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A B S T R A C T

Continuity is usually assumed as a defining feature of measured quantities. This premise is false for counted
quantities, amount of substance, electric charge, and others that are constrained to exist in integral multiples
of a quantum. A software application that treats these quantities as continuous can predict outcomes that are
physically impossible, such as the production of half a photon. Thus far, formalizations of quantity calculus
have not addressed how quantities that are structured like the integers should interoperate with continuous
quantities. This article introduces the extension of quantity calculus to include quantal quantities, which vary
in steps rather than continuously, and discusses the consequences of including them.
. Introduction

Quantity calculus emerged as the algebra of physical quantities
century ago [1–4]. Since then, it has been the subject of various

pproaches to mathematical formalization and much theoretical and
hilosophical debate over its significance and accuracy, in tandem with
he International System of Units (SI) [5], as a representation of the
orld in general. The treatment of unit symbols as ordinary algebraic
ntities, a concept that remained controversial for a surprisingly long
ime [6], is now codified in the SI brochure [5, §5.4.1] and accepted
y most theoreticians and practitioners without argument. Moreover,
he use of quantity calculus has expanded beyond physics into other
cientific disciplines.

In recent history, there has been discussion about the treatment
f counted quantities in quantity calculus and the SI, including the
ossible indication of units of counting [7–10]. The SI brochure cur-
ently does not permit such units to be meaningfully distinguished
rom the dimensionless, mathematical number 1 or from each other.
he proposal of a type system for counting units in [10] gave rise
o some follow-up questions: Brown asked ‘Would these units allow
he same rules of algebraic manipulation as other units, within types
nd between types: for instance, may we use ‘‘atm/atm’’, ‘‘atm/mcl’’,
‘pcl/m3’’ and ‘‘mcl/ent’’?’ [11] (in which the symbols atm, mcl, pcl,
nd ent refer to counting units atom, molecule, particle, and entity,
espectively, and m is the symbol for the meter).

The answers to questions of that kind depend on interpretation de-
ails of the underlying algebra of quantity calculus. We soon encounter
he more general issue that continuity is usually assumed as a defining
eature of measured quantities [4, §A][12, §21][13–15]. All quantities

✩ The opinions, recommendations, findings, and conclusions in this publication do not necessarily reflect the views or policies of the National Institute of
tandards and Technology (NIST) or the United States Government.

E-mail address: david.flater@nist.gov.

are algebraically treated as if they were continuous in nature. For
example, if 𝑥 is a positive quantity, it is assumed that 𝑥∕2 exists and
is a positive quantity that is smaller than 𝑥. Thus far, formalizations
of quantity calculus have not addressed how quantities that are instead
structured like the integers, for which a half-increment does not always
exist, should interoperate with continuous quantities [16,17].

Counting aside, even among quantities that are measured and
treated in practice as if they were continuous, there are those that
factually are not, including amount of substance and electric charge.
The error introduced by modeling them as if they were continuous has
usually been insignificant in context, but this is true only as long as the
quantum is extremely small relative to the quantity (c.f. Section 2.2).
For most counted quantities, this was never the case. For the others, the
quantities are steadily shrinking as measurement technology improves.

These issues combine to undermine attempts to develop automated
systems for reasoning about quantities. One cannot establish that soft-
ware is doing the right thing if there is no benchmark of correctness.
To take a formal model of continuous quantities, implement it in
software, and just assume that it will do something reasonable when
the quantities are not actually continuous would not be safe. Such needs
motivate a close look at counted quantities and a better understanding
of the hazards of integrating them with quantity calculus.

Readers should not misconstrue this as an attempt to complicate
long-established practices in physics. When the error resulting from
discrete–continuous mismatch is insignificant in context or has been
avoided with a customary workaround, there is no crisis for those who
have internalized those practices. Nevertheless, the issue is a general
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one, and a general approach to understanding it enables more robust
automation of the physical reasoning.

A complete guide to working with counted quantities comes in two
parts and solves a more general problem than how to deal with counts.
First, in Section 2, I introduce the extension of quantity calculus to
include quantal quantities in general. Then, in Section 3, I describe
the answers that this implies for counted quantities specifically, in-
cluding invariance to a change of unit. Section 4 gives a summary and
concluding remarks.

2. Quantal algebra

2.1. Concepts and notation

In this discussion, it is important to recognize the distinction be-
tween a quantitative expression and the algebraic entity that it denotes.
For example, ‘3 km’ and ‘3000 m’ are two different expressions that
denote the same definite length. Unfortunately, the term quantity value
has become problematic in this regard: internationally approved guide-
lines are not harmonious on whether ‘3 km’ and ‘3000 m’ together
provide one value, two values, or ‘it depends’ [18]. For the purposes
of this article, I will say that the answer is one: ‘3 km’ and ‘3000 m’
are two different expressions of a single value that may be assigned or
attributed to a quantity. This choice is most appropriate in an algebraic
context and is in harmony with the SI brochure’s text, ‘The value of
a quantity is generally expressed as the product of a number and a
unit’ [5, §2.1].

A quantal quantity (a quantal for short) is a quantity that is con-
trained to exist in integral multiples of a quantum. The relevant
ictionary definition of quantum is ‘a minimum amount of a physical
uantity which can exist, and in multiples of which it can vary’ [19,
efn. 5]. I merely generalize this to apply outside of physics.

Although it is commonly used with the sense just described, the term
iscrete quantity is more general: strictly speaking, it says only that the
alues are countable, not necessarily that they are evenly spaced.

While the unit to express a value of a quantity may be chosen by
onvenience or convention, the quantum of a quantity is not a choice.
he quantum is inherent in the nature of a quantity: it is determined
or us by the actual behavior of the property that we are modeling
lgebraically. By analogy, though the size of a collection of eggs may be
xpressed in dozens when they are sold, the quantum still is the single
gg.

If we choose to express a value of a quantal in a unit other than its
uantum, the numerical value will not necessarily be an integer.

In current practice, the quantal nature of a quantity is sometimes
uggested by involving a numeric variable that is understood to be an
nteger:

1. When the electric potential around a nucleus is expressed as
𝑍𝑒∕4𝜋𝜀0𝑟, the quantal charge 𝑍𝑒 is the product of an integer 𝑍
and the elementary charge 𝑒. This convention is lost when the
quantity is expressed in another form, such as a value expressed
in coulomb.

2. Ideal gas equations often use 𝑁 for an integral number of
particles.

In both examples, the quantal nature of one of the inputs is disre-
arded when computing a continuous quantity as the result. This is no
roblem. But if one is instead computing the value of 𝑍 or 𝑁 beginning
rom continuous inputs, one cannot ignore the quantal nature of the
utput, lest one assign a value that is not an integer. This can arise
rom imprecise measurement of the inputs or from a simple synthetic
uestion such as find the value of 𝑍 where 𝑍𝑒 = 1 C.

In reality, a quantal has its quantum regardless of how it or its value
s expressed. We should be able to work with quantals at any scale
2

ithout losing the information that they are constrained to be integral i
ultiples of their quanta. The notation introduced below allows this
o happen without limiting us to the 𝑍𝑒 form of expression, but any

notation that preserves the information would do.
In terms of the SI brochure, the quantum is ‘extra information on

the nature of the quantity’, which may be attached to the quantity
symbol in subscripts, superscripts, or brackets [5, §5.4]. The customary
ordering of the 𝑚 ∣ 𝑛 notation for divisibility and the already-heavy uti-
lization of right-side subscripts in the International System of Quantities
[20] both suggest the following use of a left subscript to show that a
quantity is evenly divisible by a quantum:

• 𝑒|𝑄 denotes an electric charge 𝑄 whose quantum is the elementary
charge 𝑒. This imposes no constraint on the unit chosen to express
values of the quantity, which in SI would be the coulomb.
In the context of quark physics, one would instead have a quan-
tum of 𝑒∕3. The choice between 𝑒 and 𝑒∕3 is made for us depend-
ing on whether we are modeling macroscopic charge or quark
charge. (For modeling the transition between these two realms,
see Section 2.4.)

• 𝐵|𝑀 denotes an amount of data 𝑀 whose quantum is the byte
𝐵. The italic font of 𝐵 indicates that we are using the byte as a
quantity, not as a unit. The unit chosen to express values of the
quantity could also be byte (B), or bit (b), or some multiple like
terabyte (TB) or megabit (Mb).1
Although the unit can be changed at will, the quantum is de-
termined by the granularity of addressing of the data storage
medium. The amount of data on a byte-addressable medium is
constrained to be an integral number of bytes.

• ¢|¤ denotes an amount of money ¤ whose quantum is the cent.
The unit conventionally chosen to express values of the quantity
is equal to 100 ¢.
Not every kind of money is quantal, but usually it is problematic
to transfer amounts that cannot be realized using the legally
minted units of the underlying currency. Thus, it is an error if
payroll software treats these quantities as continuous, and such
errors propagate and accumulate until they become significant.

If we express a quantity value as the product of a numerical value
and a unit, adopting the 𝑥 = {𝑥}[𝑥] notation of [3, p. 12] that is now
ubiquitous, {𝑥} is the numerical value and [𝑥] is the unit. If 𝑥 is quantal,
this is a property of the quantity, not of either the numerical value
or the unit of a particular quantitative expression, so we should read
𝑞|{𝑥}[𝑥] as 𝑞| ({𝑥}[𝑥]).

2.2. General operation

Any given quantal, by itself, is mathematically structured like the
integers, Z. This contrasts with continuous quantities, which are math-
matically structured like the real numbers, R. Counts and amounts
hat are constrained to be positive are structured like Z+ and R+
espectively. Like other quantities, quantals can be negative. Negative
uantities are produced by the ordinary rules of algebra (subtraction)
ven if all input quantities are constrained to be positive.

It is readily observed that continuous quantities model the behavior
f quantals as the ratios of quantity values to their quanta approach
nfinity; or to say it another way, as the quanta become vanishingly
mall relative to the relevant quantity values. Thus it is that a continu-
us model for amount of substance is less problematic in general than a
ontinuous model for amount of data would be. The error introduced by
odeling amount of substance as if it were continuous has usually been

nsignificant in context. The same has never been true of amounts of
ata expressed in bits or bytes: being ‘off by one’ can be very bad [21].

1 These symbols are also used for the barn, a non-SI unit of area, and the
el, a non-SI unit of logarithmic ratio quantities. The collision is unfortunate,
ut it is already established in common usage. Excluding historical uses, a byte
s now conventionally defined to be comprised of 8 bits.
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2.3. Sums and differences

If we express the values of two quantals of the same kind as the
product of a numerical value and a shared unit [𝑥], their sum or
difference is simply 𝑞|𝑥1+𝑞|𝑥2 = 𝑞|({𝑥1}[𝑥]+{𝑥2}[𝑥]) = 𝑞|({𝑥1}+{𝑥2})[𝑥].

In the event that quantals with different quanta are being added
r subtracted, the correct resolution depends entirely on the actual
ehavior of the process that this operation is supposed to be modeling,
nd there is good reason to question what exactly is going on. For
xample, if two amounts of data are being added, 𝐵|𝑀1 + 𝑏|𝑀2, we
annot tell just from looking at these expressions what is happening or
hat the quantum of the result ought to be. If the context of the result

s only byte-addressable, the storage is usually rounded up to a whole
umber of bytes, with some bits going to waste. In that case, 𝑀2 is

rounded up and re-quantized with a larger quantum, and the addition
proceeds as before. If the context of the result is bit-addressable, 𝑀1 is
given a smaller quantum instead, and no bits are gained or lost in the
process.

The same analysis applies if the addend is a continuous quantity.
One has to determine whether the result exists in a continuous space
or a quantized one, and that information is not in the input quantities.

2.4. Number times quantal

Multiplying a quantal by an integer is sure to produce a result in the
same space as the input, with the same quantum: 𝑛 ⋅ 𝑞|𝑥 = 𝑞|(𝑛{𝑥})[𝑥]
(for 𝑛 ∈ Z). This is consistent with the reduction of multiplication to
repeated addition.

If the number is not an integer and the mathematical result is
not coincidentally an integral multiple of the quantum, the correct
resolution depends on what the context dictates regarding quantization
of the result. The options are:

1. The result is a continuous quantity. For example, if the result
is a statistical estimate or average, it need not conform to the
quantization of the measurand. It is valid, though not always
desirable, to produce an estimated value on a continuous scale
even if the true value is quantized. For example, the estimate of
a quantity having the nature of a count is not itself a count, but it
provides information about a count. As Brown observed, ‘Whilst
a fraction of an entity is a physical impossibility, in the sense of
expressing a measurement result it is still a valid concept’ [22].

2. The result is a quantal with a different quantum. For example,
in the context of quark physics, 2

3 (𝑒|𝑄) = 𝑒∕3|(
2
3𝑄) is applicable.

3. The result is a quantal with the same quantum as the input.
This is appropriate in contexts where the mathematical oper-
ation does not correctly model the actual process, i.e., where
the supposed result is impossible to realize and the magnitude
must either increase or decrease to satisfy the quantization
constraint. For example, 𝐵|1 kB of data that are transformed with
a compression ratio of 1

3
b
b will yield 𝐵|334 B.

For the one who formalizes or implements quantity calculus, it is
impler to dictate that all quantities shall be continuous and tell those
sers for whom option 2 or 3 is more appropriate that it is their own
roblem. But regardless who makes the decision, whether the choice
s mechanical or manual, imposed or voluntary, an incorrect choice
mong options 1–3 creates the possibility of error.

This hazard corresponds to a known, identified class of weaknesses
or calculations in software [23]. A simple example follows from the
ata compression scenario given above. Suppose that memory is allo-
ated in whole bytes, but the result of the multiplication is erroneously
reated as a continuous quantity. Under typical numeric rules, the
loating-point value approximating 333 1

3 would become 333 when sup-
lied to a memory allocation function that expects an integer. This
ould lead to an insufficient amount of memory being allocated for

he compressed data, potentially resulting in a buffer overflow with
ecurity implications.
3

2.5. Products, ratios, and quotients

When quantities are multiplied, it produces a result of a different
dimension than the input quantities. It follows that when quantals are
multiplied, the quantum of the result (if indeed the result is quantal)
must belong to that dimension. But one cannot immediately conclude
that it is simply the product of the quanta of the inputs, as:

𝑞1|𝑥1 ⋅ 𝑞2|𝑥2 is not necessarily 𝑞1𝑞2|({𝑥1}{𝑥2})([𝑥1][𝑥2])

Similarly, for ratios of quantals:
𝑞1|𝑥1
𝑞2|𝑥2

is not necessarily 𝑞1∕𝑞2|({𝑥1}∕{𝑥2})([𝑥1]∕[𝑥2])

As described in Section 2.1, the quantum of a quantity is not a
choice. The quantum is inherent in the nature of a quantity: it is
determined for us by the actual behavior of the property that we are
modeling algebraically. It follows that if we are spending too much time
deciding what the quantum should be, then we probably are not dealing
with a quantal at all! The act of constructing a product or ratio does
not dictate the nature of the quantity being modeled.

An example would be calculating the cost of data storage. The two
input quantities are an amount of money quantized to cents and an
amount of data quantized to bytes. The result may be expressed in the
unit $/TB (dollars per terabyte), but it is not quantized to cents per
byte. It may or may not be rounded to the nearest cent or dollar per
terabyte, but this is a matter of context, convention, and convenience
that has nothing to do with the input quantities or the algebra. The
result is not quantal.

An example of a ratio involving a quantal and a continuous quantity
is particle count divided by duration. The particle count is quantal;
the duration is continuous. Depending on the need, you can choose to
keep the original ratio to preserve the information that the numerator
is quantal, or you can express the value of a continuous quotient in
becquerel.

Whether the multiplicand is quantal or continuous, the quantization
of the result depends not on the quantization of the inputs but on the
nature of the new quantity being derived and the context in which it
exists.

2.6. Numerical powers

As with other quantities, integral powers of quantals are equivalent
to expanded products or their reciprocals, or to the multiplicative
identity element if the exponent is 0.

Non-integral powers have limited application in practice and are
sometimes considered harmful in theory. There is no consensus that
non-integral powers belong in quantity calculus at all or what their
interpretation should be. Raposo holds that fractional exponents are
unnecessary and undesirable in an algebraic structure for quantity
calculus, and that in all cases where square root has been applied
in practice, it ‘acts on a quantity which is already a square’ [17].
Other sources, however, imply that fractional powers of metrological
dimensions have something to do with fractal dimensions: ‘Recall that
power functions 𝑦 = 𝑎𝑥𝑏 with non-integral 𝑏 were awkward children for
classical dimensional analysis. . . Come a theory of fractional (fractal)
dimensions, and they find a welcoming home’ [24, p. 480].

As Raposo did, I will address fractional powers for only a few special
cases:

• The special case of a square quantal area, 𝑎|𝐴, for which we want
to find the length of one side, requires the quantum of area, 𝑎, to
itself be a square whose sides are the quantum of length.

• Quantal volume would be analogous, with a cubic quantum.
• Square root arises in the calculation of standard deviation. Stan-

dard deviation belongs to statistics rather than quantity calculus,
and its definition tells us that it is not quantal (c.f. Section 2.4,

option 1).



Measurement 206 (2023) 112226D. Flater

o
t
i
e

3. Counted quantities

3.1. Sums and differences

Quantities can be added to or subtracted from one another only
if they are of the same kind, and, thus, mutually comparable. For
counted quantities in particular, comparability is not a binary, yes-or-
no decision. A previous work provides a model within which two counts
that are initially of different kinds, such as a number of neutrons and
a number of protons, can be comparable in a more general sense (a
number of nucleons) [10]. To generalize them and add them together
is to declare that the differences of kind are immaterial for the purpose
at hand. Whether it is appropriate to do this is not an aspect of the
individual quantities but, rather, depends on the context of use. But
once the counts have been harmonized in terms of kind, the operation
can be completed as previously described in Section 2.3.

3.2. Invariance to change of unit

Some previous writers have made strong assertions to the effect that
the single entity or event is the only possible unit for a count. For
example:

• Ellis thinks of a count as simply a number, so asking if there can
be other units of counting is like asking ‘Is there any 1 other
than 1?’: ‘There appears to be no such thing as a scale or unit
of number. . . . I cannot arbitrarily select a group of, say, apples
and assign to it the numeral 1, saying ‘‘This group contains one
apple’’. For this statement is already true or false. . . . I cannot
arbitrarily select a group as an initial standard for number in the
way that I can arbitrarily select an object as an initial standard
for length’ [25, Ch. 10].

• Roberts says that counting produces a measurement on an ‘abso-
lute scale’ for which the change-of-unit transformation is disal-
lowed [26, §2.3].2

• Similarly, Chrisman says ‘Because zero is a fixed value, counts
may seem ratios, but, being tied to the discrete unit counted, it
cannot be rescaled by some arbitrary factor’ [27].

These special treatments of counts are detached from the reality of
ngoing practice. For example, an amount of data may be expressed in
erms of either the bit (symbol b) or the byte (symbol B) as a unit. It
s as futile to argue that only the bit is permissible as it is to insist that
ggs must not be sold by the dozen.

Furthermore, once you define a unit corresponding to a counted
entity or event type, the special treatments of counts quoted above
are incompatible with the metrological ground rule that a quantity’s
definition should be independent of the unit that is chosen to express
its value.

With the infrastructure introduced in Section 2, the quantum of a
count is distinguished from the unit in which its value is expressed.
Nothing then remains to prevent a change-of-unit transformation from
being applied to counts that is consistent with its application to other
quantities. A separate scale to accommodate the lack of such a trans-
formation is no longer necessary, as the transformation has now been
defined.

Given 1 B = 8 b, 𝑏|𝑥 b = 𝑏|

(

𝑥
8 B

)

(exactly). The quantal value
expressed in bits is transformed into a quantal value expressed in bytes.
While the numerical value of the value expressed in bits is a whole
number (0, 1, 2, . . . ), the numerical value of the value expressed in

2 Absolute scale has two other, conflicting definitions. Ellis used the term
absolute scale in the sense of temperature scales having an ‘absolute zero’ [25].
Chrisman used it for items whose numerical value is constrained to the range
0 to 1, notably probabilities and proportions, but confusingly cited Ellis [25]
in the definition [27].
4

bytes is a rational number that is discretized to eighths (0, 1
8 , 1

4 , . . . ),
but both are mathematically structured like the integers (or Z+ as the
case may be).

The change of unit does not change the definition of the quantal.
Changing the unit in which the result is expressed does not change the
quantum. The entities that were indivisible before the change-of-unit
transformation remain so after the transformation.

3.3. Products, ratios, and quotients

When division in quantity calculus is interpreted as expressing a
this-per-that relation, counted quantities are simply quantals behaving
as described in Section 2.5. But the presence of counted quantities may
further discourage the reduction to a quotient, such as in the previously
used example of particle count divided by duration. The numerator of
the ratio is quantal; reducing the ratio to a continuous quotient discards
that information.

A human-scale example would be a ratio of parking spaces to
residents of a community. Neither fractions of a parking space nor
fractions of a resident are realizable, so if we are computing a quotient
from observations, both numerator and denominator will be quantal.
On the other hand, we may be provided with a continuous quotient
and tasked with determining the number of parking spaces that should
be provided for a given number of residents. In this case, the product
of the ratio with a count of residents is quantal because parking spaces
can be built or allocated only in whole numbers. This fact determines
how the computation must proceed.

Simplifying a ratio involving counts through cancellation of units
that appear in the expression of both the numerator and the denomi-
nator is just as valid, and as precarious [28,29], as the same operation
on continuous quantities. But with counting units, one has the option
to generalize units in order to make a cancellation possible that would
not be possible at first. Returning to an example from Brown [11], the
unit mcl/ent might be generalized to ent/ent if, in context, the fact that
the entities in the numerator are molecules is immaterial. Similarly,
the unit ent/ent might then be replaced by 1 if, in context, it does not
matter that the ratio pertains to entities. We would not exercise this
option for a ratio of parking spaces to residents of a community since
the named counting units provide the only context we have.

3.4. Logarithmic functions

The logarithm function arises routinely in association with counted
quantities. For example, suppose that an alphabet of 𝑛 characters is
used in digitized text, and we want to define a fixed-width character
encoding for it. The width of that encoding, i.e., the number of bits
per character of a text document using that encoding, is ⌈log2 𝑛⌉ b. It is
reasonable to ask how this changes if the logarithm applies not to the
plain number 𝑛 but to the counted quantity, 𝑛 char. It has long been
held that to take the logarithm of a dimensioned quantity is nonsense
[30, p. 346][31, p. 74], but let us look at this application with fresh
eyes and ask what does make sense about it if we do not just equate
counts to plain numbers.

If one has a document of length 𝑙 char and an encoding of width
𝑤 b/char, the length of the encoded document can be computed as
𝑙𝑤 b through normal quantity calculus. To achieve this dimensional
consistency, we need a function of two separate arguments, not merely
a numerical function of a single, dimensionless quotient. For a counted
quantity 𝑐 and a reference quantity 𝑟, define

 (𝑐, 𝑟) =
⌈

log2
𝑐
𝑟

⌉ b
𝑟

The required width of the encoding depends on the number of
discrete individuals that must be representable, not on the units chosen
to express the values of the count or the reference quantity. If we
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introduce a unit corresponding to a pair of characters, 1 dichar = 2
char, the following computations are all equivalent:

 (𝑛 char, 1 char) =
⌈

log2
𝑛 char
1 char

⌉ b
1 char

= ⌈log2 𝑛⌉
b

char

 (𝑛 char, 1∕2 dichar) =
⌈

log2
𝑛 char

1∕2 dichar

⌉

b
1∕2 dichar

= ⌈log2 𝑛⌉
b

char

(𝑛∕2 dichar, 1 char) =
⌈

log2
𝑛∕2 dichar
1 char

⌉

b
1 char

= ⌈log2 𝑛⌉
b

char

 (𝑛∕2 dichar, 1∕2 dichar) =
⌈

log2
𝑛∕2 dichar
1∕2 dichar

⌉

b
1∕2 dichar

= ⌈log2 𝑛⌉
b

char

In contrast, if we now see our alphabet as consisting of discrete
ichars, then the reference quantity has changed, and the result is
ifferent. To represent every combination of 2 characters from an
lphabet of 𝑛 characters, you need 𝑛2 dichars. So, the computation
ecomes
(

𝑛2 dichar, 1 dichar
)

=
⌈

log2
𝑛2 dichar
1 dichar

⌉

b
1 dichar

=
⌈

log2 𝑛2
⌉ b
dichar

Using logarithmic identity, we know

og2
𝑛2 dichar
1 dichar

= 2 log2
𝑛 char
1 char

But the ceiling function, which enforces the quantization, is not
istributive, so the function  is not in this sense invariant to a change

in the reference quantity. The reference quantity in these computations
is none other than the quantum of length for digitized text. The changed
computation models a re-quantization to a coarser granularity.

4. Conclusion

This article has answered questions pertaining to the role of counts
and other quantal quantities in quantity calculus by introducing quantal
algebra, the extension of quantity calculus to include quantities that are
constrained to exist in integral multiples of a quantum.

Some of the misgivings about counted quantities have as a premise
that the existing system of quantity calculus, with only continuous
quantities in scope, can be used in a context-free manner, mechanically,
as a formal system that is both complete and consistent with the struc-
ture of the world. The worry is that introducing anything that might
break that completeness and consistency is not worth it. But correct
application of quantity calculus has always required context beyond
the mechanical manipulation of numbers and units. To begin with, it
requires the context of kind-of-quantity, which arose in the earliest
description of the topic within the canon of modern metrology [1].
Substitution of dimensional equivalence for actual comparability (being
of the same kind) was an enormous compromise to make in exchange
for the ‘rigor’ of formal models. In comparison to kind-of-quantity, the
context needed to work with quantals is better characterized and less
subject to conflicting conceptual models.

Although excluding quantals from the domain of discourse is a
simplifying assumption for those who can make that choice, those
who are required to work with quantals will find that the concomitant
issues are neither new nor surprising and are already being lived with
in practice. The challenge is not that they have not been dealt with
somewhere, but that they have been dealt with in different ways, to
different degrees, with different levels of success in different guidance
documents and in different implementations of quantity calculus [32].
The opportunity exists, therefore, for international standards to define
a path to convergence.
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