is
VR(t) = ρ cos(ω0(t − τ)) = ρ cos(ω0t + φ), where φ = −ω0τ and ρ
and τ are random variables. The complete signal VRX(t) at the
receiver is given by the phasor sum shown in Fig. 9,

VRX(t) = cos(ω0t) + ρ cos(ω0t + φ) (38)

= β cos(ω0t + θ).

The path loss β2 and phase of the received signal are given by,

β2 = PRX

PTX
= 1 + 2ρ cosφ + ρ2, (39)

θ = tan−1 [ ρ sinφ

1 + ρ cosφ
] , (40)

where, PTX and PRX are transmit and received powers, respectively.
For signals that are highly correlated ρ ≈ 1 and the destructive sum of
the two incident signals at the receiver results in high path loss if the
signals are close to 180○ out of phase as shown in Fig. 10 (data in this
section is available on GitHub [112]). Characterizing the severity of
multipath scattering in a wireless channel is the primary motivation
behind channel sounding which is described next.

A. Frequency Domain SA Sounders

The simplest channel sounding systems rely on directional
antennas placed in a bistatic geometry to transmit and receive a
probe signal that is matched filtered to produce an estimate of the
channel impulse response. The concept of synthesizing an aperture
larger than the physical size of an antenna can be leveraged to
yield improved angular resolution performance for channel sounders
[113–121]. Furthermore, a higher measurement bandwidth than the
instantaneous bandwidth of the signal can be synthesized to improve
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Fig. 9. Two-ray multipath geometry. The complex line-of-sight (LOS) signal
and a multipath replica combine as vectors in the complex plane.

Fig. 10. Receiver impact of multipath. When the direct LOS signal and a
delayed maultipath replica are out-of-phase the result can be a deep null in
received power due to destructive interference.

delay resolution. Fig. 11 illustrates the architecture of a typical
channel sounding system.

The nominal angular resolution of the sounder in Fig. 11 is equal
to the receive antenna beamwidth, or ∆θ = λ/D, where λ represents
wavelength and D is the dimension of the antenna in the principal
plane. The delay resolution ∆τ is inversely proportional to the signal
bandwidth B, or ∆τ = 1/B. An SA channel sounder with greater
resolution in both the angular and delay domains can be constructed
by attaching the receive antenna to a precise mechanical positioner
such as the robot arm shown in Fig. 12.

The premise behind a SA channel sounder is that the mechanical
positioner moves the receive antenna (also called a probe) to points
along a spatial sampling lattice. In the most general sense, the lattice
can be arbitrary but in typical cases it is chosen to be planar or
cylindrical. At each spatial sample point, the receiver digitizes the
antenna output and writes the data to memory. The availability of the
digitized receive signal at every spatial sample location allows the SA
to emulate the functionality of an element-level digital beamforming
(DBF) array.

A conventional heterodyne receiver can be used behind the antenna
to detect the signal or a vector network analyzer (VNA). If a VNA is
used, then a discrete frequency grid is specified of carrier frequencies.
VNA receivers have been investigated in a number of channel sounder
configurations. For example, wideband channel measurements using

Fig. 11. Channel sounder architecture. The baseline channel sounder
configuration is a transmit and receive antenna in a bistatic configuration.

Fig. 12. Receive antenna mounted on robot. The robot moves the antenna to
precise locations in space to measure the spatial distribution of signal phase.
These coherent measurements form the basis for a synthetic aperture.

a VNA are discussed in [122, 123]. A cubic SA with a VNA is
utilized in [124] to estimate LoS and NLoS propagation paths in an
indoor environment. A long range wideband sounder using a VNA
was described in [125] for outdoor measurements.

The VNA-based SA channel sounder developed at the National
Institute of Standards and Technology (NIST) and described in [126,
127] radiates 1351 sinusoidal tones spaced 10 MHz apart in the
range from 26.5 to 40 GHz and measures S21 parameters at each
spatial sample. Thus, the total synthesized measurement bandwidth
B is 13.5 GHz even though each radiated tone is very narrowband.
An advantage of the VNA sounding approach is that the channel is
illuminated with a uniform power spectral density since each radiated
sinusoidal tone is of equal amplitude. With some channel sounding
waveform modulations, such as pseudo-random noise sequences,
the shape of the signal spectrum allocates more power to some
frequencies than to others.

After beamforming the wideband data towards a specified
direction, a power delay profile (PDP) is generated that represents
the beam’s temporal output. The resulting delay resolution of the
system is approximately 1/B or 2.2 cm and this value is much less
than the delay resolution available using a typical narrowband channel
sounder that radiates an instantaneous signal bandwidth in the range
of 1-3% of the carrier. The total unambiguous delay Tdur that can
be measured by the SA is determined by the frequency step size
∆fsa as in Tdur = 1/∆fsa. An example of a directional PDP is shown
in Fig. 13 for sounding data measured in an industrial environment
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Fig. 13. Directional PDP showing normalized power received (path loss) as a
function of delay for a specified look direction. The long fading time constant
of diffuse multipath is clearly evident for this wireless scenario.

with dense multipath. A frequency varying phase taper was applied
across the aperture to steer the beamformed output to the direction
−0.8○ azimuth and −0.8○ elevation and an inverse Discrete Fourier
Transform (DFT) was used to transform the frequency domain data
to the delay domain. The blue curve represents signal path loss (or
normalized receive power) as a function of delay and the red curve is
an adaptive threshold that rides over the data. Data values that exceed
the threshold are multipath detections and are marked using a dashed
line.

To avoid any spatial aliasing, the maximum distance between
points on the spatial sampling grid of the SA is chosen to be
λ/2 at the highest frequency of the measurement bandwidth. If
using conventional beamforming or Fourier techniques to coherently
combine the received data across the aperture, the nominal angular
resolution of the system is equal to the beamwidth, or θB = λ/D for
a planar aperture. An important observation is that the size, D, of a
SA can be made almost arbitrarily large. For example, the baseline
NIST SA channel sounding configuration is a square 35-by-35 grid
of spatial samples that yields a half power beamwidth of 2.9○ at 40
GHz. This aperture contains 1225 spatial sample points which would
be a challenge to build in hardware. Aside from the benefits of finer
angle and delay resolution, SA channel sounders have other desirable
features that will be described next.

1) Detection Range: The Friis equation defined in [4] can be used
to compute the maximum detection range possible given the transmit
and receive antennas of a channel sounder. In a LoS geometry, the
Friis equation for detection range is

R2 = PtGAe
4πSmin

, (41)

where Pt refers to the transmit power, R is the distance between
antennas, G is the power gain of the transmit antenna, Ae is the
effective aperture area on receive, and Smin is the minimum detectable
signal level in the receiver. In a multipath or non-LoS scenario, the
Friis equation yields

R2
1R

2
2 =

PtGAeσ

(4π)2Smin
, (42)

where R1 denotes the distance from the transmit antenna to an object
with backscatter area σ (in units of m2), and R2 is the distance from
the scatterer to the receive aperture. Both equations show that to
maximize detection range the effective area of the receive aperture,

Fig. 14. Array coordinate systems. The beam pattern is scan-angle invariant
when computed in sine space or uv-coordinates.

Ae, should be as big as possible, which is most practical using a
SA. With a SA, the number of spatial sample points can be made
large and, by coherently combining the signals received across all the
samples, Ae can be maximized subject only to constraints such as the
available measurement time or the range of motion of the mechanical
positioner.

2) Array Coordinate Systems: Fig. 14 shows the angles used to
describe beam scanning directions for three common array coordinate
systems. In this illustration, the array lies in the x-y plane and
the z-axis points along the normal to the plane of the array, also
known as the boresight direction. In a spherical coordinate system,
the angles θ and φ define points on the surface of the forward unit
hemisphere. The angle θ is measured from boresight and φ extends
to the plane of scan from the x-axis. The projection of points from
the forward hemisphere onto the xy plane yields the coordinate axes
labeled as u and v. The coordinates u and v can also be used to
describe beam directions and are known as sine-space coordinates.
The relations used to transform angles between the spherical, azimuth
(AZ)/elevation (EL), and sine-space coordinate systems are defined
below.

u = sin θ cosφ, v = sin θ sinφ (43)

u = cosEL sinAZ, v = sinEL (44)

sin2θ = u2 + v2, tanφ = v/u (45)

cos θ = cosEL cosAZ, tanφ = tanEL/sinAZ (46)

tanAZ = u/
√

1 − u2 − v2, sinEL = v (47)

tanAZ = tan θ cosφ, sinEL = sin θ sinφ (48)

where 0 ≤ θ ≤ π and −π ≤ φ ≤ π. Note that azimuth angle is defined
with respect to the boresight axis and elevation angle is defined with
respect to the projection onto the xz plane.

3) Dynamic Range and Mutual Coupling: In typical hardware
phased arrays, an analog beamforming network coherently combines
the RF signals received at each array element before downconversion
to baseband and digitization. One consequence of this architecture
is that the coherent integration gain due to beamforming (equal to
10 log10N , where N is the number of array elements) can limit
the dynamic range of the system. For example, if a strong signal is
incident on an array of 1000 elements then the 30 dB of additional
gain at the output of the beamformer may cause the ADC to saturate.
With a SA however, the signal received at each spatial sample position
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is digitized separately and the only additional gain before the ADC
is the gain of the receive probe. This architecture maximizes system
dynamic range, especially if a low gain probe is used, because there
is no coherent integration gain before the digitizer. Low gain antennas
are desirable as probes in SAs because the wider antenna beam allows
for higher array factor scan angles.

An additional benefit due to the fact that SAs digitize each spatial
sample position sequentially is that there is no mutual coupling
created between array elements that can affect the overall array
beampattern. With hardware arrays, the pattern of each array element
is perturbed once the element is embedded in the array structure.
For example, the elements in the interior of the array will exhibit
a different pattern compared to the elements at the edge of the
array, even if all the element patterns are identical outside the array.
This phenomenon is caused by currents that re-radiate between the
elements. Mutual coupling can create angle estimation and beam
pointing errors in hardware arrays but does not exist in SAs.

B. Frequency and Scanning Behavior of the Array Factor

The far-field response in spherical coordinates (θ, φ) for an array
of M ×N homogeneous elements located in the xy plane is given
by,

B(θ, φ) = E(θ, φ)
M−1

∑
m=0

N−1

∑
n=0

wmne
jk(xm sinθ cosφ+yn sinθ sinφ), (49)

where E(θ, φ) is the array element pattern, the wavenumber
k = 2π/λ, λ is the operating wavelength, and wmn is the array
element weighting. If the array elements are uniformly spaced on
a rectangular grid then the element locations are given by xm =mdx
and yn = ndy where dx and dy denote the distance between elements
in the x and y directions. This equation can be rewritten as a
2-D spatial Fourier Transform by using the sine space coordinates
u = sin θ cosφ and v = sin θ sinφ,

B(u, v) = E(u, v)
M−1

∑
m=0

N−1

∑
n=0

wmne
jk(mdxu+ndyv). (50)

The summation term is known as the array factor. The array factor
repeats in the u dimension with period λ/dx and repeats in the v
dimension with period λ/dy . A single period in uv space of the array
factor is equal to the rectangular region −0.5λ/dx ≤ u < 0.5λ/dx
and −0.5λ/dy ≤ v < 0.5λ/dy . The visible region of the array factor
that exists in physical space corresponds to the interior of the unit
circle u2 + v2 ≤ 1. Replicas of the mainlobe outside the unit circle
are known as grating lobes. The Nyquist spatial sampling rate that
avoids spatial aliasing or grating lobes is given by dx = dy = λ/2. If
the element spacing is greater than λ/2 then the array is undersampled
and the grating lobes move closer to the unit circle and may even
enter the visible region. If the element spacing is less than λ/2 then
the array is oversampled and the grating lobes move farther away
from the unit circle. The peak of the mainbeam depends only on the
number of array elements and is equal to 10 log10(MN).

All of the properties of Fourier Transforms apply to the array factor
and in particular the Fourier shift and the Fourier scaling properties.
The Fourier shift property is relevant when the main beam is steered
to a direction (u0, v0). Beam steering is accomplished by applying
the linear phase taper e−jk(mdxu0+ndyv0) across the aperture. The
main beam will shift by an angular distance equal to the slope of the
linear phase taper in the u and v directions. Steering the main beam
for a single frequency is a linear transformation that does not affect
the amplitude of the array factor or the shape of the main beam.
When the beam scans, sidelobes that were originally outside the unit
circle in the invisible region of uv space will enter the visible region
and therefore the sidelobe structure of the beam changes.

Fig. 15. U-Cut of beampattern illustrating Fourier scaling property. Since
array element spacing is fixed, the width of angular lobes decreases as the
frequency increases because array becomes electrically larger.

In wideband regimes where the linear phase taper is computed for
a single center frequency but applied to the aperture over a wider
bandwidth, then the main beam will squint, or point to different
directions, as the operating frequency changes. Beam squint is an
undesired effect that can be mitigated by using true time delay
beam steering or a frequency invariant beamformer [128]. True time
delay beam steering applies a frequency independent time delay or
a frequency dependent linear phase shift between array elements to
steer the beam and can be easily implemented on SAs.

The Fourier scaling property states that changing the sample
spacing of a 2D discrete sequence h(m,n) expands or contracts the
output of the Fourier transform H(u, v) according to

H (u
a
,
v

b
) ⇐⇒ 1

∣ab∣h(am, bn). (51)

This property implies that if the physical spacing between array
elements is held fixed while the operating frequency decreases, then
the width of every angular lobe in the beampattern (main beam and
sidelobes alike) will increase. Conversely, if the element spacing is
held fixed while the frequency increases, then the width of every
angular lobe decreases. Consequently, a SA of fixed dimensions
attains higher angular resolution at 40 GHz than at 26.5 GHz due
to the narrower width of the main beam (approximately equal to
λ/D radians, where D is the largest dimension of the aperture in the
principal planes). Fig. 15 illustrates the Fourier scaling property by
comparing a u-dimension cut of the array beampattern for 26.5 and
40 GHz with the main beam steered to (u = 0.4, v = 0.3). In channel
sounding applications it is important to maintain a frequency invariant
array response such that it does not obfuscate the estimated channel
frequency response.

1) Beam Squint in Wideband Arrays: As described by (49) or (50)
forming the coherent sum of the signals collected across the SA forms
a directional beam in space. This beam may be steered to different
directions by applying the appropriate phase shift between successive
array elements. To steer the beam in the direction (θ, φ) the phase
shift applied at the mnth array element is given by

ψmn(θ, φ) =
2π

λ
(xm sin θ cosφ + yn sin θ sinφ), (52)

where xm denotes the x-coordinate of the element’s location and
ym denotes the y-coordinate. For the case of a SA with a VNA
acting as the signal receiver the exact phase shift required can be
applied in the post-processing since the received signal is a single
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Fig. 16. Beampattern elevation cut showing beam squint. The beam-steering
phase taper computed for 26.51 GHz is also applied at 40 GHz and as a result
the beam pointing direction changes.

monochromatic sinusoidal tone for each measurement frequency. If
frequency is substituted into (52) rather than wavelength then it is
clear that the required steering phase at any array element varies
linearly with frequency [128].

ψmn(θ, φ) =
2πf

c
(xm sin θ cosφ + yn sin θ sinφ) (53)

= ω
c
(xm sin θ cosφ + yn sin θ sinφ). (54)

If the steering phase is computed for a single frequency only
and the frequency of the received signal is allowed to vary without
adjusting the steering phase accordingly, then the beam squints, or
points in a slightly different direction for each frequency. Fig. 16
illustrates the effect of beam squint using measured NIST data
collected in a conference room setting. In this case, a steering vector
is computed for 26.51 GHz and applied to the data measured at 40
GHz. The elevation cut shown in the plot illustrates how the beam
squints, or changes pointing direction because the computed steering
phase is not matched to the frequency of the received signal. Beam
squint can have an impact in millimeter-wave systems as described
in [129].

To implement true time-delay beamforming, if the phase shift
ψmn(θ0, φ0) is computed exactly for an initial frequency ω0 then
at all other frequencies a differential phase shift proportional to the
frequency difference should be applied. The steering phase versus
frequency is then given by

ψmn(ω; θ0, φ0) = ψmn(ω0; θ0, φ0)[1 + (ω − ω0)/ω0] (55)

= ψmn(ω0; θ0, φ0)ω/ω0. (56)

The slope of the linear phase ramp in (55) corresponds to a time
delay of

τ = dψ
dω

= ψmn(ω0; θ0, φ0)
ω0

(57)

= 1

c
(xm sin θ0 cosφ0 + yn sin θ0 sinφ0). (58)

The wideband processing algorithm described in the next section
eliminates beam squint by applying a phase shift proportional to
frequency, or equivalently a time delay, at each array element to steer
the beam.

2) Wideband Power Angle Delay Profile (PADP): True time delay
beam steering refers to the practice of inserting a pure time delay
instead of a phase shift behind each array element to steer the beam in

wideband arrays. True time delay beam steering can be implemented
on wideband SAs to avoid beam squint by applying a frequency
dependent phase taper to the array output vector as described in (55).
After computing the dot product of the beam steering phase taper
and the array output vector for every frequency, an Inverse Fourier
Transform is computed to yield the beam output power received from
the direction (θ0, φ0) as a function of delay. This beam output is
also known as the PDP for the direction (θ0, φ0). The process is
summarized in Algorithm 1 below. Note that a frequency invariant
beamformer may replace the phase steering vectors w(ωk;u0, v0)
with optimized weight vectors computed at every frequency for the
desired beam-steering direction.

Algorithm 1 PADP and delay slice creation
Input: Array output vector y(ωk) at each frequency ωk for
k = 0, . . . , S − 1 and desired beam pointing direction (u0, v0)

1: Compute the phase steering vector for each frequency,
w(ωk;u0, v0).

2: Beamform the array output vector y(ωk) at each frequency by
forming the dot product b(ωk;u0, v0) =w(ωk;u0, v0)Hy(ωk)

3: Compute the Inverse Fourier Transform (temporal)
to obtain the beam output (directional PDP),
x(τk;u0, v0) = IFT [b(ωk;u0, v0)]

4: To reduce high-frequency, time-domain ripple in wide bandwidth
measurements and to increase sampling resolution, compute
a window function ck of length S with low sidelobes, e.g.
Hamming window. Then zero-pad the sequence ckb(ωk;u0, v0)
to L times its original length before computing the IDFT

5: For a fixed delay, τ = τ0, x(τ0;u, v) is the spatial frequency
spectrum of all signal sources impinging on the array (also called
a delay slice) and can be used to estimate angles of arrival
Outputs: PDP x(τ ;u0, v0) in the fixed direction (u0, v0). Delay
slice x(τ0;u, v) at the fixed delay τ0.

3) Spatial Wideband Effect: In large phased arrays with many
elements, the propagation time of an impinging electromagnetic wave
travelling across the aperture is non-negligible. More precisely, if the
distance between elements on opposite corners of the array is large
compared to the carrier wavelength, then there will be noticeable
offsets between the signal arrival times across the array elements.
When all the array element signals are coherently combined during
the beamforming operation, the effect of the non-uniform delay
offsets will be to limit the instantaneous bandwidth of the array.

For a uniform linear array of length L, the time τ required to fill
the aperture with energy for radiation arriving from an angle θ0 is
given by

τ = L
c

sin θ0. (59)

For a pulsed waveform, as the array mainbeam is scanned away
from boresight, each spectral component is steered to a slightly
different direction. To determine the overall effect on antenna gain,
it is necessary to add the far-field patterns of all the individual
spectral components. The result is that a loss of 0.8 dB in energy
on target occurs due to frequency-scanned spectral components when
the mainbeam is scanned to an angle of 60○ and the pulse width is
equal to the array fill time; or equivalently the signal bandwidth is
equal to 1/τ [73].

Thus a large hardware array that achieves high angular resolution
will be necessarily bandwidth-limited and not capable of supporting
delay resolutions less than the array fill time. With VNA-based
synthetic apertures however, high angle and delay resolutions are
simultaneously compatible since the VNA inherently measures
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S-parameters (signal ratios) at each spatial location and the
beamforming operation is carried out in post-processing. A tutorial
description of the spatial wideband effect is provided in [130].

C. Delay Resolution

The frequency range measured at each spatial sample of the SA
determines the synthesized bandwidth of the channel measurement.
The delay resolution of the channel measurement is equal to
the reciprocal of the synthesized bandwidth. For example, if the
total bandwidth is fBW = 13.5 GHz between fmin = 26.5 GHz
and fmax = 40 GHz, then the corresponding delay resolution is
∆T = 0.074 ns, which yields a distance resolution of 2.2 cm. The
maximum unambiguous delay extent that can be measured by the SA
is equal to one over the increment between frequency samples. If, for
example, the frequency step size is ∆f = 10 MHz, this corresponds
to a maximum unambiguous delay extent of T = 100 ns, or D =
29.96 meters. This frequency step size yields 1351 frequency samples
within the synthesized 13.5 GHz bandwidth and 1351 delay samples
within the total time duration of the power delay profiles. Thus, for
this case, the temporal sampling rate of each PDP is equal to the
measurement bandwidth, or fBW = 13.5 GHz.

Since the ratio of the highest measurement frequency to
the total measurement bandwidth is very nearly an integer,
40/13.5 = 2.96 ≈ 3, bandpass sampling considerations for the
complex S21 parameters suggest that any aliasing due to sampling
at a temporal rate equal to fBW will be small. In general, aliasing is
negligible if the complex sampling rate fsam of the PDPs satisfies

fsam ≥ qfBW, 1 ≤ q ≤
⎢⎢⎢⎢⎢⎣

fmax

fBW

⎥⎥⎥⎥⎥⎦
. (60)

The wideband true-time-delay algorithm can be leveraged to
evaluate delay slices of the four-dimensional channel impulse
response by computing directional PDPs at directions (θk, φk) or
(uk, vk) on a discrete angular grid of k = 0, . . . ,K − 1 angles that
encompass the entire forward hemisphere. If these PDPs are evaluated
over all the angles at the fixed delay τ = τm, then x(τm;u, v) is
the spatial frequency spectrum of all signal sources impinging on
the array and can be used to estimate strong angles of arrival for
the delay bin τm. The equation for evaluating the Inverse Discrete
Fourier Transform of the beam output b(fs;uk, vk) at only the mth
delay bin τm is

x(τm;uk, vk) =
1

S

S−1

∑
s=0

b(fs, uk, vk)ej2πms/S , (61)

where S is the total number of frequency samples fs and
0 ≤m ≤ S − 1. Fig. 18 and Fig. 19 illustrate delay slices for
measurements taken in a utility plant at the NIST Boulder campus.
The utility plant environment is shown in Fig. 17. In these figures, we
see the signal received from the utility plant environment as a function
of azimuth and elevation for two different time delay values. The
relative received power level is given by the color bar in dB. These
delay slices show a detailed view of the angular power spectrum
created by multipath scattering as a function of time.

Practical experience suggests that the delay slice algorithm is most
effective when a candidate set of delay bins to search for multipath
components is determined in advance. A particularly useful method
for determining candidate delay bins is to integrate (using summation)
each available delay slice x(τm;u, v) over all angles in order to
compute the total energy received versus delay. This procedure yields
an aggregate power delay profile r(τm) that describes the total energy

Fig. 17. NIST central utility plant (CUP). Channel sounding experiments
in this location were conducted to characterize dense multipath scattering
environments. Photo credit: NIST.

Fig. 18. Delay slice (dB) at 19.08 ns. A strong signal source is visible at
40○ azimuth as well as lots of diffuse scattering.

impinging on the SA from the entire forward hemisphere as a function
of delay,

r(τm) =
K−1

∑
k=0

∣x(τm;uk, vk)∣2. (62)

If the summation is taken over a subset of (uk, vk) samples smaller
than the entire forward hemisphere, then the total power received
versus delay is computed for an angular sector.

D. Frequency Invariant Array Response

When the complex field of a propagating wave is incident on
a phased array or crosses the observation plane of a SA, the
beamformed array response will be angle and frequency dependent.
To avoid distorting the estimated wireless channel it is desirable to
equalize the array frequency response such that it is constrained
along specified directions. Consider the field of a propagating
monochromatic wave as a function of position x and time t given
by, [131]

U(x, t) = ej2π(−v
T x+ft), (63)

where v is the propagation direction (spatial frequency) vector and
f is temporal frequency. The Helmholtz equation relates the spatial
and temporal frequencies by ∣f ∣ = c/∣∣v∣∣, where c is the speed of
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Fig. 19. Delay slice (dB) at 21.36 ns. A strong signal source is clearly visible
at approximately 30○ elevation. Many other specular returns are also visible
near boresight.

propagation. The output of an antenna element at position x is the
time function

y(t) = G(v, f)U(x, t), (64)

where G(v, f)is the complex gain of the element as a function of
spatial and temporal frequency. The coherent sum of an array of N
elements yields

s(t) =
N−1

∑
k=0

Gk(v, f)U(x, t). (65)

Consider a linear array with K elements where each element
is a length-N FIR filter. Each element is located at kdx where
dx = λ/2 at the highest frequency of interest to avoid grating lobes
and −K + 1 ≤ k ≤K − 1. The filter taps are spaced at nT intervals
where −N + 1 ≤ n ≤ N − 1. The array pattern is then

H(v, f) =∑
k

∑
n

ckne
−j2π(kvxdx+nfT ). (66)

where v = [vx vy]T . This equation describes the 3D response of
a 2D FIR filter and does not depend on vy since the array has no
extent in the y dimension. The array pattern is periodic in vx and f ,
with period 1/T in f and period l/dx in spatial frequency vx. The
tap spacing T should be chosen so that 1/T is larger than the desired
instantaneous bandwidth of the array response.

Since (54) is linear in the filter coefficients ckn even with arbitrary
element locations, many common constraints can be expressed as
upper bounds of convex functions of the coefficients. Consequently,
the array pattern can be designed using convex optimization tools
[132].

Another frequency invariant array architecture that avoids the use
of temporal filtering behind each element is the use of sensor delay
lines (SDLs). For planar sampling, SDLs are constructed by creating
consecutive sample planes spaced along regular spatial intervals.
For cylindrical sampling, SDLs can be constructed using concentric
circular lattices. SDLs are particularly straightforward to implement
for SA channel sounders that use a robot positioner. For example, if
an initial planar lattice lives in the xy plane, then additional planar
lattices would be created along the z-axis (boresight) dimension
spaced a distance λ/2 or λ/4 apart. An optimized coefficient can
be computed for each spatial sample in a 3-D SDL to create the
frequency invariant array response [133, 134].

Fig. 20. Frequency invariant beampattern (dB) showing constant beamwidth
and reduced sidelobes at 26.5 and 40 GHz for fixed array element spacing.

It is also possible to generate frequency invariant beampatterns by
placing a filter bank behind each array element and partitioning the
wideband signal spectrum into sub-bands. Then each sub-band can
be optimized independently using narrowband techniques to create
the frequency invariant array response as descibed in [135, 136]. The
filter banks used could be as simple as a Discrete Fourier Transform
Filter Bank (DFTFB) or more complicated designs including Cosine
Modulated Filter Banks (CMFBs). One advantage of this approach is
that the sub-band processing can be implemented at a lower sample
rate than the digitized signal at the filter bank input.

With a frequency domain channel sounder one can design an
optimized beamformer for every beam-steering direction at each
discrete measurement frequency as described in [4]. Fig. 20 illustrates
the case for a beamformer that has been designed to reduce ambient
sidelobe levels while also maintaining a constant beamwidth over
the frequency range from 26.5 to 40 GHz. Fig. 21 shows constant
beamwidth maintained over the entire bandwidth. In the absence
of any optimized beamforming, the width of the mainbeam would
decrease by 33% from 26.5 to 40 GHz.

Note that in a conventional narrowband or wideband array
design, a prototype array pattern is designed at boresight, and
then used to generate beam patterns steered to other directions
by applying direction-dependent phase shifts (narrowband) or time
delays (wideband) to the signal at each array element. The
result is a set of array patterns that at each temporal frequency
are spatial-frequency-shifted copies of the prototype pattern. This
approach is computationally efficient but not truly optimal in the
sense that the beam pattern has not been jointly optimized for
beam-steered and frequency response.

E. Sparse Sampling Lattices

An advantage of using a precision robot to position the receive
antenna is that almost arbitrary spatial sampling lattices can be
created. The simplest case is to create a planar lattice such as
previously described. However, rotationally symmetric lattices such
as circular, cylindrical, or spherical are also desirable because they
offer omnidirectional signal reception.

Sparse sampling lattices are especially useful since they may
reduce the data acquisition time required for channel sounding or the
hardware complexity of phased arrays. However, sparsely sampled
lattices on a regular grid introduce grating lobes in the beampattern
as shown in Fig. 22 (model code and data publically available [137]).
Grating lobes are functionally equivalent to high sidelobe levels and
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Fig. 21. Frequency invariant beampattern (dB) showing constant beamwidth
across entire bandwidth from 26.5 to 40 GHz.

create spatial ambiguities that make it difficult to determine the
correct angles of arrival for measured signals. The search space
for optimizing the location of spatial samples in a sparse array is
vast, so heuristic search algorithms such as genetic optimization
and simulated annealing have been applied to this problem. The
use of quantum computing for solving sparse radar images has also
been theorized and studied for its potential increase in computational
capability.

One simple approach for mitigating grating lobes in a sparse lattice
is to perturb the regularly spaced grid by applying a random offset to
each spatial sample as shown in Fig. 23. The red circles correspond
to the original sparse lattice and the green circles correspond to
the perturbed lattice with random position offsets. The random
displacements have the effect of disrupting any periodicity across
the spatial samples that contributes to grating lobes. The end result
is shown in Fig. 24 where the peak sidelobe level has been reduced
to at least 13 dB below the peak of the mainbeam, shown steered to
boresight.

Other approaches investigated for sparse array design include
simulated annealing and genetic algorithms. Simulated annealing is
a stochastic optimization method analogous to the manner in which
a metal cools and anneals [138]. The algorithm seeks to minimize
an energy function which for sparse arrays is set proportional to the
peak sidelobe level. At each algorithm iteration, the location of array
elements is randomized by moving one element at a time. The peak
sidelobe level of the perturbed array is found and compared to the
best solution of the last iteration. The new solution is accepted if
it lowers the peak sidelobe level, or it may also be accepted with
some finite probability if it raises the sidelobe level. In this way, the
algorithm is less likely to be trapped in a local minimum. As the cost
function is progressively minimized, the probability of accepting an
inferior solution is reduced and ultimately the algorithm converges
to a solution that may be close to optimal, provided the optimization
parameters are well chosen. Simulated annealing has been applied to
the optimization of sparse lattices in [139–142]

Genetic algorithms iteratively operate on the individuals in a
population [143, 144]. Each member of the population represents
a potential solution to the optimization problem. Initially, the
population is randomly generated. The individuals are evaluated by
means of a fitness function and then either retained or replaced. New
individuals are created through either a cross-over operation or a
mutation. Genetic optimization has been applied to the layout of
sparse arrays in [145–147].

Fig. 22. Grating lobes in array pattern (dB) due to a sparse sampling grid.
The grating lobes are essentially copies of the mainbeam and create spatial
ambiguities when estimating angles of arrival.

Fig. 23. Randomized and regularly sampled sparse array. The random position
offsets applied to each array element break up the spatial periodicity that
contributes to grating lobes.

Sparse Fourier Transform (SFT) algorithms have been investigated
for several applications including fast Global Positioning
System (GPS) receivers, wide-band spectrum sensing, and
multidimensional radar signal processing [148–152]. In all
SFT algorithms, the reduction of sample and computational
complexity is achieved by reducing the input data samples using
a well-designed, randomized subsampling procedure [153]. The
significant frequencies contained in the original data are then
localized and the corresponding Discrete Fourier Transform (DFT)
coefficients are estimated with low-complexity operations. Iterative
subsampling-localization-estimation SFT algorithms are described in
[154–157]. Other approaches estimate sparse DFT coefficients in a
single pass after obtaining sufficient copies of subsampled signals
[150–152, 158].
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Fig. 24. Beampattern (dB) of randomized sparse array. Grating lobes have
been reduced to at least 13 dB below the mainbeam peak.

F. Optimized SA Probes

With SA channel sounders, the receive antenna (also called a
probe) mounted on a mechanical positioner can be optimized for
wideband performance. For example, vector antennas are capable of
measuring all six components of an impinging electromagnetic wave
(i.e., Ex,Ey,Ez,Hx,Hy,Hz) in a Cartesian coordinate system.
Recent results in [159] describe a dual-polarized vector antenna with
7:1 bandwidth (or 1-7 GHz). Due to its size, such an antenna would
be difficult to embed into a hardware phased array, but it could serve
as the receive probe for a SA. Quantum sensors that measure electric
fields are also being investigated for use as probe antennas in SA
systems, as described next.

Researchers at National Metrology Institutes [8, 160, 161],
academic labs [162, 163], and in industry [164–171] are developing
a new type of wideband receiver that detects the atomic response of
room temperature vapor in the presence of a radio frequency (RF)
electric field. These quantum receivers use lasers to excite alkali
atoms to a high principal quantum number, a Rydberg state, where
the valence electron is weakly bound to the nucleus and, therefore,
is highly sensitive to perturbations from an incident RF electric field,
Fig. 25. The operating frequency of this quantum receiver is defined
by the frequency of the lasers that excite the atoms. Due to the fine
tunability of these lasers, the quantum receivers the lasers drive are
widely tunable, detecting incident fields from kilohertz to terahertz
without any changes to the hardware [8, 172, 173]. Meanwhile,
the instantaneous bandwidth of these receivers is on the order of
megahertz [174] due primarily to the state lifetime of the Rydberg
atoms. The receivers can also be used in a mixer configuration [175]
wherein sub-Hertz frequency distinguishability is possible [176].

Early investigations using these Rydberg atom-based quantum
microwave receivers to resolve spatial variations of an incident
electric field and to detect angles of arrival have been published
in recent years. These probes have been shown to detect spatial
variations in the strength ∣E(x, y)∣ of a microwave field either within
an atomic vapor cell [172] or in the near-field of a transmitter [177,
178]. Using the mixer method [175] to determine phase of an
incident RF electric field, Robinson, et al. demonstrated an angle
of arrival measurement wherein two spatial locations inside the
vapor cell were probed to determine the phase angle of the incident
plane-wave field [179]. This concept was then extended by scanning a
single-point Rydberg atom receiver over a SA to determine the spatial
distribution of phase in the plane of measurement and to extract a set

Fig. 25. (a) Depiction of a Rydberg atom sensor receiving over the air RF
signals. (b) Basic ladder diagram showing the excited states (in cesium, e.g.)
coupled by two counter-propagating lasers (probe and coupling) - reaching
the first high n Rydberg state - and the RF signal coupling two Rydberg
states. When an over the air RF local oscillator (LO) is on, the atoms act like
a mixer where the signal output of the photodetector is the down-converted
signal at the intermediate frequency between the RF signal and LO.

of angles of arrival [180]. The SA measurement was an early study
in understanding the use of these receivers in such measurements,
ultimately to be used in channel sounding. Other than the intrinsic
wideband tunability of these receivers, a benefit of using the Rydberg
atom quantum receivers is that field strength measurements with these
devices are directly traceable to Planck’s constant (h), Eq. 67 [181],
a fundamental unit in the new SI [182], with a calculable scaling
factor, the Rydberg transition dipole moment (℘ij) [181], where fs
is the splitting frequency of the narrow electromagnetically induced
transparency (EIT) spectral line as the laser frequency is scanned,
which can be measured very accurately, and ij denotes the two
Rydberg states coupled by the RF field.

∣ERF ∣ =
fsh

℘ij
(67)

When the atoms are used in the mixer method [175], the RF field
imposed on the atoms is

Eatoms = EresEmod, (68)

Eres = cos(2πfLO + φLO)

Emod = (E2
LO +E2

SIG + 2ELOESIG cos(2π∆ft +∆φ))1/2 ,

with a component of the field that is resonant with the pair of
Rydberg states Eres (see Fig. 25) and a component that causes a
modulation of the EIT spectral line splitting (or a modulation of the
transmitted power on the photodetector when the lasers are locked
on resonance) at the intermediate frequency ∆f = fLO − fSIG
between the over the air signal RF field and over the air LO,
where ∆f ≪ (fLO + fSIG)/2. The phase of this modulated voltage
signal measured by the photodetector ∆φ = φLO − φSIG contains
information about the phase of the signal RF field, and, as long
as the LO provides a constant phase reference, allows measurement
of the signal field phase for angle of arrival and channel sounding
applications described above. What is more, this receiver is fully
dielectric and scatters much less radiation, potentially leading to more
reliable wireless channel characterizations.

VII. SA’S IN OPTICS

Michelson and Pease published a seminal study on optical
incoherent SA in 1921 which started the history of SA [183].
As a result, all of the interferometer systems in the radio and
optical spectral regimes now provide high resolution images of
astronomical objects through SA imaging [184, 185]. Essentially,
these astronomical interferometers measure the statistical correlation
between two electromagnetic signals originating in the object
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Fig. 26. Scheme of an SA optical system. The incoming light, either coherent
or incoherent, from the object propagated to a distance z1 is modulated by
the SA. The resultant encoded light which passes through a different aperture
is then recorded at a distance z2 by an intensity sensor.

and passing through two telescopes spaced apart. Hence, all of
these interferometers allow two signals to propagate simultaneously
through two channels. Since the radio signals, including their
amplitude and phase, are recorded in the radio antennas and
transmitted electronically to the point of cross-correlation, this
presents a less serious problem than in optics. In fact, only recording
the amplitude of the signal leads to a problem called phase retrieval.

In the optical regime, however, an electrical detector cannot
directly record the signal’s phase without interfering with another
telescope’s wave. As a result, optical signals should be transferred
by waveguides from the two telescopes far apart to the interference
laboratory, with an optical path difference of about 100 micrometers
between them, which is typical for optical sources. Thus, optical
astronomical interferometers are heavy devices whose baseline (the
distance between two telescopes) is limited to a few hundred meters.
There is one exception to the two-wave interference problem: the
intensity interferometer proposed by Hanbury Brown and Twiss
[186], in which the intensity, rather than the complex amplitude,
is cross-correlated between the two telescopes. Although intensity
interferometers are capable of estimating target sizes in addition
to imaging, these interferometers are no longer used because of
relatively low SNRs.

In 2007, Fresnel incoherent correlation holography (FINCH) was
introduced, opening up a number of new opportunities for incoherent
SA imaging [187]. A typical setup is illustrated in Figure 26. A
FINCH hologram is created using objects emitting incoherent light.
As a result of the recording system splitting each object’s light
into two waves, it is possible to make holograms. In the camera,
where these waves interact as holograms, both waves are modulated
differently. Rather than record a hologram all at once, it was proposed
to record it piecemeal over a period of time [188]. Nevertheless, this
FINCH-based optical incoherent SA was not optimal in the sense
that it resulted in relatively low image resolution. With FINCH [189]
configured optimally, the various parts of the hologram were formed
by interference between two waves from two far-apart subapertures.
The problem of processing simultaneously through two far-apart
channels still exists even when the SA imaging is implemented with
a different physical effect than the traditional statistical correlation.

Three more systems in the history of optical incoherent SAs were
introduced: coded aperture correlation holography (COACH) [190],
interference-less COACH [191], followed by an imaging system
for partial illumination [192]. COACH is a generalized version
of FINCH as it is also a self-interference method for recording
incoherent holograms, but instead of a quadratic phase mask in
FINCH it uses a chaotic phase mask for one of the waves. In
contrast, the interference-less COACH is a degenerate version of

the self-interference COACH. Due to the necessity of recording a
wave interference from two far-apart subapertures at the same time,
a high-resolution image is achievable only if the system operates in
the mode of two far-apart channels at the same time. In situations
in which the same rule of simultaneously using two channels exists
in three different systems that each rely on different physical effects,
the rule may be considered as a generic law of nature that cannot be
changed.

Researchers are also looking to quantum mechanics to find tools
that may enable longer baselines between optical telescopes. One
proposed method uses quantum repeater networks to create shared
entangled states over arbitrarily long distances [193, 194]. Rather
than needing to preserve the astronomical photons, entangled photons
from a source between distant telescopes are transmitted over the long
distance, with help from the quantum repeaters, and interferograms
between the laboratory entangled photons and the astronomical
photons are generated at each telescope. Those interferograms are
subsequently compared to generate an image of the celestial object.
Alternatively, quantum hard drives have been proposed to entirely
avoid the need for optical fiber links between distant telescopes [195,
196]. The concept here is the quantum state of the astronomical
photons is preserved in quantum memory on a physical quantum
hard drive. That hard drive is then transported to a common location
where all hard drives from each of the optical telescopes in the array
are combined and interference between the preserved photon states is
used to extract the high resolution image of the celestial object. At this
point, quantum repeaters are limited in range due to their complexity
and losses while the best reported storage lifetime of a quantum hard
drive is on the order of 1 hour [196]. Further advancements in these
spaces is needed before a practical quantum enhanced long baseline
optical interferometer is implemented.

A. Phase retrieval algorithms

Phase information characterizes the delay accrued by an
electromagentic wave during propagation. This information is
typically lost in the optical detection process, because light
detectors measure intensity-only variations. The phase information
is regained at the cost of greater experimental complexity, typically
by requiring light interference with a known field, as in the process
of holography.Mathematically, the phaseless measurements {yi}mi=1
acquired in this problem are

yi = ∣⟨ai,x⟩∣2 + ηi, (69)

where x ∈ Cn is the target unkown signal, ai ∈ Cn are the known
sampling vectors, and ηi models the noise.

Traditional algorithms to solve the phase retrieval problem are
based on the error-reduction method [197] proposed in 1970.
However, this method does not have solid theoretical convergence
guarantees [197, 198]. Recently, a convex formulation was proposed
in [199] via Phaselift, which consists in lifting up the original
problem of vector recovery from a quadratic system into that of
recovering a rank-1 matrix. In fact, this is possible because phaseless
measurements in (69) are equivalent to

yi = ∣⟨aiaHi ,X⟩∣2 + ηi, (70)

where X = xxH . For this convex approach, large theoretical
guarantees of convergence and recovery were provided, but its
computational complexity becomes prohibitive when the signal
dimension is large.

More recent methods described in [200] retrieve the phase by
applying techniques such as matrix completion, and non-convex
formulations [201, 202]. Specifically, one of the non-convex
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Fig. 27. Common coded-based optical imaging applications: (a) phase imaging, (b) object detection, (c) microscopy, and (d) lensless imaging [18].

formulations, called the Wirtinger Flow (WF), is a gradient descent
method based on the Wirtinger derivative, and has demonstrated it
can attain exact recovery from the phaseless measurements [200] up
to a global unimodular constant. The WF method was improved by
the truncated Wirtinger flow (TWF) algorithm proposed in [203],
which optimizes the Poisson likelihood and keeps the convergence
by designing truncation thresholds to calculate the step gradient.
Additionally, the WF and the TWF methods use the spectral
initialization strategy to guarantee exact recovery of the true signal
up to a global unimodular constant.

The reweighted gradient flow (RAF) [204], stochastic truncated
amplitude flow (STAF) [205], and the reshaped Wirtinger flow (RWF)
[206] algorithms are also gradient descent methods based on the
Wirtinger derivative. These methods aim to solve

minimize
x∈Cn

1

m

m

∑
i=1

(√yi − ∣⟨ai,x⟩∣)2 . (71)

Further, the RAF and RWF algorithms introduce different
initializations, which attain a more accurate estimation of the true
signal in comparison to the spectral initialization. In terms of the
sample complexity and speed of convergence, the RAF and RWF
methods exhibit a superior performance over the state-of-the-art
algorithms. It is important to highlight that the functions optimized
by the RAF and RWF methods are non-convex and non-smooth. In
particular, in order to address the non-smoothness of the optimization
cost function, TWF introduces truncation procedures to eliminate the
erroneously estimated signs with high probability.

B. Fourier Ptychography

The trade-off between resolution and imaging FoV is a
long-standing problem in traditional optics. This trade-off implies an
optical system can produce either an image of a small area with fine
details, or an image of a large area with coarse details [207]. Fourier
Ptychography (FP) was invented in 2013 [208] and has proven to

be an effective method of mitigating this trade-off. FP alleviates the
physical constraints that limit resolution by integrating SA imaging
and phase retrieval. First, FP synthesizes the pupil aperture at the
Fourier plane to bypass the resolution set by the objective lens.
Mathematically, the acquired measurements in FP are given by

yi = ∣⟨Lf i,x⟩∣
2 + ηi, (72)

where L ∈ Cn×n is a diagonal matrix that models the effect of the
pupil aperture, and f i ∈ Cn for i = 1, . . . , n are the rows of the
inverse Fourier transform.

With FP, however, no phase is directly measured during the
acquisition process as can be seen from (72), thereby eliminating the
challenges of direct phase measurements that exist in holography.
Instead, FP recovers the missing phase from intensity measurements
during an iterative phase retrieval process. FP also provides the ability
to computationally correct optical aberrations post-measurement and
solves the problems of phase loss, aberration-induced artifacts,
shallow depth of field (DOF), and allows for higher resolution and a
larger FOV simultaneously [209]. Current applications include digital
pathology and quantitative phase imaging (QPI) with high precision
[210], high-throughput imaging [211], high-speed imaging [212],
three dimensional (3D) imaging [213], and biomedical applications
[214]. Combining reflective imaging, the authors in [215], [216]
reported a proof-of-concept study for active remote sensing using
visible light with FP.

In comparison to microwaves in SAR, visible light provides higher
resolution. As well as providing additional phase information, FP
also greatly increases the feasibility of remote sensing. Thereafter, a
long-distance subdiffraction-limited visible imaging technique based
on FP was developed in [217], i.e., SAVI, which allows the
imaging distance to be set freely according to system parameters
and is applicable to 0.7 to 1.5 m imaging distances. In contrast,
the SAVI system’s imaging range is limited by commercially
available products, which is comparable to a finite correction system.
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Moreover, due to the camera’s scanning scheme, the FoV will change,
resulting in a smaller overlapped FoV, leading to a higher cost for
the array camera.

FP imaging with few photons is a challenge because stray light
and noise can overwhelm the signal. Aidukas, et al., tackled this
low SNR obstacle applicable to the imaging of delicate biological
samples by leveraging quantum correlations. The team showed the
ability to extract phase and intensity information of a microscopic
object through correlations between the signal and idler of a
parametric down-conversion illumination source in their experimental
demonstration.

C. Coded Diffractive Imaging

Coded diffraction imaging refers to acquisition of images through
a setup that employs coherent/incoherent light and a coded aperture
(also known as a diffractive optical element (DOE)) to modulate the
scene. Typically this setup allows the acquisition of several snapshots
of the scene by changing the spatial configuration of the coded
aperture. This modulated data is experimentally acquired in three
diffraction zones: near, middle, and far [218, 219]. For the coherent
case, mathematically, assuming a diagonal matrix D` ∈ Cn×n for
modeling the DOE for the `-th snapshot, ` = 1, . . . , L, the coded
measurements consist of quadratic equations of the form

yki,` = ∣⟨D`a
k
i ,x⟩∣2 + ηki , (73)

where aki ∈ Cn are the known wavefront propagation vectors
associated with the k-th diffraction for i = 1,⋯, n, x ∈ Cn is the
unknown scene of interest, and k = 1,2,3 indexes the near, middle,
and far zones, respectively.

By harnessing specific properties of each diffraction zone,
several advances in imaging applications have been made, and
Fig. 27 summarizes common coded aperture (or DOE) applications.
Specifically, phase imaging deals with the reconstruction of the
three-dimensional (3-D) shape of an object via phase retrieval. The
far zone scenario consists of estimating the optical phase of the
object by low-pass-filtering the leading eigenvector of a carefully
constructed matrix [220]. In the case of object detection the optical
phase is used to detect objects within a scene. Near zone coded
data for rapid detection uses cross-correlation analysis to detect the
target using its optical phase as a discriminant [221]. Moreover,
the imaging task in microscopy is the reconstruction of the object
wavefront. In [222], a novel approach is described for lens-less
single-shot phase retrieval for pixel super-resolution phase imaging
in the middle zone by suppressing the noise in a combination of
sparse- and deep learning-based filters. Single-shot allows recording
of dynamic scenes (frame rate limited only by the camera). And lastly,
computational imaging with DOEs is a multidisciplinary research
field at the intersection of optics, mathematics, and digital image
processing [223]. Particularly, in [223] a DOE is effectively designed
for all-in-focus intensity imaging where the diffraction patterns
associated with the DOE were studied in the middle zone.

D. Coded Imaging Setups

The advantage of the coded aperture (DOE) lies in its imaging
capability to successfully recover the phase without additional optical
elements (such as lenses) leading to even more compact imaging
devices [222]. The eschewing of the lens makes the system not only
light and cost-effective but also lens-aberration-free and with a larger
FoV.

Hyperspectral complex-domain imaging is a comparatively new
development that deals with a phase delay of coherent light in
transparent or reflective objects [224]. Hyperspectral broadband phase

imaging is more informative than the monochromatic technique.
Conventionally, for the processing of hyperspectral images, 2-D
spectral narrow-band images are stacked together and represented
as 3-D cubes with two spatial coordinates (x, y) and a third
longitudinal spectral coordinate. In hyperspectral phase imaging, data
in these 3-D cubes are complex-valued with spatially and spectrally
varying amplitudes and phases. This makes phase image processing
more complex than the hyperspectral intensity imaging, where the
corresponding 3-D cubes are real-valued.

In certain coded diffractive imaging applications, the combination
of blind deconvolution, super-resolution, and phase retrieval naturally
manifests. While this is a severely ill-posed problem, it has
been shown [225] that an image-of-interest could be estimated
in polynomial-time. The approach relies on previous results that
established the DOE design to achieve high quality images [226]
and partially analyzed the combined problem by solving the
super-resolution phase retrieval problem [227] from coded data.
These designs are obtained by exploiting the model of the physical
setup using machine learning methods where the DOE is modeled as
a layer of a NN (data-driven model or unrolled) that is trained to act
as an estimator of the true image [223]. This data-driven design has
shown an outstanding image quality using a single snapshot as well
as robustness against noise.

VIII. SA SONAR

SA processing with sonar poses certain challenges that have
delayed the development and applicability of SAS imaging methods
compared to its radar counterpart. The complexity of SA processing
for underwater mapping applications stems mainly from: 1) the
propagation speed of acoustic waves in water (1.5×103 m/s), which
is at least 5 orders of magnitude smaller than the propagation speed
of electromagnetic waves in air (3 × 108 m/s), and 2) the coherence
loss of the received signal along the SA due to the random motion of
the sonar platform, the instability of the medium and the multipath
arrival pattern in shallow waters [228]. The low propagation speed
of acoustic waves requires a long acquisition time to achieve a
practically useful imaging range, limiting the ping repetition rate.
Moreover, the spatial sampling requirement for unaliased imaging
results in an inversely proportional relation between the speed of
the platform carrying the sonar system and the maximum imaging
range [229]. Therefore, the time required to form the SA for sonar is
much longer than that for radar, making phase errors due to random
platform motion and wave propagation critical for SAS imaging
[230].

It was soon demonstrated that the temporal and spatial instability
of the underwater environment, e.g., due to turbulence or spatial
inhomogeneity of the acoustic parameters, is not the main limiting
factor for practical SAS [230, 231]. Nevertheless, environmental
factors can degrade SAS imaging, e.g., due to refractive effects
from internal waves [232]. Introducing an array of multiple
receivers instead of a single sensor provided a practically feasible
pulse repetition rate for unaliased imaging and became the
standard SAS configuration [233]. However, stable navigation of
underwater vehicles and motion estimation and compensation with
sub-wavelength accuracy is still a great operational challenge [234,
235]. Multi-channel systems increase the complexity of platform
motion estimation introducing ping-to-ping yaw errors, but they offer
a refined relative position estimate by cross-correlating the signals of
overlapping elements in the displaced phase center antenna (DPCA)
taking into account the spatio-temporal coherence of homogeneous
reverberation [236–238]. State-of-the-art SAS systems are equipped
with inertial navigation systems (INS) for coarse motion estimation,
combined with DPCA micronavigation to compensate for residual



22

Fig. 28. SAS imaging geometry in strip-map mode.

navigation errors [239–241]. For many years, the cost and complexity
of SAS systems limited their scope to military applications, such
as mine countermeasures and unexploded ordnance remediation [2,
242]. It is only for the last 20 years that SAS has become common
and inexpensive enough to be used for commercial applications such
as underwater archaeology, inspection of underwater pipelines and
seafloor mapping for offshore windfarm installation and monitoring
[242, 243].

A comprehensive review of past work on SAS image reconstruction
algorithms, platform motion estimation and compensation methods,
interferometric SAS and SAS system configurations is presented in
[2]. In the following, we summarize the basic SAS model before
we highlight recent developments in SAS and current research
trends categorized into generic research focus areas. We limit our
review to methods that involve coherent signal processing, rather
than incoherent image processing such as image segmentation and
automatic target recognition [244, 245].

A. SAS model

The SAS geometry in the simplest and most applied strip-map
modality is depicted in Fig. 28. A platform carrying an active sonar,
with an arrangement of transmitters and receivers, moves along a
linear path, parallel to the seafloor plane. In strip-map mode, the
antenna is focused towards broadside, i.e., the central axis of the
real-aperture beampattern is perpendicular to the platform path [246].

The active sonar transmits a short pulse, referred to as a ping, and
records the backscattered echoes repeatedly as the platform moves
along the track. The stop-and-hop approximation postulates that the
platform is stationary during each ping transmission and reception,
before it jumps instantaneously to the next position [246]. Hence, the
position of the platform is discretized according to the ping number
p as,

yp = pvpτrec, (74)

where vp is the constant speed of the platform and τrec is the
duration of the recording, which defines the ping repetition period.
The insonified area per ping is determined by the radiation pattern
of the transmitting antenna. The total imaging area is determined by

the SA length and the recording duration τrec allowing a maximum
swath width of,

rmax =
cτrec

2
, (75)

where c is the speed of sound in water. Multi-element receiver arrays
are employed to allow longer imaging ranges without violating the
spatial sampling condition for a moderate platform speed (a few
knots) [229].

Consider a pulsed acoustic source h(rt, f) = bT (rt)q(f), where
bT (rt) describes the transmitter aperture as a function of the spatial
coordinates rt and q(f) is the transmitted waveform as a function
of frequency f . The sound pressure incident to a point located at rs
in the scattering medium due to the pulsed source centered at rtc is,

pi(rst, f) = q(f)∫
AT

bT (rtt)
e−j

2πf
c

∥rst−rtt∥2

4π∥rst − rtt∥2
drtt, (76)

where the integration is over the transmitter aperture AT and the
position vectors are defined relative to the center of the aperture, i.e.,
rst = rs − rtc and rtt = rt − rtc . Equation (76) is the solution to
the inhomogeneous Helmholtz equation and describes the wavefield
at the far-field of a spatially distributed harmonic source in an
unbounded medium as the result of the integrated contributions of the
elementary point sources bT (rtt)drtt constituting the source aperture
[247]. With the Fraunhofer approximation for far field propagation,
[248] ∥rst − rtt∥2 ≈ ∥rst∥2 − r̂strtt, where r̂st = rst/∥rst∥2 is the
unit vector in the direction of rst, Eq. (76) is simplified to,

pi(rst, f) ≈ q(f)
e−j

2πf
c

∥rst∥2

4π∥rst∥2 ∫AT
bT (rtt)ej

2πf
c

r̂strttdrtt

= q(f)e
−j

2πf
c

∥rst∥2

4π∥rst∥2
BT (kst),

(77)

where kst = (2πf/c)̂rst is the wavenumber vector in the direction
of r̂st and BT (kst) denotes the beampattern of the transmitter as
the spatial Fourier transform of its aperture function.

Assuming that the platform is stationary during transmission and
reception, the backscattered signal at a receiver centered at rrc from
the point scatterer at rs with complex scattering amplitude s is,

p(rsr, f) = pi(rst, f)s(rsr, f)∫
AR

bR(rrr)

× e
−j

2πf
c

∥rsr−rrr∥2

4π∥rsr − rrr∥2
drrr

≈ pi(rst, f)s(rsr, f)
e−j

2πf
c

∥rsr∥2

4π∥rsr∥2
BR(ksr),

(78)

where the integration is over the receiver aperture AR with
beampattern BR(ksr) and rsr = rs − rrc , rrr = rr − rrc .

In monostatic systems rtc = rrc = rv by definition, whereas
in multi-static configurations the phase center approximation (PCA)
[238] replaces each transmitter-receiver pair with a virtual element at
rv = (rtc + rrc)/2 such that ∥rs − rtc∥2 ≈ ∥rs − rrc∥2 ≈ ∥rs − rv∥2 =
∥rsv∥2. At any given time frame, the total backscattered field at
rv with the Born approximation [247] is the superposition of the
backscattered echoes from all scatterers within the corresponding
isochronous insonified volume As,

p(rv, f) =
q(f)
(4π)2∫As

s(rsv, f)B(ks)
e−j

2πf
c

2∥rsv∥2

∥rsv∥22
drs, (79)

where B(ks) = BT (kst)BR(ksr) is the combined beampattern
of the transmitter and the receiver. In the case that the receiver is
much smaller than the transmitter, the receiver’s beampattern can be
considered omnidirectional, hence B(ks) ≈ BT (kst).
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Fig. 29. Transmission (77), reception (78) and matched filtering (80) with
a single-transmitter/multiple-receiver configuration. The PCA replaces the
multistatic configuration with a virtual array of monostatic elements located
at the middle of the distance between each transmitter-receiver pair.

The recorded backscattered signal (79) is compressed with matched
filtering, i.e., by multiplication with the complex conjugate of the
transmitted pulse q∗(f),

pmf(rv, f)=q∗(f)p(rv, f)

= ∥q(f)∥22
(4π)2 ∫As

s(rsv, f)B(ks)
e−j

2πf
c

2∥rsv∥2

∥rsv∥22
drs,

(80)

Figure 29 shows a schematic of the transmission, reception and
matched-filtering operations.

Discretizing the scattering field into an imaging grid of N points,
the data model (80) can be written in a matrix-vector formulation,

d(p, f) =A(p, f)s(p, f) + n(p, f), (81)

where d ∈ CM is the vector of the matched filtered measurements at
frequency f for all M receivers comprising the real aperture at ping
p, s ∈ CN is the unknown vector of the complex scattering values
over a grid of N points and n ∈ CM is the additive noise vector. The
matrix A ∈ CM×N maps the unknown scattering s to the observations
d and has as columns the steering vectors,

a(rs, p, f) = [e−j
2πf
c

2∥rsv1 ∥2 ,⋯, e−j
2πf
c

2∥rsvM ∥2]T , (82)

which describe the propagation delay from the sth scatterer to all
the M sensors on the real aperture at ping p. Note that we have
incorporated the gain factor, ∥q(f)∥22B(ks)/(4π∥rsv∥2)2, into the
scattering vector s as it can be easily accounted for in a calibrated
system.

SAS imaging refers to the inverse problem of reconstructing
the scattering field s, given the sensing matrix A and a set of
measurements d over a range of frequencies and pings. Conventional
(delay-and-sum) beamforming uses the steering vectors (82) as spatial
weights to combine the sensor outputs coherently, compensating
for the geometrically induced spatial Doppler modulation. In SAS
imaging, conventional beamforming provides the scattering estimate,

ŝCBF =
P

∑
i=1

F

∑
j=1

AH(pi, fj)d(pi, fj), (83)

by combining coherently the sensor outputs over P pings and F
frequencies. In the case that there are only a few strong scatterers
in the scattering field (K ≪ N ), SAS imaging can be solved as a
sparse model fitting problem,

min
s(pi,fj)

1

2
∥A(pi, fj)s(pi, fj) − d(pi, fj)∥22 + µ∥s(pi, fj)∥1. (84)

Fig. 30. Seafloor map with a configuration of strong scatterers in a weakly
scattering background, and reconstruction with conventional and sparse SAS
processing.

where µ > 0 is a regularization parameter which controls the relative
importance between the quadratic data-fitting term and the sparsity
promoting `1-norm regularization term [249]. Figure 30 demonstrates
SAS images of the reconstructed scattering field with conventional
and sparse beamforming. The reader is referred to [246] for a
comprehensive review of SAS imaging algorithms.

The resolution of a SAS system is defined in the range and
cross-range directions, indicated in Fig. 28 as δx and δy respectively.
The range resolution, obtained with matched filtering, is determined
by the bandwidth ∆f of the transmitted ping,

δx ≈
c

2∆f
. (85)

The cross-range (angular) resolution depends on the apparent SA
length LSA,

δy ≈
λr0

2LSA
. (86)

For a given transducer size Dy , the corresponding SA length is
proportional to the wavelength and the range of a point scatterer,
LSA ≈ λr0/D, resulting in a cross-range resolution which is
independent of frequency and range, δy ≈D/2 [229].

B. Wideband signal processing for SAS

There is a progressive shift of interest towards wideband and
widebeam SAS systems that can provide information about the
frequency- and aspect-dependent properties of sea-bottom scattering.
For example, low frequencies can be partly transmitted through
objects or penetrate the seafloor providing information about internal
structure and buried objects [250–252], while multiple views provide
information about the object’s shape and dimensions [253]. As a
result, several wideband SAS systems have been developed [241,
254–256] and SAS processing algorithms have been adapted for
wideband and widebeam applications [249, 257–259].

Specifically, sub-band or sub-view processing for frequency- and
aspect-dependent feature extraction reduces the resolution and the
SNR compared to conventional SAS methods. To alleviate the
corresponding SAS image degradation, signal processing methods
such as spatial filtering followed by deconvolution [257] or
wavenumber-domain filtering [259] have been proposed. Sparse
signal reconstruction methods, such as feature selection through
wavelet shrinkage [258] or distributed optimization [249], show great
potential in wideband low-frequency SAS imaging. In interferometric
SAS, wideband methods allow direct estimation of the absolute phase
difference, providing robust three-dimensional imaging even with
complicated scenes [260].

C. Micronavigation

Micronavigation refers to platform motion estimation methods,
which use redundant recordings between pings in multi-channel
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systems to refine the coarse motion estimates from navigational
instruments and achieve the subwavelength motion estimation
accuracy required for SAS processing. Current work focuses on
achieving sub-sample localization accuracy of the peak correlation
from spatially and temporally sampled correlation measurements.

Methods that exploit the spatial correlation of overlapping
measurements between consecutive pings for along-track
micronavigation propose maximum likelihood estimators [261],
analytical and numerical coherence models [262] and smoothing
interpolation kernels [263, 264] to improve the accuracy of the
along-track, ping-to-ping translation estimate. Similarly, time delay
estimation between signals recorded on overlapping along-track
positions between pings provides an across-track micronavigation
estimate. Across-track micronavigation is particularly challenging
in repeat-pass SAS processing for coherent change detection,
where aggregated navigation errors between passes can result in
baseline decorrelation not attributed to scene changes [265–267].
To achieve data co-registration in repeat-pass SAS, the authors
in [265] introduce a repeat-pass SAS micronavigation algorithm
that is a generalization of DPCA method, whereas Ref. [268]
proposes a phase unwrapping approach to best fit the temporal
correlation function in the presence of noise. The authors in Ref.
[267] show that, by combining elements in the multi-channel system
into larger effective elements, the along-track and across-track
decorrelation baseline increases. A machine learning approach based
on variational inference has been recently proposed for robust
data-driven estimation of the three-dimensional platform translation
between pings from spatiotemporal coherence measurements of
diffuse backscatter [269].

D. System configuration

With regard to system design, recent developments propose
MIMO configurations [270–272] and circular synthetic trajectories
[273]. Specifically, MIMO SAS systems use multiple channels not
only on receive, but also on transmit [270]. For example, Ref.
[271] examines the use of spatially distributed transmitters in the
across-track direction of a planar receiver array to increase the
effective non-synthetic length of the array in that dimension and,
consequently, improve the depth resolution of the resulting SAS
system. Ref. [272], instead, proposes a MIMO SAS configuration
with spatially distributed transmitters in the along-track direction to
improve the spatial sampling rate and increase the imaging range. The
authors employ a sparse reconstruction algorithm to reduce the impact
of the residual waveform correlation and produce high-quality SAS
imaging. Circular SAS (CSAS) improves the resolution and reduces
the speckle in SAS imaging. Ref. [273] addresses the challenge of
focusing CSAS data due to the non-linear trajectory.

IX. INTELLIGENT SA SYSTEMS

With the arrival of computing systems with sufficient memory and
clock rates, machine learning has grown massively in recent years as
researchers have tried to apply it to myriad applications, including
SAs. One of the first forays into the concept of intelligent control
of sensing systems was Haykin’s seminal article on cognitive radar
[274], which defined the general architecture to support agile control
of radar systems. Such systems, as posited by Haykin, share three
defining features. First, they use intelligent signal processing, which
builds on learning from the results of the radar’s interactions with
its environment. Second, they provide some type of channel for the
receiver to provide feedback to the transmitter, which allows the
transmitter to adapt to its environment in an intelligent way. Third,
the system has a means for preserving the information content of

Fig. 31. The basic cognitive transmit/receive sensing system architecture
proposed by Haykin, from Fig. 1 in [274]. This architecture assumes a
feedback loop from receiver to transmitter, which may not exist (e.g., passive
systems).

radar returns. From this general architecture, depicted in Fig. 31,
it is possible to apply machine learning to multiple elements of
the system. Wideband systems present a set of unique challenges
relative to narrrowband systems, such as greater impact of frequency
selective fading, as well as larger volumes of data, that invite the use
of machine learning to efficiently develop system improvements.

Several current lines of machine learning work focus on SA
front-end functions, such as beamforming. In addition, a vast
literature has developed around SA image classification, but this
considerable body of work lies outside the scope of this paper. As
an example of research efforts in recent years that have explored
using machine learning to do beamforming for SA, Luchies and
Byram [275] proposed a deep feed-forward architecture for reducing
sidelobes in ultrasound applications, and noted that SA techniques
could provide further improvements by expanding the depth of field.
Peretz and Feuer discuss a beamforming algorithm for SA ultrasound
in [276]. The Delay and Sum (DAS) technique in SA ultrasound,
allows for a higher frame rate but at the cost of lower Signal to
Noise Ratio (SNR) and reduced contrast resolution. Using Synthetic
Transmit Aperture (STA) ultrasound results in higher SNR, but
requires more memory use because all the elements in the array are
receiving and storing the returns from a single transmitting element.
Peretz and Feuer introduce Deep NN Beamforming (DNNB) for
SA, STA, and phased array, which involves a training component
that compares large aperture and small aperture data, and a
utilization component that uses the trained deep NN to process the
small-aperture data to achieve large-aperture type results.

Yonei et al. [277] used deep NNs for image reconstruction in
passive SA radar applications, where the user deploys receivers
that operate opportunistically, i.e., they use transmitters in the
environment, with which they do not coordinate operations, and
measure the transmitter’s signal and its reflection from a target of
interest. The opportunistic nature of passive SAR means that the
transmitter’s location, waveform, and beam pattern may not be known
to the receiver as it moves across the aperture. The authors trained a
recurrent NN (RNN) model to obtain estimates of the parameters
associated with both forward projection and backprojection and
filtering. Using the Born approximation, the authors model the
forward projection operation in a sampled aperture as the linear
transformation d = Fρ, where ρ is a vector of reflectivity values of
sample points in the environment, d is the vector of corresponding
received signal values, and F is the forward scattering matrix. They
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implement the backprojection and filtering operation using F and a
filtering matrix Q that they employ at each stage of the RNN, and
use unsupervised learning to train the RNNs to estimate the weights.

Yonel et al. built on their deep learning concept in a subsequent
work [278], in which they apply a decoder to the estimated reflectivity
vector at the RNN output to map it back to the data space
and thus produce an auto-encoder. By incorporating feedback that
adaptively minimizes the error between received SAR signals and
those generated by the auto-encoder, the authors demonstrate that they
are able to estimate the SAR waveform. In addition, other researchers
have applied cognitive methods to SAR waveform design, such as
the work by Xu et al. [279], which develops a joint optimization
algorithm for designing a SAR waveform that maximizes resolution
performance and the Signal to Clutter and Noise Ratio (SCNR).

Another major area of work involving machine learning is
beamforming for ultrasound applications, including those that use
either transmitted plane waves (PWs) or transmitted Diverging Waves
(DWs). Early work includes the investigation by Gasse et al. [280],
on PW beamforming using multiple transmissions to produce a
compound image. Because PW transmissions do not use a focused
beam, the image resolution for a single PW transmission is poor;
a resulting strategy is to combine multiple PW images, but this
oversampling reduces the ultrasound image frame rate. Gasse et al.
developed a Convolutional NN (CNN) approach that would increase
frame rate by learning channel parameters so that good quality images
could be obtained by compounding fewer PW transmissions. The
authors trained a six-layer CNN and were able to use it to match the
performance metrics obtained with about 20 PW transmissions using
only 3 PW transmissions.

More recent work by Ghani et al. in [281] addresses issues with
using Diverging Waves (DWs) to illuminate targets. The authors also
used a six-layer CNN with relatively low computational complexity
by having only the first two CNN layers be 3D convolutional layers,
with the subsequent layers being 2D. Ghani et al. also trained
using invidual pixels rather than entire images, which prevents the
CNN from learning features unique to ultrasound environments. The
authors also used a compound loss function to train their CNN,
rather than using a simple MMSE criterion. This produced improved
performance due to the relationships between the various elements
of the compound loss function.

Recent work has explored the use of machine learning to
solve the forward and reverse scattering problems. This approach
uses a linear approximation such as Eq. (81), which arises from
sampling the scattering field. The approach employed by [282]
uses a NN architecture that consists of a single layer of neurons,
with no activation function, to find the sensing matrix, A, or its
pseudo-inverse B = (AHA)−1AH , where H is the Hermetian
(complex transpose) matrix operator. The authors note that knowing
A is sufficient to solve the scattering problem when the observation
space sampling is chosen so that AHA is approximately a diagonal
matrix; however, their experimental results using the CIFAR-10
image dataset [283] show better performance using the estimated
pseudo-inverse.

X. SA RADIOMETRY

Remote sensing at L-band (1.4 GHz) microwave frequencies
provides the advantage of penetrating the atmosphere and offers
sensitivity to parameters of the ocean and land surface that are
important for understanding the earth’s environment. Examples
include the measurement of soil moisture and sea surface salinity
which are important for understanding energy exchange with the
atmosphere and, therefore, improve the forecasting of weather and
climate change. The measurement of these parameters from space

Fig. 32. The microwave imaging radiometer using aperture synthesis
(MIRAS) [284] is a Y-shaped SA radiometer on-board the soil moisture and
ocean salinity (SMOS) satellite. Photo credit: European Space Agency.

requires resolution on the order of 10 km. To obtain resolution on
this order of magnitude requires placing very large antennas in orbit.
For example, to obtain an image resolution of 10 km at 1.4 GHz
would require an aperture of more than 15 m flying in a low earth
orbit at an altitude of 800 km. The engineering problems associated
with placing large antennas into orbit limit the deployment of passive
sensors at this frequency [284].

Aperture synthesis is an interferometric technique for passive
microwave remote sensing that mitigates the technical challenges
associated with placing large apertures in space. In aperture synthesis,
the coherent product (cross-correlation) of the complex signal from
pairs of antennas is measured for different antenna-pair spacings (also
called baselines). The product at each baseline yields a sample point
in the Fourier transform of the brightness temperature map of the
scene, and the scene itself can be reconstructed by inverting the
sampled transform [285–290]. The resolution of the temperature
image is determined by the largest baseline. The individual antennas
determine the FOV on the ground surface. The compromise one
makes in using aperture synthesis is a potential loss of radiometric
sensitivity because small antennas imply a decrease in SNR for each
measurement compared to a filled aperture.

Fig. 32 illustrates a concept for employing aperture synthesis in
both spatial dimensions. In the picture, small antennas are arranged
along the arms of a Y , but other arrangements are also possible.
The necessary baselines are obtained by making measurements
between all independent pairs of antennas. One can show that this
configuration has the same spatial resolution as a filled aperture
with the dimensions of the arms. Aircraft instruments with antennas
arranged in Y and U configurations have been built and satellite
instruments in space have used the Y configuration.

XI. FUTURE OUTLOOK AND SUMMARY

This paper has provided an overview of the broad utility of SA
techniques to a wide range of imaging applications, including radar,
channel sounding, optics, radiometry, and sonar. The overarching
advantage of a SA is that the available angular resolution can be



26

increased beyond the limits imposed by the physical size of the
antenna. This is accomplished by using a mechanical positioner
to move the receive antenna through space while it collects signal
samples. Provided the samples are phase coherent then they can
be combined in post-processing as if they were measured by a
physical aperture with the same size as the SA. In the temporal
domain, synthetic techniques can also be applied to increase
the available delay resolution. For example, in frequency domain
channel sounding, a wide measurement bandwidth is synthesized by
measuring the frequency response of a wireless channel using many
narrowband frequency tones spaced over a wide frequency grid.

Many recent innovations have improved the performance of SAs
with potential for even more significant advances in the future.
Primary among these is the use of self-calibrating quantum sensors
based on Rydberg atoms that measure electric field strength to
extraordinary precision. The quantum states of atoms are fundamental
constants of nature that never drift or change and don’t need to be
calibrated. Therefore, they provide traceable measurements that are
hugely important in many metrology applications.

New technology for micronavigation and the precision geolocation
of ocean-going vessels has had a dramatic impact on SAS. By
knowing precisely the location and orientation of a sonar vessel
it is possible to significantly improve the detection and imaging
performance of sonar, especially in severe weather. Advances
in micronavigation have leveraged machine learning, which also
underpins many other advances in SA imaging. New beamforming
techniques and the development of intelligent systems that can adapt
system parameters to optimize performance based on the operational
environment are just a few examples of the advanced capabilities now
possible via machine learning approaches.
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[178] R. Cardman, L. F. Gonçalves, R. E. Sapiro, G. Raithel, and D. A.
Anderson, “Atomic 2D electric field imaging of a Yagi–Uda antenna
near-field using a portable Rydberg-atom probe and measurement
instrument,” Advanced Optical Technologies, vol. 9, no. 5, pp. 305–312,
2020.

[179] A. K. Robinson, N. Prajapati, D. Senic, M. T. Simons, and C. L.
Holloway, “Determining the angle-of-arrival of a radio-frequency
source with a Rydberg atom-based sensor,” Applied Physics Letters,
vol. 118, no. 11, p. 114001, 2021.

[180] M. T. Simons, A. B. Artusio-Glimpse, A. K. Robinson, N. Prajapati,
and C. L. Holloway, “Rydberg atom-based sensors for radio-frequency
electric field metrology, sensing, and communications,” Measurement:
Sensors, vol. 18, p. 100273, 2021.

[181] C. L. Holloway, M. T. Simons, J. A. Gordon, A. Dienstfrey, D. A.
Anderson, and G. Raithel, “Electric field metrology for SI traceability:
Systematic measurement uncertainties in electromagnetically induced
transparency in atomic vapor,” Journal of Applied Physics, vol. 121,
no. 23, p. 233106, 2017.

[182] D. B. Newell, F. Cabiati, J. Fischer, K. Fujii, S. G. Karshenboim, H. S.
Margolis, E. de Mirandés, P. J. Mohr, F. Nez, K. Pachucki, T. J. Quinn,
B. N. Taylor, M. Wang, B. M. Wood, and Z. Zhang, “The CODATA
2017 values of h, e, k, and nA for the revision of the SI,” Metrologia,
vol. 55, no. 1, pp. L13–L16, 2018.

[183] A. A. Michelson and F. G. Pease, “Measurement of the diameter
of Alpha-Orionis by the interferometer,” Proceedings of the National
Academy of Sciences, vol. 7, no. 5, p. 143, 1921.

[184] F. Merkle, “Synthetic-aperture imaging with the European very large
telescope,” Journal of the Optical Society of America A, vol. 5, no. 6,
pp. 904–913, 1988.

[185] A. Bulbul and J. Rosen, “Super-resolution imaging by optical
incoherent synthetic aperture with one channel at a time,” Photonics
Research, vol. 9, no. 7, pp. 1172–1181, 2021.

[186] R. H. Brown and R. Q. Twiss, “A test of a new type of stellar
interferometer on Sirius,” in A Source Book in Astronomy and
Astrophysics, 1900-1975, K. R. Lang and O. Gingerich, Eds. Harvard
University Press, 2013, pp. 8–12.

[187] J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel
holography,” Optics Letters, vol. 32, no. 8, pp. 912–914, 2007.

[188] B. Katz and J. Rosen, “Super-resolution in incoherent optical imaging
using synthetic aperture with Fresnel elements,” Optics Express,
vol. 18, no. 2, pp. 962–972, 2010.

[189] ——, “Could SAFE concept be applied for designing a new synthetic
aperture telescope?” Optics Express, vol. 19, no. 6, pp. 4924–4936,
2011.

[190] A. Vijayakumar, Y. Kashter, R. Kelner, and J. Rosen, “Coded aperture
correlation holography - A new type of incoherent digital holograms,”
Optics Express, vol. 24, no. 11, pp. 12 430–12 441, 2016.

[191] A. Vijayakumar and J. Rosen, “Interferenceless coded aperture
correlation holography - A new technique for recording incoherent
digital holograms without two-wave interference,” Optics Express,
vol. 25, no. 12, pp. 13 883–13 896, 2017.

[192] A. Bulbul, A. Vijayakumar, and J. Rosen, “Partial aperture imaging
by systems with annular phase coded masks,” Optics Express, vol. 25,
no. 26, pp. 33 315–33 329, 2017.

[193] D. Gottesman, T. Jennewein, and S. Croke, “Longer-baseline telescopes
using quantum repeaters,” Physical Review Letters, vol. 109, p. 070503,
2012.

[194] J. Borregaard, H. Pichler, T. Schröder, M. D. Lukin, P. Lodahl, and A. S.
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