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Abstract—Adoption of wireless systems for use in
industrial scenarios is increasing, although slowly,
in process control and discrete manufacturing. In
particular, factories must make the leap towards
wireless networks as a central form of communications
to enable certain capabilities outlined by Industry 4.0.
Acceptance of wireless as a principal communications
mode is slowed by the fact that it is indeed less reliable
and less deterministic than its wired counterparts. The
industrial wireless medium is susceptible to interference
and multi-path fading effects, and their impacts are
exacerbated by the mission critical nature of the
attached sensing and control applications. Adoption
of wireless networks can be made more acceptable
if the uncertainty of the wireless medium is better
understood and wireless devices are designed to
accommodate such uncertainty. This can be achieved
through analysis of the RF environment beyond
its propagation characteristics and the standardized
evaluation of wireless network performance prior
to deployment. This article describes the ongoing
approach taken by the IEEE P1451.5p working
group for the standardization of industrial wireless
network performance evaluation. A strategy for
modeling channel degradation factors (aggressors) and
perspectives on profiling the model for replication of
different radio environment scenarios are presented.

Index Terms—industrial wireless networks, factory
communications, manufacturing, wireless channels,
channel aggressors, IEEE 1451.5p

I. INDUSTRIAL WIRELESS: CHALLENGES AND
PERFORMANCE EVALUATION

A. Challenges of Adoption

The concept of dedicated wireless networks for use
in industrial scenarios began in earnest in the early
2000’s with the IEEE 802.15.4 standards and the
subsequent industry standards such as WirelessHART,
Zigbee, and ISA 100.11a. Other network types arose,
which built upon IEEE 802.11 (Wi-Fi) and 802.15.1
(Bluetooth). In addition, proprietary implementations
have been developed typically utilizing frequency
hopping and time-division strategies to improve
performance in the harsh conditions of the factory
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environments. These wireless systems were almost
always designed to operate entirely in the industrial,
scientific and medical (ISM) bands of 900 MHz
and 2.4 GHz with the 2.4 GHz band being the
primary band of use. These early wireless networks
were designed for both sensing and actuation, yet
industry chose to focus primarily on the sensing
aspect for almost two decades, hence information
loss has been tolerable. Nevertheless, due to the
ubiquity of the ISM bands, the simplicity of the
protocols, and the harshness of the industrial wireless
channel, transmission reliability of these networks
has been poor as compared to wired counterparts.
Furthermore, claims of superior connectivity using
wireless in the factory has been largely ambiguous as
to the circumstances of such claims. Often pristine
channel conditions are required to meet performance
expectations which is unrealistic and impractical.
This approach to evaluating and deploying industrial
wireless systems must change if wireless is ever to
replace wires in mission critical applications. For
example, the multi-path environments of industrial
sites in microwave bands can be particularly
reflective thereby increasing delay spread, path loss,
and Doppler effects [1].

B. Time-sensitive Wireless in Industry 4.0

With the advent of Industry 4.0, wireless networks
are envisioned to play a central role in factory
and other operational systems communications. The
Industry 4.0 vision of the communications system
includes concepts such as:

Industrial Internet of Things (IIoT): which
extends the internet of things (IoT) to applications
found in industrial sectors and applications. The
IIoT focuses more intensely on machine-to-machine
(M2M) communication and learning to large amounts
of data resulting in better enterprise control and
operational reliability;

Decentralization of Decisions: in which
decisions for optimization and regulation of the
industrial process are made closer to the objects
performing the work, autonomously, and in real-time;
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Fig. 1: Scope of the IEEE P1451.5p working group. Considerations, i.e., the channel aggressors, that present
an impact to the function of a wireless network are highlighted within the red box. These considerations
include propagation phenomena, attenuation, and RF interference.

Improved Mobility: where people, machines,
and devices become mobile and reusable across
working environments such as an autonomous robot
moving from work cell to work cell, receiving
instructions, interlocking with other machinery,
retooling automatically, and conducting its job safely
in the presence of humans;

Pervasive safety systems: where people and
machines are protected through high reliability
sensing of anomalous events and relaying the event
information to an actuation controller within very
tight latency requirements;

Digital Augmentation: which are those
technological enhancements such as digital twins
and augmented reality are used for real-time
predictive analysis and support to the human
conducting their work thereby improving overall
productivity; and

Visualization of Network Performance:
which includes technological enhancements that
allow for real-time heat mapping of wireless
network performance through cloud and centralized
management visualization tools. Back-end software
tools will peer directly into the physical RF
environment to view in real-time the connectivity
state conditions including dominant impairment
factors at each node in the network.

To make the vision of wireless in Industry 4.0 a
reality, wireless networks must become ultra-reliable,
have lower and more deterministic latency, and
operate with greater resilience. A key technological
aspect to this vision is Time-sensitive Networking
(TSN) in which access to the communication medium

is made more deterministic through gating and
scheduling techniques, such as by what has been
defined by the TSN Task Group of the IEEE 802.1
Working Group under the harsh and uncertain radio
channel found within industrial environments.

C. Enter the IEEE P1451.5p

At the wireless mechatronics workshop held
online during the International Conference on
Factory Communication Systems (WFCS) in June
2021, interference, and jamming were cited by
participants in industry as the most concerning issues
impeding the adoption of wireless as a primary form
of communications within the automation system
of a factory workcell [2]. During the workshop,
standardized methods for assessing performance
of wireless networks used for automation of
mechatronic systems prior to commissioning were
indicated as essential for the advancement and
acceptance of wireless networks if they are to be
used for more than sensor applications. Shortly
after the workshop, a joint effort between the IEEE
Instrumentation and Measurement Society and the
IEEE Industrial Electronics Society was proposed,
and the new IEEE P1451.5p working group was
created within the Instrumentation and Measurement
Society Sensor Technology Committee (TC-9) with
the purpose to create the Standard for Radio
Frequency Channel Specifications for Performance
Assessment of Industrial Wireless Systems. The
scope of the IEEE P1451.5p working group is shown
in Fig. 1.
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Fig. 2: Examples of non-communications radio
interference include aggressors such as in (a) an
industrial curing or drying machine emitting high
levels of RF energy within the 2.4 GHz ISM radio
band Credit: Ceramicx Ltd., Ireland 2022, and (b)
microwave ovens (simulated here) [3] both of which
can significantly reduce receiver sensitivity.

D. Practical Issues in Industrial Wireless

Important to any industrial communications
network, wired or wireless, is high reliability
and low deterministic latency characteristics. RF
impairments, these aggressors, include many factors
ranging from radio wave propagation to radiated
jamming to environmentally induced interference
from vibrations, temperature, and other factors. An
example of jamming is shown in Fig. 2 wherein an
industrial curing machine found in a roofing materials
manufacturing factory emitted high energy RF radio
waves into the ambient environment completely
blocking communications across the entire 2.4 GHz
ISM band. The events would periodically occur
throughout the course of a day as the curing machine
engaged and disengaged unbeknownst to the factory
operation staff. Through careful examination of the
spectrum, the cause of the interference was found;
however, time and productivity was lost due to
poor spectral awareness of this factory environment.
A site survey, spectrum monitoring system, or
standardized testing approach prior to deployment

of the wireless network would have identified this
aggressor, and another RF band could have be chosen.
Such interference stories are the motivation behind
the new standardization effort of IEEE P1451.5p.
Developing a standardize approach to testing the
industrial wireless network is the main goal of the
standard, and spectral awareness is an underlying
tenet. A secondary aim of the working group is to
compile a database of spectral activity examples at
various operational locations to better inform our
standard. The database would serve to drive research
and development activities in machine learning and
test vector generation of interference patterns.

E. IEEE P1451.5p Road Ahead
The standard working group has the mandate

of making the resulting standard work products
agnostic to the communications systems and focus
on the RF aggressor definitions. As stated in the
working group (WG) charter, the new standard
establishes an RF reference environment model
with a set of profiles establishing parameters for
performance assessment scenarios. The standard
will include a model that represents the radio
frequency environment and accounts for performance
degradation factors (aggressors) that impact radio
channel behavior. Individual profiles will be included
to address the needs of different industries and
levels of severity of the radio channel environment.
Performance degradation factors include interference,
competing traffic, and multi-path propagation. The
new standard is expected to generate research
interest in the areas of interference measurement
and modeling that will aid in practical replication
of aggressors in laboratory settings as well as
application of machine learning to the classification
of interference types.

Fundamental to creating a model is the process
for generation of test vectors used during the
performance evaluation process specifically for the
data-bearing radio interference. This process is
shown in Fig. 3. The process begins with the
definition of considered aggressor features and in situ
measurements of temporal-spectral activity within
industrial sites of interest. An aggressor model is
defined and trained with available measurement data.
The model is used to generate test vectors which will
be used for both model tuning and wireless network
testing. The remainder of this paper will discuss our
initial proposal for the model and subsequent profiles
for specific scenarios.

II. TESTING AND MODELING OF WIRELESS
AGGRESSORS

Here, we briefly overview the related standards
for assessing the interference impact on a wireless
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Fig. 3: Concept behind the IEEE P1451.5p test vector
generation process for industrial wireless network
performance evaluation.

network which include the standards for testing
the wireless coexistence impact. However, the large
literature of wireless coexistence approaches and
their analysis is out of scope of this article. Moreover,
we discuss the interference modeling in the literature
and its limitations with respect to the requirements
of the proposed model of the working group.

The topic of wireless coexistence of various
communications protocols and the testing
methodologies have been discussed in multiple
standardization committees. The coexistence term
means the mutual interactions between protocols.
However, the testing methodologies may include
studying the impact of one network on another
when no coordination is performed. Examples
of standards that discuss coexistence and testing
methodologies include the standards IEEE Std
1900.2-2008, IEEE Std 802.15.2-2003, and IEC
62657-2:2017/AMD1:2019 CSV. Specifically, both
IEEE Std 1900.2-2008 and IEEE Std 802.15.2-2003
discuss best practices for coexistence between
wireless protocols and reporting and analyzing tools
for assessing the coexistence performance. Moreover,
the coexistence of industrial networks in TV white
space spectrum and its performance evaluation are
discussed in IEC 62657-2:2017/AMD1:2019 CSV.

In MIL-STD-461G, the requirements of the
Department of Defense (DoD) on various equipment
operating under electromagnetic interference (EMI)
are defined. These requirements include the

susceptibility characteristics of equipment under
various testing scenarios including the nature of
the tests being radiated or conducted and the types
of the emissions. Various scenarios are defined for
applicability of corresponding tests. Similarly, in
ANSI C63.27-2017, methods for assessing the RF
wireless coexistence are described. Key performance
indicators (KPIs) are specified to assess the ability of
the equipment under test (EUT) to coexist with other
equipment in its intended operational environment.
Specifically, test plans include the intended and
unintended interference signal characteristics such
as the frequency band, bandwidth and the wireless
protocol. Test plans also include defining the KPIs
such as latency, jitter, throughput, error vector
magnitude (EVM), non-acknowledgement requests,
lost packets, number of retransmissions, and time to
complete requests.

Finally, the problem of interference modeling has
been discussed widely using various mathematical
tools and stochastic models such as in [4] and
the references therein. The main goal of the
interference analysis is to capture key characteristics
of the interference as a function of relatively
few parameters. Two main classes of interference
modeling can be found, namely, analytical and
measurement-based models. Analytical models are
generally applied to relatively simple protocols
because of the complexities of the models. The
second class comprises a set of experimental
measurement-based methods. Moreover, modeling
can focus on specific features of the aggressors
such as power distribution, channel access schemes,
temporal correlations, and node location distribution.

III. RF ENVIRONMENT CONSIDERATIONS

Interference to industrial wireless networks in
licensed and unlicensed bands can originate from
different sources, including man made noise and
radios using different communication protocols.

In the sub-GHz band, we can find machinery
control signaling, 2∼5G cellular radios, Zigbee
radios, and mobile/radio location services. Shot
noise can be also found in this band, originated
from arc welders, electric motors, and medium-high
voltage switches in industrial environments, and
from ignition systems in internal combustion engines
vehicles [5]. Even though man made noise is typically
found in the sub-GHz band, shot noise can leak into
adjacent bands, including the 2 GHz band [5].

In the 2 GHz unlicensed band, interference
originates mostly from Zigbee, Bluetooth, Wi-Fi,
amateur radios and devices such as microwave
ovens. Each of the aforementioned protocols
have implemented anti-interference mechanisms to
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TABLE I: Expected RF Occupants in sub 1 GHz, 2 GHz, 5 GHz and 6 GHz bands

Frequency Region Users

Unlicensed bands

433.05 MHz - 434.79 MHz R1 Amateur and radiolocation

902 MHz - 928 MHz R2

ZigBee
WirelessHART
ISA 100.11a
FIXED, mobile except aeronautical mobile
and radiolocation service

2.4 GHz - 2.5 GHz WW

Zigbee
Bluetooth
Fixed mobile, radiolocation,
amateur, and amateur satelite service
Wi-Fi

5.170 GHz - 5.730 GHz WW* Wi-Fi (DFS), Radar
5.945 GHz - 7.125 GHz WW* Wi-Fi (Wi-Fi 6 and beyond), 5G

Licensed bands

850 MHz, 1900 MHz R2 (USA) 2G, 3G, 4G and 5G
1.7 GHz, 2.1GHz R2 (USA) 4G and 5G
600 MHz, 700 MHz, 2.3 GHz
2.5 GHz. 3.5 GHz, 5.2 GHz R2 (USA) 4G and 5G

3.7 GHz R2 (USA) 5G

R1: Europe, R2: Americas, WW: Worldwide, WW*: Worldwide (dependent on geographical location)

allow coexistence, including direct sequence spread
spectrum, clear channel assessment and frequency
hopping among others. Also, 2∼5G cellular radios
and signals associated to radio-location systems can
also be found in this band.

In addition to 2 GHz bands, Wi-Fi radios can
operate in the unlicensed 5 GHz band. Radar signals
can be found coexisting with Wi-Fi devices in
the high 5 GHz band. Wi-Fi radios must perform
dynamic frequency selection (DFS) compliant with
FCC 06-96 standard in order to operate in this band.
Recently, a 1200 MHz of spectrum in the 6GHz
band has been opened for unlicensed use. Wi-Fi is
expected to make use of this band after the release
of Wi-Fi 6E. No legacy Wi-Fi devices (Wi-Fi 5 and
below) are permitted to operate in this band. Finally,
4G and 5G radios can be found in a combination of
licensed and unlicensed spectrum ranging from 3.5
to 7 GHz. Table I summarizes the most commonly
RF signals found in both licensed and unlicensed
bands.

IV. PRELIMINARY AGGRESSORS MODEL

In order to to build a radio channel aggressors
model that can be used to recreate their impact, we
mainly focus on the proposed approach to model
the interference signals and essential environment
impacts in the following. We then introduce a generic
finite state Markov chain that can be used to model
and generate synthetic aggressors in a controllable
fashion to assess the impact of various types of
aggressors.

A. Initial Meta-model

Initially, a conceptual model is developed to
capture the various components, classifications, and

relationships within the aggressor space. We have
deployed the Unified Modeling Language (UML)
as the descriptive language to present the key ideas
and various model components. In the high level
class diagram of the meta-model, we classify the
aggressor class into two main sub-classes namely
the RF aggressors and the physical aggressors.
The RF aggressors are defined as any radiating
aggressors that may impact the RF band of the
network under test. The physical aggressor class
captures the impact of the physical environment on
the wireless transmissions of the network under test
which includes the obstruction and the multi-path
effects on the transmitted signals. We further define
each of the classes on the high level class diagram by
specifying other sub-classes, their various attributes,
and the corresponding model parameters.

The meta-model also includes recommendation for
the test setup where the use of the model to recreate
the test signal is described. Generally, while defining
the classes and the corresponding attributes, we keep
in mind the practicality of realization such that the
used model is computationally efficient and can be
replicated with relatively inexpensive equipment.

B. Features of Interference

A wireless communications signal is generally
characterized by a wide range of features in the
various characterization spaces. However, in order to
keep the model usable, we focus on some basic
wireless signal features. We consider four main
spaces to characterize an aggressor signal, namely,
space, time, frequency, and power.

With respect to the space characteristics, we
consider the location and the mobility of an
interference source. This should have an impact on
both the received signal level and environmental
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impact on the signal. In many cases, the aggressor
is a wireless network and not a single source.
Hence, the location and the movement of the
various sources and their transmissions can be
correlated. Another spatial wireless characteristic
is the angle pattern of the transmissions including
the impact of both the transmit and receive antenna
patterns. Temporal features include mainly the above
mentioned correlation of transmissions either within
a single source’s transmissions or a network’s
transmissions. These correlations can be defined
through simple metrics such as the transmission duty
cycle and burst metrics such as the coherence time
and inter-transmission probability. More complicated
temporal correlation distributions can be considered
as well.

Frequency features define the varying nature of an
aggressor signal in the frequency domain. Initially
this include the transmissions frequency band and the
signal bandwidth. Both these quantities can be time
varying following a probability distribution in many
cases. Specifically, frequency hopping signals follow
a specific pattern for transmissions. Furthermore,
frequency correlation features can be considered such
as the coherence bandwidth. The power distribution
of the signal can be addressed either from the
aggressor’s transmit side or at tested network
receive side. The transmitted power distribution
mainly depends on the communications protocol,
the network configurations, and the deployed
application. If the received power distribution is
considered, we add to these impacts the locations
of the communications devices and the surrounding
environmental impacts.

C. A Finite-state Markov Chain Model

Correlated data modeling for the purpose of
synthetic data generation has been done using
Markov models in various applications such as in [6],
[7]. Preliminary, we plan to start modelling the
wireless RF aggressors data using a finite state
Markov chain in order to be computationally efficient
in both data modelling and synthetic data generation
for aggressor impact assessment.

To briefly describe the initial model parameters
and deployment, we define a vector In as an
interference aggressor vector that contains the values
of the various features corresponding to the nth
aggressor. Under the assumption of using a finite
state Markov chain, each feature can take values
in a discrete set within its range. We will use the
proposed model for N interference sources that can
be transmitting different wireless signals. .

The main task for modelling the interference
signals is to evaluate the Markov chain transition

probabilities. This task can be performed either
through the knowledge of the collected data
distribution and hence mathematically evaluating
the transition probabilities, or through training
the transition probability using interference
measurements. In the initialization stage of the
model, the number of discrete states of each feature
needs to be determined to calculate the total number
of the states. Also, the transition time slot of the
chain needs to be evaluated in order to capture the
required level of transitions of the used synthetic
test signals.

We start by choosing a selected set of features
in the four main characterization spaces of wireless
signals. The considered features will include both the
state defining features and the evaluation impacting
features. The state defining features are the ones
that define each state of the Markov chain. In the
initial model, we consider defining the state by
the frequency pin, average power value, and the
location of the measurement. Inherently, the time
pin is captured through the state transition step in
the defined Markov chain. On the other hand, the
evaluation impacting features are the ones calculated
in both the measured data and the replicated data
to evaluate the ability of the Markov chain in
capturing this set of features. This set of features
initially includes the coherence time, the correlation
bandwidth, and the power level mean and standard
deviation.

The model accuracy is evaluated through
comparing the distribution of the synthetic data to the
original modeled data with respect to a specific set of
features balancing concerns of model accuracy and
channel generalization. The communications nature
of the network under test should not impact the
performance metric of the modeling process.

D. Data Availability and Markov Modeling
Examples

The availability of data can be generally limited
from industrial environments. As a result, through
the course of this standard, the collected data from
the collaborators is to be used to build a Markov
chain model for synthetic data generation. The plan
to collect a large amount of data initially serves two
purposes, namely, the accuracy and the robustness of
the built model, and capturing various rare scenarios
that may happen in different environments.

In the literature, the idea of deploying a Markov
chain for data modeling and analysis has been
investigated in multiple works such as [8]–[12].
Specifically, in [8], various divergence loss functions
are measured to compare the original data and
the synthetic data generated by a Markov chain.
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It was shown that both the original data sample
size and the Markov chain number of states are
inversely proportional with the different divergence
loss metrics. However, in [12], they are directly
proportional with the computation power, and hence,
the two quantities need to be optimized.

E. Model Performance Evaluation and Validation

To validate the proposed model, we plan to
perform a two-phase evaluation process. First,
we evaluate the performance through comparing
the characteristics of generated data. Second, we
validate the complete process performance through
testbed experimentation and on-site wireless network
verification. The trained Markov model is planned to
be implemented on software defined radios (SDRs)
to generate data of similar statistical characteristics
to the aggressors’ measured data.

To examine the Markov chain model performance,
we plan to compare the synthetic data from
the model to a validation subset of the actual
measured data of the aggressors. Three comparison
approaches can be used to evaluate the performance
of the Markov chain, namely, population and
statistical analysis, clustering-based, and feature-
based similarity/divergence analysis [8], [9], [11].

First, in the population analysis, the numbers
of produced random instances satisfying a specific
feature range are compared to the corresponding
number in the measured data. In [11], seven statistical
parameters are deployed to perform a Markov
model comparison to real measurements of wind
speed, namely, the mean, the variance, the transition
probability matrix, the probability density, the energy
spectral density, the auto-correlation function, and
the persistence probability. These measures can be
similarly deployed in the comparison of the proposed
Markov chain while applying the statistical approach
of comparison.

Second, clustering-based model validation is used
to measure the similarities between the original and
the generated data through studying their topologies.
Both sample-based clustering and feature-based
clustering can be performed where the data is
clustered based on its attributes to be separated on a
number of structured clusters [9], [13].

Finally, feature-based similarity/divergence
analysis is used to evaluate the performance of
the generated data of the Markov chain through
a specific set of the aggressors’ features. In [8],
various divergence losses are defined and evaluated
such as the least squared error, the Kullback–Leibler
divergence loss, Chi-squared divergence, Hellinger
divergence, and Alpha-divergence. Furthermore,
other objective functions can be applied over the

distance values such as the histogram intersection
metric.

Furthermore, the generated aggressor data can be
applied to deployed industrial wireless networks in
testbeds or realistic industrial scenarios in order to
evaluate its impact on the performance of the network
under test. In this experimental studies, the controlled
aggressors’ signals can be applied to clearly measure
its impact on both the levels of the wireless network
traffic packets and the operational performance of the
industrial operations similar to the approach adopted
in [14].

V. PROFILING AND SCENARIO MODELING

Scenario parameters, such as RF band, locality,
other existing networks, as well as details of the
physical environment, determine the model profile.
Given the model explained in the previous section,
parameterization of that model becomes essential. For
example, what transmit power, bandwidth, and duty
cycle should be specified for each of the aggressors?
No one environment or scenario is the same as
each geographical location and radio band has a
different set of circumstances. These circumstances
will determine the values used for each parameter in
the model. It is the intention of the IEEE P1451.5p
standard to disambiguate the testing of industrial
wireless networks prior to deployment. Therefore,
a profiling schema for representing the various
anticipated scenarios is required for standardization.

Currently, we believe that two viable schema
options exist. The first option is an industry-vertical
schema in which the type of factory environment is
represented. For example, different profiles would
be created for factories falling within an industry
class such as oil refineries, paper mills, automobile
manufacture, warehousing, etc. Each industry is
assumed to have radio environment similarities that
would lead to a profile being created. However, little
measurement research has been done to understand
the RF similarities of factory classes, and it may
be that each class is too similar to other classes to
make industry-specific distinctions. The size of the
factories that fall within an industry class could be a
determining factor as would its geographical locality.

This leads us to the second schema option which is
to organize profiles more generically according to the
characteristics of the industrial environment rather
than generalization based on any one industry class
such as RF band, indoor/outdoor classification, and
level of obstructive clutter within the environment.
For example, a factory with large machines, welding,
and variable speed rotary equipment produces
a larger amount of electromagnetic interference;
whereas, stockyards and finished good typically
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produce light reflection and heavy attenuation.
Environments with heavy pipe clutter will produce
exaggerated multi-path and wave-guide effects,
essentially blocking, amplifying, and diffusing
transmissions depending on the RF band and locale.
These environmentally-based characteristics may be
shared among different classes of industry.

This would require the wireless network
deployment agency or manufacturer to analyze their
factory environment and radio spectrum to determine
which profile to select for verification of network
performance prior to commissioning. We currently
favor this approach for two main reason. First,
it may serve as a starting point for a creating
generic profile, and, second, the measurement science
for a physical environment-based approach would
be more easily manageable than attempting to
measure in many factories of different classes and
then generalizing. Therefore, our short-term goal
of adopting this approach is to focus on taking RF
activities measurements in sub-7 GHz RF bands
as most industrial wireless networks operate below
7 GHz irrespective of the industry class. As the
standard grows in adoption, the profiling schema
based on industry class, application scenario, mission
critically, and other factors may prevail as more
measurement data becomes available.

The plan for data replication includes
implementing the generated Markov chain in
SDRs to generate the corresponding power,
frequency, and temporal behavior of the Markov
chain. As a result, there will be a number of stored
sets of transition probabilities to reflect the various
profiles. We plan to parametrize these profiles
by various schemas where each profile and its
associated Markov chain are annotated by specific
properties and feature ranges. For the users of the
Markov model, a specific set of the aggressors’
features has to be measured/estimated in the
environment under test. These numerical parameters
will be used in order to associate an environment
to a specific profile through feature-distance-based
algorithm such as in [15].

VI. TIMELINE AND CHALLENGES

The IEEE P1451.5p standard is proposed to offer
standardized methods for assessing the performance
of industrial wireless networks in realistic scenarios.
Compared to the existing testing and modeling
standards for wireless networks in Sec. II, the
proposed standard offers testing using measurement-
based modeled data and testing profiles based on
the industrial use cases, various communications
and non-communications based wireless aggressors.
These profiles address the needs of different

industries and levels of severity of the radio channel
environment.

To achieve the IEEE P1451.5p standard goals,
the standard WG needs to overcome multiple
challenges including modeling the aggressors,
adopting an appropriate profile schema, making
standard accessible and non-esoteric (i.e. easier to
use by industry and those with limited resources),
and the reproduction of aggressors with off-
the-shelf SDR platforms. In order to overcome
the aforementioned challenges, the standard WG
members will collaborate where industry and
academia are needed to support this effort at various
stages of measured data collection, aggressors’
modelling, setting up the profiling schema, and the
implementation and experimentation of the whole
standard process over deployed industrial wireless
networks. Generally, aggressor modeling and model
evaluation is an open research question that requires
using theoretical data modeling tools and realistic
measured data from various industrial scenarios. An
initial timeline for the standard process is shown in
Fig. 4.

Obtaining spectrum measurements from industrial
environments can be a challenge due to privacy
reasons or the statistical significance of the collected
data, especially, in the case of rare interference events.
However, because of the importance of obtaining
standardized assessment methods, the WG members
and their corresponding industrial entities are initially
open to share spectrum data. The use of measurement
data opens new opportunities to understand sources
of aggressor events and understand the realistic
situation of the various bands of interest. This newly
measured data will be an added value to the currently
available troubleshooting data that only explains the
scenarios in which deployed wireless networks are
impacted by high interference events.

VII. CONCLUSIONS AND FUTURE DIRECTION

Motivated by the need to deploy highly reliable
and deterministic wireless networks to support
industrial applications, the IEEE P1451.5p working
group was formed. The group intends to develop a
standard that recommends methodologies for testing,
measuring, and validating RF aggressor profiles
within harsh industrial environments. Additionally,
the standard will propose a working model that can
be used to analyze the impact of RF aggressors
on wireless network performance. The working
group proposes an industry-wide measurement
campaign to measure communications and non-
communications generated aggressors within each
environmental profile. The group’s proposed model
will enable many opportunities for research such as
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Fig. 4: Timeline of the IEEE P1451.5p Standard

spectral activity measurement campaigns, machine
learning for identification of interference types, and
techniques for the practical generation of these
aggressor for network performance testing. Networks,
sensors and nodes can be modeled to develop
strategies that mitigate known aggressors within
designated environmental profiles.

The potential for wireless technologies in
industrial settings may be improved if RF aggressors
can be measured, modeled, and countered. ”One
cannot managed what is not measured.” The
P1451.5p working group is diversely composed
of industrial wireless systems integrators, users,
and academics. With industry cooperation to
standardize the industrial wireless networks testing
methodology, gains in wireless reliability, latency
and overall performance can be better achieved
bringing the vision of IIoT and Industry 4.0
closer to reality. To learn more and get involved,
refer to the IEEE P1451.5P working group here:
https://sagroups.ieee.org/p1451-5p.
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