
IEEE INTERNET OF THINGS JOURNAL 1

Scheduling Real-time Wireless Traffic:
A Network-aided Offline Reinforcement Learning

Approach
Jialin Wan*1, Sen Lin1, Zhaofeng Zhang1, Junshan Zhang2, and Tao Zhang3

1Department of ECEE, Arizona State University
2Department of ECE, University of California, Davis

3National Institute of Standards and Technology

Abstract—Real-time traffic has stringent requirements in terms
of latency, and deadline guarantees on packet delivery play a
vital role in real-time IoT applications. Deadline-aware wireless
scheduling of real-time traffic has been a long-standing open
problem, despite significant efforts using analytical methods.
Departing from the conventional approaches, this work studies
deadline-aware traffic scheduling by taking an offline reinforce-
ment learning (RL) approach to train scheduling algorithms,
ready to be used for online scheduling. To address the challenges
therein, we propose a Network-Aided Offline RL (NA-ORL)
framework for deadline-aware scheduling, by making use of the
fact that the network dynamics follows a well-defined physics
model. Specifically, in NA-ORL the initialization of the scheduling
policy is obtained through behavior cloning with a good model-
based scheduling algorithm, and the network-aided actor-critic
(A-C) method is utilized to train a better scheduling policy
with carefully designed states and reward function, thanks to its
nature of policy improvement. Building on NA-ORL, we further
devise a Network-Aided Offline Meta-RL (NA-MRL) algorithm
to deal with the non-stationary network dynamics. Extensive
experimental results demonstrate that the proposed NA-ORL
and NA-MRL algorithms can achieve better performance over
Adaptive Mixing over Non-Dominated links (AMIX-ND) and
Largest-Deficit-First (LDF), in various scenarios for the deadline-
aware wireless scheduling.

Index Terms—Real-time traffic scheduling, wireless networks,
offline reinforcement learning, meta reinforcement learning

I. INTRODUCTION

RECENT years have witnessed a tremendous growth in
Internet-of-Things (IoT) applications. In real-time IoT

applications, intelligent decisions must take place right here
right now, in order to meet the requirements for safety, accu-
racy, latency and user experience. For instance, for connected
cars, coordinated sensing and mobility control rely heavily
on real-time information exchange among vehicles so as to
minimize the uncertainties and corner-cases in perception and
control, which has been a notorious safety issue of self-driving
in an open environment. Further, both smart health and AR
applications require real-time high-definition video streaming.
More than 70% of the world’s network data is video, including
video conferences accelerated by COVID-19, streaming media

*Corresponding author: Jialin Wan, email address: jwan20@asu.edu

such as Netflix, and transportation cameras to realize a smart
city. Clearly, deadline-aware wireless scheduling is critical and
will play a vital role in real-time IoT applications, which has
been a long-standing open problem. In general, deadline-aware
scheduling can be cast as a Markov Decision Process (MDP)
problem, for which the state space tends to grow intractably
large quickly, thus making exact approaches to solving it
impractical.

Existing analytical studies for deadline-aware wireless
scheduling include the frame-based method [1]–[6], the greedy
algorithm such as Largest-Deficit-First (LDF) [7], [8], and
a very recent work using randomized algorithms, namely
Adaptive Mixing over Non-Dominated links (AMIX-ND) [9],
which can be regarded as the state-of-the-art scheduling algo-
rithm for real-time traffic. Notably, there has recently been
significant efforts using deep reinforcement learning (RL)
[10] to solve MDP problems. RL seeks to learn the optimal
policy that maximizes a long-term reward by interacting with
the environment for the MDP problem, which has achieved
astonishing successes in many applications such as robotics
[11], [12] and games [13]–[15]. We believe that with the
capability of solving sophisticated network optimizations and
self-improving through exploration, RL has great potential
to provide an alternative approach and yield possibly better
solutions to deadline-aware wireless scheduling, compared to
existing analytical methods. In light of this, in this work we
aim to answer the following key question: “How to design an
efficient RL approach for deadline-aware wireless scheduling
to provide reliable low-latency communications services?”

Designing an efficient RL approach for deadline-aware
wireless scheduling is highly nontrivial, due to the following
reasons: (1) Extensive online interactions: Standard online
RL requires extensive interactions with the environment for
exploration, which is clearly not applicable in real-time ap-
plications; (2) Unstable performance: Since the performance
of RL intimately depends on the initial policy and reward
function, careful designs are required so as to guarantee the
performance improvement over the existing methods; and (3)
Possibly non-stationary networks: The wireless network can
be non-stationary due to, e.g., users’ arrival/departure, and
the underlying MDP problem will change accordingly. It is

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3304969

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Boulder Labs Library. Downloaded on October 09,2023 at 01:48:11 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL 2

therefore important for RL based scheduling algorithms to
be able to deal with such a challenging scenario by quickly
adapting with the network dynamics.

For ease of exposition, we will focus on the basic single-hop
network model (e.g., downlink transmissions from the base
station to users) where only one link can be active to transmit
packets at each time. To tackle the challenges noted above, we
propose NA-ORL, a Network-Aided Offline RL framework for
wireless traffic scheduling, based on the fact that the network
dynamics follows a well-defined physics model. Specifically,
NA-ORL initializes the scheduling policy with a base policy
obtained by AMIX-ND, and further improves the policy via
the network-aided actor-critic (A-C) method with carefully
designed states and reward function. Compared to existing
approaches, NA-ORL can learn a better scheduling policy
in an offline manner, which is ready to be used for online
scheduling of real-time traffic. Building on NA-ORL, we
further propose a Network-Aided Offline Meta-RL (NA-MRL)
framework to deal with the non-stationary network dynamics.
Our main contributions can be summarized as follows:

• By casting the deadline-aware wireless scheduling prob-
lem as an MDP problem, we propose NA-ORL, an
efficient offline RL approach, to learn a scheduling policy
offline for stationary networks, based on a network-
aided A-C method. The A-C method [16], [17] consists
of a policy evaluation structure (Critic) and a policy
improvement structure (Actor), where the Critic computes
Q-values to evaluate the current policy and the Actor
aims to improve the policy based on the evaluation of
the Critic. In particular, NA-ORL initializes the policy
for the Actor via behavior cloning with the base policy
obtained by AMIX-ND. Through a careful design of the
A-C method, including states, the reward function and
the sampling procedure, NA-ORL can obtain a better
scheduling policy over AMIX-ND, thanks to the nature
of policy improvement of the A-C method.

• For the challenging scenario with non-stationary network
dynamics, we cast the scheduling under different network
dynamics as a unified-MDP problem with multiple differ-
ent MDP sub-problems (each as an offline RL task), and
devise NA-MRL to learn a meta scheduling policy offline
by jointly training with multiple offline RL tasks building
upon NA-ORL. More importantly, a task-specific mask
is designed for the meta-policy to capture the network
dynamics. The scheduling policy for a new task can be
then quickly adapted from the meta scheduling policy
given the network structure.

• We conduct extensive experiments to evaluate the perfor-
mance of both NA-ORL and NA-MRL. Compared with
AMIX-ND [9] and LDF [7], [8], our experimental results
demonstrate that the proposed network-aided offline RL
algorithms can achieve better performance under various
scenarios for the deadline-aware wireless scheduling.

In the remainder of the paper, we provide a brief review
of related work in Section II. We introduce in Section III the
system model and problem formulation. In Section IV, we
present the design details of the proposed NA-ORL scheduling

algorithm for stationary network dynamics. In Section V, the
proposed approach is extended to addressing non-stationary
network dynamics and NA-MRL algorithm is devised ac-
cordingly. Experimental results for both stationary and non-
stationary network dynamics are presented in Section VI.
Finally, the conclusions and future work are discussed in
Section VII.

II. RELATED WORK

In this section, we briefly review existing works related to
deadline-aware wireless scheduling. A frame-based approach
was first proposed in [1] and generalized in [2]–[6]. The
approach assumed that all packets arrive at the beginning of
a frame and must be scheduled before the end of the frame,
otherwise they would be discarded. LDF is another popular
algorithm proposed by [7], [8], which greedily selects the
active links with largest deficit. The above algorithms indeed
have very low complexity and can guarantee a lower bound
of efficiency ratio. Nevertheless, they might not be suitable
for high throughput real-time applications. Building on the
LDF algorithm, [9] further proposed a randomized algorithm,
namely AMIX-ND, to achieve a better efficiency ratio. Specif-
ically, [9] defined a dominance order according to the deficit
and earliest deadline of each link, calculated the probabilities
of each link to be active, and then selected randomly a set
of links to transmit the packet with earliest deadline in their
buffer according to the corresponding probability. This method
can achieve better performance, but still leaves much room
for improvement, as shown in our experiments. To our best
knowledge, this work is the first attempt to develop offline RL-
based algorithm for deadline-aware wireless scheduling, which
can deal with sophisticated network dynamics and obtain
better scheduling policies through interactions with the well-
defined physical model.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the system model and the
problem formulation of deadline-aware wireless scheduling.

Wireless network model. As illustrated in Fig. (1), we
consider a collocated network with a single base station
(transmitter) and a set of L users. There exists a link between
each user and the base station, and the set of links is denoted
by L = {1, · · · , L}. In a collocated network, only one link
can be active to transmit packet at any time slot t ∈ N0.

Traffic model. Consider a single-hop traffic with deadlines
d ∈ {1, · · · , dmax} for each link l ∈ L, as shown in Fig. 2. Let
τl,d(t) denote the number of packets with deadline d arriving
at link l during time slot t. Packets would expire and be
discarded if not delivered before the deadlines. Then the arrival
packets at link l during time t can be denoted by a vector
τl(t) = (τl,d(t); d = 1, · · · , dmax), and for the entire network
traffic it is given by by τ(t) = (τl(t); l ∈ L). The traffic arrival
pattern can be some random process and do not need to be
independent and identically distributed across links.

Buffer dynamics. For each link l, there exists a buffer that
contains the packets at that link which have not expired. At
time slot t, the number of remaining packets in the buffer

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3304969

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Boulder Labs Library. Downloaded on October 09,2023 at 01:48:11 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL 3

Transmitter

User 1

User 2

User L

Fig. 1: Illustration of collocated network
with single-hop traffic.

Link 2

Time t

Delivered

packets

Expired

packets

d=1 d=2 d=3 d=dmax
Link 1

Link L

Buffer
d=1 d=2 d=3 d=dmax

Time t+1

Buffer

Arrival

packets

Fig. 2: Illustration of dynamic packet transmissions
with stringent deadlines.

within deadline d at link l is denoted by Ψl,d(t), and the buffer
dynamics can be shown as

Ψl,d(t+ 1) = Ψl,d+1(t) + τl,d(t+ 1)− Il,d+1(t), (1)

where action Il,d(t) = 1 represents that link l is transmitting a
packet with remaining deadline d at time slot t, and Il,d(t) = 0
otherwise. Then the number of remaining packets at link l
can be denoted by Ψl(t) = (Ψl,d(t); d = 1, · · · , dmax). The
network buffer state can be defined as Ψ(t) = (Ψl(t); l ∈ L).
The action vector is denoted by I(t) = (Il,d(t); l ∈ L, d =
1, · · · , dmax). For convenience, we further define

el(t) = min{d : Ψl,d(t) > 0} (2)

as the earliest deadline of packets at link l at time slot t,
which can be derived from the buffer information Ψ(t). Let
e(t) = (el(t); l ∈ L) be the earliest deadlines for all links.

Packet delivery requirement and deficit. Similar to [7],
[8], we can define deficit wl(t) to measure the amount of
service owned to link l until time t to fulfill its delivery ratio
requirement p0l , and

wl(t+ 1) = [wl(t) + ṽl(t)− Il(t)]
+
, (3)

where ṽl(t) = vl(t)p
0
l , vl(t) =

∑dmax

d=1 τl,d(t) and p0l is the
QoS requirement of link l in terms of packet delivery ratio.
At time slot t, the system can be described by the tuple of
buffer information and deficit, i.e., (Ψ(t), w(t)) where w(t) =
(wl(t); l ∈ L) .

Problem formulation. Let TAl(t) and TDl(t) be the
total number of arrival packets and total number of delivered
packets on links l until time t, respectively. Then it holds that

TAl(t) = TAl(t− 1) +
∑dmax

d=1
τl,d(t), (4)

TDl(t) = TDl(t− 1) + Il(t). (5)

Define pl(t) = TDl(t)
TAl(t)

as the achieved delivery ratio on link
l until time t. Given a collocated network model and traffic
pattern τ(t) = (τl(t); l ∈ L), the primary objective is to find

an optimal policy π to schedule links l ∈ L to be active or
inactive at each time slot t, such that the overall performance
is optimized, given the QoS requirements. In particular, we
seek to maximize the minimal normalized delivery ratio:

max
π

J(π) = max
π

Eπ

[
min
l∈L

pl(T)

p0l

]
, (6)

which is closely related to the efficiency ratio [9] that measures
the fraction of the real-time throughput region guaranteed by
the algorithm.

IV. NA-ORL: A NETWORK-AIDED OFFLINE RL
APPROACH FOR STATIONARY NETWORK DYNAMICS

Unlike the standard MDP problems, the random packet
arrivals add exogenous dynamics complicate the underlying
MDP, calling for innovative RL algorithms. Fortunately, the
network dynamics follows the well-defined physical model
Eq. (1) - Eq. (5), which enables an accurate simulation of
the real system corresponding to a given network structure.
With this insight, we propose a network-aided offline RL
approach (NA-ORL) to learn the scheduling policy in an
offline manner, inspired by AlphaGo [13]. In particular, NA-
ORL mainly consists of two phases as illustrated in Fig. 3:
(1) initialization of the policy (actor) via behavioral cloning,
where the base policy is obtained based on AMIX-ND, and
(2) policy improvement via the network-aided A-C method.

A. Deadline-aware Wireless Scheduling as an MDP Problem

In what follows, we first treat the deadline-aware wireless
scheduling problem as an MDP defined by (S,A, P, r), with
state space S, action space A, state transition probability
P : S ×A× S → [0, 1], and stage reward r : S ×A → R.

State. Following the same line as in AMIX-ND, where the
randomized scheduling policy is obtained based on the deficits
w(t) and the earliest deadlines e(t) for all links, we define the
system state st ∈ S at time t as follows:

st = [w(t), e(t)]. (7)
Note that an important issue here is that different elements

in st can be on different scales, particularly the deficit wl(t) ∈
Z vs. the earliest deadline el(t) ∈ {1, .., dmax}, which may
lead to unstable learning process for deep neural networks
[18] if not handled in the correct manner. To address this, we
normalize the elements in s(t) using a sigmoid function, i.e.,
for each element x in st, the corresponding normalized value
is f(x) =

1

1 + exp(−x)

where f(x) ∈ (0, 1).
Action. As in a collocated network, only one link can be

activated at each time slot. The action at time t can be then
denoted by a discrete value

at ∈ {1, 2, · · · , L}, (8)

where at = l indicates that only the lth link is activated at
time t and all other links are inactivated.

State transition probability. Unlike the typical MDP prob-
lems, the random packet arrivals add exogenous dynamics and
hence complicate the underlying MDP, making it nontrivial to

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3304969

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Boulder Labs Library. Downloaded on October 09,2023 at 01:48:11 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL 4

Initialization for actor structure Actor-Critic scheduling policy improvement

Updating actor and critic

TD error

Network-aided on-policy simulation

Environment

θ

Actor

[πθ(at|st)]

Action at∈

{1,2,...,L}

State st=

(ωt,et)

Reward rt

φ
V function/

Q function

Critic

 samples

{(st,at,rt,st+1)}

θ

{(st, [π(at|st)])}

Actor initialization

Samples

Training

D
Dataset of samples

Environment

AMIX-ND

(Base policy)

st [π(at|st)]

Fig. 3: Network-aided offline RL (NA-ORL) for scheduling real-time wireless traffic.

write down the state transition probability explicitly. Instead,
we here utilize the physical model Eq. (1) - Eq. (5) that can
be used to construct an accurate model simulator for offline
interactions when learning the scheduling policy.

Reward. It is clear that the performance of RL closely
hinges upon the design of the stage reward function, which
serves as an important signal for evaluating and reinforcing the
action selections. In this work, we design the reward function
rt as the change of the minimal normalized delivery ratio
across all links from time t− 1 to t:

rt(st, at) = min
l∈L

pl(t)

p0l
−min

l∈L

pl(t− 1)

p0l
. (9)

Note that the instant reward rt depends on the state st and the
action at implicitly through the value of the achieved delivery
ratio up to time t. Intuitively, given a system state st, the more
the action improves the minimal normalized delivery ratio over
the network, the higher reward it will achieve. Such a reward
design has also captured the impact of the random packets
arrival based on Eq. (4).

Scheduling policy. Suppose πθ is the scheduling policy
parameterized by θ, which maps the current system state to
the probability vector of link activation. The MDP problem is
to find the optimal probability vector [πθ(at = 1|st), πθ(at =
2|st), · · · , πθ(at = L|st)] maximizing the expected cumula-
tive rewards:

max
πθ

J(πθ) = max
πθ

Eπθ

[T∑
t=1

rt

]
. (10)

It is clear that the objective (10) is indeed equivalent to (6).
To efficiently solve the MDP problem (10), we resort to

the popular A-C method [19], where the Critic uses a policy
evaluation structure to compute the Q-values under the current
policy being followed by the Actor; and the Actor aims to
improve the policy based on the evaluation of the Critic.
Neural networks are utilized to parameterize both the Actor
and the Critic structures, and the two structures work in concert
by updating the parameters of these two neural networks
iteratively. With carefully designed states and reward function,

the A-C method can be utilized to train a better scheduling
policy, thanks to its nature of policy improvement.

B. Policy Initialization via Behavioral Cloning

In light of the nature of policy improvement of the A-
C method, we first initialize the actor with the base policy
obtained by AMIX-ND (which has been shown in [9] to
achieve the largest efficiency ratio), which not only stabilizes
the learning process but also leads to a better scheduling policy
eventually. Towards this end, we seek to learn a base policy
that imitates the behavior of AMIX-ND.

Behavioral cloning is one of the most popular methods to
tackle an imitation learning problem [20], [21] through super-
vised learning. Therefore, to ‘imitate’ the behavior of AMIX-
ND, we first use the AMIX-ND algorithm to generate abundant
samples offline, and leverage behavior cloning to learn the
base policy. More specifically, for the wireless network model
with a given traffic pattern, we can calculate the probability
of each link to be active at each time slot, according to the
AMIX-ND algorithm, and choose one link to transmit packets
based on the probability vector. As shown in Fig. 3, a training
sample which consists of state information st and probability
vector [πθ(at = 1|st), πθ(at = 2|st), · · · , πθ(at = L|st)] is
then collected through the offline interaction with the physical
model simulator, and stored in the training dataset. Multiple
trajectories might be generated to obtain enough samples for
the training process. The training dataset can then be used
to learn the base policy from scratch via standard supervised
learning. Once the supervised training process is completed,
a base policy that behaves similar to the original AMIX-
ND algorithm can be obtained as the initialization of Actor.
Initialization through behavior cloning with a good scheduling
algorithm can reduce the computation cost significantly.

C. Policy Improvement via Network-aided Actor-Critic

Based on the policy initialization mentioned earlier, we
next propose a network-aided offline A-C method for policy

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3304969

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Boulder Labs Library. Downloaded on October 09,2023 at 01:48:11 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL 5

Algorithm 1 NA-ORL: network-aided offline RL algorithm
for real-time traffic scheduling

1: Initialize actor network πθ with the base policy and N critic
networks Qϕi , i = 1, · · · , N .

2: Initialize target networks ϕ′
i ← ϕi, i = 1, · · · , N .

3: C: number of synchronized parallel A-C agents.
4: K: number of samples by each A-C agent at a time slot.
5: D ← ∅.
6: for each environment step t do
7: for each A-C agent c = 1, · · · , C do
8: for k = 1, · · · ,K do
9: Take action ack

t ∼ πθ (· | sct), observe reward rckt , new
state sckt+1.

10: D ← D ∪ {(sckt , ack
t , rckt , sckt+1)}.

11: end for
12: end for
13: for G updates do
14: Mini-batch B = {(s, a, r, s′)} ⊂ D.
15: Sample a set M of M distinct indices from {1, · · · , N}.
16: Compute the Q target:

y = r + γ

(
min
i∈M

Qϕ′
i
(s′, ã′)− α log πθ (ã

′ | s′)
)
,

ã′ ∼ πθ (· | s′).
17: for i = 1, · · · , N do
18: Update critic network Qϕi with gradient descent using

∇ϕi
1

|B|
∑

(s,a,r,s′)∈B (Qϕi(s, a)− y)2.
19: Update target critic network Qϕ′

i
: ϕ′

i ← (1−ρ)ϕ′
i+ρϕi.

20: end for
21: end for
22: Update actor network πθ with gradient descent:

−∇θ
1

|B|
∑
s∈B

(
1
N

N∑
i=1

Qϕi (s, ãθ(s))− α log πθ (ãθ(s) | s)
)

,

ãθ(s) ∼ πθ(· | s).
23: end for

improvement. In particular, to fully unleash the potential of
the physical model and improve the learning performance,
we introduce a new method of data collection through offline
interaction with the physical model, and leverage an ensemble
of Q-functions to deal with the well-known overestimation
problem in the A-C method [22]–[26]. In what follows, we
present the details of the proposed method. After the offline
training is completed, the policy can be directly deployed
for online scheduling without additional updates, making it
suitable for real-time scheduling.

Data collection: experience replay and on-policy samples
via parallel A-C. Only using on-policy samples generated
by rolling out the current policy from the current state st
may suffer from strong sample correlation [27] in A-C-based
algorithms, resulting in inaccurate Q-value estimations. To
address this issue, we propose to collect on-policy samples
with multiple parallel A-C agents for the current policy, by
taking advantage of the physical model defined in Eq. (1) -
Eq. (5). As shown in Fig. 4, our method builds up multiple
physical model simulators, and for each simulator there is
one A-C agent to collect on-policy samples by rolling out
the current policy with the simulator. Note that all A-C agents
share the same policy parameters but can start from different
system states. More specifically, suppose that the current state
of an agent c is sct . Each A-C agent repeatedly generates
a few on-policy samples {(sct , act , rct , sct+1)} (represented as

(s, a, r, s′) when no confusion occurs) at current time slot t
using the current policy. All of the samples generated at current
time slot are stored in the experience replay dataset D. After
that, each agent would transit to its own next state and repeat
the process.

D

Interact with simulators Update critic Update actor

Q1
 Q2
 QN

Randomly choose M out
of N Q networks

to calculate target Q value

πθ

s1,t s1,t+1

K samples

s2,t s2,t+1

K samples

sC,t sC,t+1

K samples

Parallel A-C simulators

Fig. 4: Illustration of sample collection
with parallel A-C simulators.

Addressing overestimation of Q function. Clearly, the
performance of the deadline-aware scheduling policy depends
on the policy improvement of the A-C algorithm, which hinges
heavily upon the accuracy of the Q-values estimated by the
critic. It is known that the Q-value estimation often suffers
from overestimation bias when evaluating the target Q-value,
and recent works [22], [23], [26], [28] have proposed to use
an ensemble of independent Q-value estimators to reduce the
overestimation bias. Therefore, in this work we consider a set
of N critic networks denoted by Qϕ1

, · · · , QϕN
, respectively.

As shown in Fig. 4, once the sample collection is completed
for the current policy, our method randomly chooses M out
of N critic networks, and estimates the target Q-value for
a sample (s, a, r, s′) using the minimum among M Q-value
estimations:

y = r + γ

(
min
i∈M

Qϕ′
i

(
s′, ã′)− α log πθ

(
ã′ | s′

))
, ã′ ∼ πθ

(
· | s′

)
,

where γ is the discount factor, M is the set of indices of
critic networks sampled from {Qϕ1

, · · · , QϕN
}. Here Qϕ′

i
is

a target critic network for solving the moving target problem
[19], and α is the temperature parameter that determines the
relative importance of the entropy term against the reward,
which controls the stochasticity of the optimal policy [19],
[29]. Note that y serves as the common target Q-value for all
N critic networks.

Critic update. To obtain an accurate estimation of the Q-
values for the current policy, we update each critic network
Qϕi

, i ∈ {1, 2, · · · , N} towards the common target Q-value y.
This can be achieved by using gradient descent to minimize
the mean squared error (MSE) loss over a batch B of samples
from the replay buffer:

min
ϕi

1

|B|
∑

(s,a,r,s′)∈B

(Qϕi(s, a)− y)
2
,

where Qϕi(s, a) is the estimated Q-value for taking action a
at current state s. The target critic network Qϕ′

i
can be then

updated softly by a Polyak factor ρ as shown in Algorithm 1.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3304969

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Boulder Labs Library. Downloaded on October 09,2023 at 01:48:11 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL 6

Actor update. After every G updates of critic networks,
the actor network πθ can be updated with gradient descent as
shown in step 22 of Algorithm 1, to further improve the policy
as in [19] by solving the following problem:

max
θ

1

|B|
∑
s∈B

(
1

N

N∑
i=1

Qϕi
(s, ãθ(s))− α log πθ (ãθ(s) | s)

)
,

ãθ(s) ∼ πθ(· | s),

where the entropy term serves as a normalization in the total
loss function based on the average Q-value estimate by each
critic network Qϕi

. Note that the fact that an discrete action
at is sampled from the categorical distribution [πθ(at =
1|st), πθ(at = 2|st), · · · , πθ(at = L|st)] would introduce the
non-differentiability issue when computing the policy gradient
through backpropagation in neural networks. To solve the
problem, we adopt an efficient gradient estimator that replaces
the non-differentiable sampling from a categorical distribution
with a differentiable sampling from a novel Gumbel-Softmax
distribution [30].

The critic and actor updates alternatively until the policy
converges. More details are outlined in Algorithm 1.

V. NA-MRL: A NETWORK-AIDED META-RL APPROACH
FOR NON-STATIONARY NETWORK DYNAMICS

Next, we consider a more challenging scenario where
the network dynamics could be non-stationary on a larger
timescale, e.g., the number of links in the wireless network
changes due to users’ arrival/departure or the traffic pattern
changes. In general, we can treat the scheduling problem in a
stationary environment as an MDP and its formulation changes
when the underlying network dynamics changes. Clearly, the
policy learnt offline for one specific MDP would not work well
for a different MDP. Needless to say, the nature of deadline-
aware scheduling dictates that it is infeasible to retrain new
policy for each new MDP from scratch.

Meta-RL [31] has recently emerged as a promising approach
to quickly solve a new RL task using samples from that task,
by exploiting shared structures among related RL tasks during
offline meta-training. The superior performance of meta-RL,
in terms of sample efficiency and higher rewards, has been
demonstrated in the literature [32]–[35], when compared with
standard RL methods that learn from scratch [36], [37]. Thus
motivated, we will resort to meta-RL to tackle the distribution
shift, by learning a scheduling policy that can quickly adapt
to non-stationary network dynamics.

Different from standard meta-RL problems where the task
identity has to be learnt through the interaction with the envi-
ronments, the system operator can construct different physical
model simulators offline by modifying the network topology
accordingly, thanks to the mapping between the network topol-
ogy and the MDP model. Inspired by the above observation,
we propose NA-MRL, a two-stage meta-RL algorithm for
deadline-aware scheduling in the presence of distribution shift,
including (1) offline meta training based on multiple physics
model simulators corresponding to different network models;
and (2) on-policy adaptation of the scheduling policy for a

......

Offline meta training On-policy

fast adaptation

θ
New task

Actor

φ
Fine-tune

Critic

D

Task 1

Environment

Task 2

Environment

Task H

Environment

Replay buffer

Environment

Mask

1

Mask

2

Mask

H

Fig. 5: Illustration of NA-MRL for deadline-aware wireless
scheduling for non-stationary network.

new network model. In the following, we first introduce the
formulation of an unified MDP which takes the non-stationary
network dynamics into consideration, and then present NA-
MRL in details as outlined in Algorithm 2.

Algorithm 2 NA-MRL: network-aided meta-RL algorithm for
non-stationary network dynamics

1: Maximum number of links: Lmax.
2: Initialize actor network πθ and critic networks Qϕ.
3: for task h ∈ [1, · · · , H] do
4: Current set of links: Lh ⊂ Lmax.
5: Initialize state st ∈ S, where st(l) = 0,∀l /∈ Lh.
6: Initialize action at ∈ A, where at(l) = 0,∀l /∈ Lh.
7: Agent interacts with simulated environment and updates policy

πθ using Algorithm 1.
8: end for
9: Save meta-policy π0

θ for future quick adaptation.
10: while number of links changes due to users’ arrival/departure do
11: Initialize state st ∈ S and action at ∈ A, using the binary

mask based on the network topology.
12: Initialize policy πθ = π0

θ .
13: Update policy πθ in an on-policy manner.
14: Evaluate policy.
15: end while

Unified MDP formulation. Without loss of generality,
consider non-stationary network dynamics where the set L of
links could change after a period of time. Within a period
k, the network is stationary, and the scheduling problem
can be cast as an offline RL task represented by the MDP
Mk = (Sk,Ak, Pk, rk). Let Lk denote the set of links in
period k and |Lk| = Lk. Clearly, the state space Sk and the
action space Ak depends on the number of links in Lk. For
simplicity, we assume that there exists a set Lmax such that
Lk ⊂ Lmax for any period k, and |Lmax| = Lmax. We define
a unified state space S = (S(1), ..., S(Lmax)) where S(l)
is the state for link l ∈ Lmax, and a unified action space
A = {1, ..., Lmax}. We can reformulate each Mk as a new
MDP M̃k = (S,A, P̃k, rk) by making the following changes:

1) When learning a scheduling policy for M̃k, we restrict
the support of actions to only a subset of A such that
the action at = l for l /∈ Lk must not be selected;

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3304969

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Boulder Labs Library. Downloaded on October 09,2023 at 01:48:11 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL 7

2) Given a selected action at at time t, the state transi-
tion distribution Pk is modified to P̃k such that the
dimension S(l) in the state for l /∈ Lk is always 0.
This can be achieved by setting the transition probability
p(st+1|st, at) = 0 for any state st+1 with non-zero
entries in St+1(l) if l /∈ Lk.

As a result, the modified MDP encompasses {M̃k} for all
periods, with the same unified state and action space, but
may have different state transition distributions and reward
functions.

Offline meta-training. As illustrated in Fig. 5, the system
operator can build H offline RL training tasks {M̃h}Hh=1

where each task h corresponds to one network topology.
Given the initialized actor network πθ and critic networks
Qϕi

, i ∈ {1, 2, · · · , N}, we define a mask as a binary vector of
length Lmax for each task h ∈ {1, 2, · · · , H} with |Lh| = Lh

links, which maps the unified state st and action at to the task-
specific state and action based on the network topology. The
ith entry in the mask is 1 if i ∈ Lh, otherwise the ith entry is
0. For example, the mask is [0, 1, 1, 0, 1, 0] for task h with set
of links Lh = {2, 3, 5} and Lmax = 6. The objective of offline
meta-training is to learn a meta-policy π0

θ that performs well
across all training tasks by solving the following problem:

max
π0
θ

Eπ0
θ

[∑H

h=1

∑T

t=1
rh,t

]
. (11)

This can be solved by continuously updating the meta-policy
based on NA-ORL (Algorithm 1) through offline interactions
with the physical model simulators for each training task.

On-policy fast adaptation. Given the meta-policy π0
θ ob-

tained after offline meta-training, we next quickly adapt it to
learn a task-specific policy for a new task. Specifically, since
the network topology change is known, which determines the
MDP model for the new task, the corresponding mask can
be then determined for the new task with set of links Lk.
A scheduling policy can be quickly obtained by fine-tuning
the meta-policy π0

θ , through the interactions with the physical
model of the current task based on NA-ORL. After the fast
adaption is completed, the policy can be directly deployed for
online scheduling, making it suitable for real-time scheduling
for the new task.

TABLE I: Hyperparameters.

optimizer Adam
learning rate 3 · 10−4

discount factor (γ) 0.99
number of links (L) 2, 5
max deadline (dmax) 10
arrival traffic pattern Poisson distribution
number of parallel A-C agents (C) 1
samples generated by each agent (K) 2000
batch size 128
replay buffer size 104

non-linearity ReLU
number of hidden layers 1
number of hidden units per layer 8
target smoothing coefficient (ρ) 0.005
number of approximators (N) 2
ensemble size (M) 2
SAC entropy hyperparameter (α) 0
Gumbel Softmax parameter (τ) 0.01

VI. EXPERIMENTAL STUDIES

In this section, we first evaluate the performance of the pro-
posed NA-ORL algorithm for the case with stationary network
dynamics, and then investigate the performance of NA-MRL
for the case with non-stationary network dynamics. In both
cases, LDF [7], [8] and the most recent algorithm AMIX-
ND [9] serve as the baselines, in which the performance has
been evaluated in terms of efficiency ratio, i.e., the fraction
of the real-time throughput region where the delivery ratio
requirements are satisfied. In the same spirit, we compare our
methods with AMIX-ND and LDF in terms of the following
performance metric:

maxmin
l∈L

pl(T)

p0l
, (12)

which evaluates the maximum of the minimal normalized
delivery ratios among all links. We consider the collocated
network setting as shown in Fig. 1 with different number of
links. For each link l ∈ L, the arrival pattern is determined by a
Poisson process with arrival rate λ⃗, and the QoS requirement is
p0l , which is the required minimum delivery ratio for that link.
Hyperparameters used in the algorithms are listed in Table I.

A. Case Study with Stationary Network Dynamics

For a network with stationary dynamics, we consider the
cases with different number of links, e.g., the link number
L ∈ {2, 5}. The complexity would increase with more links for
deadline-aware traffic scheduling in real world, which would
be taken into account in future work. More specifically, in
the first case with 2 links, the arrival rate is λ⃗ = [0.75, 0.75],
while λ⃗ = [0.3, 0.3, 0.3, 0.3, 0.3] in the second case with 5
links. Intuitively, the number of arrival packets in the system
is 1.5 per time slot on average, equally shared by all the links.
The QoS requirements are different across links. For each
case, we first run the AMIX-ND algorithm to collect samples,
which would be used to train an initial policy via behavior
cloning. In particular, we run the AMIX-ND algorithm for 500
episodes of length 2000, and collect 1 million samples in total
as the training dataset. Here we consider a neural network with
one hidden layer of size 8 for both actor network and critic
network. The learning rate of behavior cloning is chosen to be
3×10−4. The number of training steps is 10000. During each
step, a batch of 128 samples are sampled randomly from the
training dataset to update the actor network. Once the policy
initialization is completed, the next step is to update the initial
policy (i.e., the actor network) and Q-value estimators (i.e., the
critic networks) iteratively through offline interactions with the
physical model. At the beginning of each training step, 2000
on-policy samples are generated from 100 episodes of length
20 using the current policy and stored in the experience replay
buffer. Then the critic networks and the actor network will
be updated using a batch of samples from the replay buffer.
We evaluate the learnt policy every 8000 training steps, by
directly applying the policy for online scheduling, with the
performance metric defined in Eq. (12). All evaluation results
are averaged over 10 runs with episodes of length 10000.

Fig. 6 and Fig. 7 illustrate the performance comparison
among NA-ORL, AMIX-ND and LDF for the networks with 2

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3304969

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Boulder Labs Library. Downloaded on October 09,2023 at 01:48:11 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL 8

(a) QoS requirements: [0.7, 0.4]. (b) QoS requirements: [0.8, 0.3].

Fig. 6: Performance comparison NA-ORL against AMIX-ND and LDF: the network with 2 links of identical arrival rates
[0.75, 0.75] and different QoS requirements.

(a) QoS requirements: [0.7, 0.7, 0.4, 0.4, 0.4]. (b) QoS requirements: [0.8, 0.8, 0.3, 0.3, 0.3].

Fig. 7: Performance comparison NA-ORL against AMIX-ND and LDF: the network with 5 links of identical arrival rates
[0.3, 0.3, 0.3, 0.3, 0.3] and different QoS requirements.

links and 5 links, respectively. Note that for all cases, AMIX-
ND outperforms LDF, in line with the results in [9]. For the
case of 2 links with same arrival rates and different QoS
requirements, it is clear that NA-ORL performs about 10%
better than AMIX-ND after 80000 training steps. In particular,
in Fig. 6b, the performance of AMIX-ND is less than 1 while
the performance of NA-ORL is over 1, which indicates that
the system is more stable with NA-ORL. Note that the system
is stable only when the performance is over 1, otherwise the
QoS requirements can not be reached and the deficit may
blow up. For the case of 5 links with same arrival rates
and different QoS requirements, NA-ORL performs about 8%
better than AMIX-ND. The superior performance of NA-ORL
clearly corroborates the benefits of leveraging network-aided
RL to solve the real-time scheduling problem with complicated
network dynamics.

B. Case Study with Non-stationary Network Dynamics

We next consider the network setting with non-stationary
dynamics, where NA-MRL is designed to quickly adapt to
new task from an offline trained meta-policy π0

θ . Here we
set the maximum number of links Lmax = 6, and consider
three meta-training tasks with the link number Lh ∈ {2, 4, 6}.
For a certain task with |Lh| = Lh links, the ith entry in
the mask is 1 if i ∈ Lh, otherwise the ith entry is 0. The
experiments are carried out in 2 cases: (1) same arrival rates
and different QoS requirements; (2) different arrival rates and

same QoS requirements. In the first case, arrival rates and QoS
requirements are set to be λ⃗ = [0.3, 0.3, 0.3, 0.3, 0.3, 0.3] and
[0.3, 0.3, 0.6, 0.6, 0.9, 0.9], respectively, while in the second
case, λ⃗ = [0.7, 0.7, 0.3, 0.3, 0.1, 0.1] and QoS requirements
are [0.6, 0.6, 0.6, 0.6, 0.6, 0.6]. Here we run the offline meta-
training process up to 60000 steps to obtain the meta-policy
π0
θ , and then fine-tune the meta-policy for 2000 steps so as to

learn a better policy for a new task with mask [0, 1, 1, 0, 1, 0].
Fig. 8 shows the performance of NA-MRL and NA-ORL

under above settings. As expected, in both cases, with a
good meta-policy π0

θ (which is better than AMIX-ND), NA-
MRL not only outperforms AMIX-ND and LDF, but also
achieves better performance than NA-ORL after quick adapta-
tion. The results demonstrate the superiority of our proposed
NA-MRL approach in solving the scheduling problem with
non-stationary dynamics by leveraging the similarity across
multiple offline training tasks, and indicate that the learnt
meta-policy indeed serves as a better policy initialization for
quick adaptation on new tasks.
Ablation study of NA-ORL vs. DQN. Using the same setting
as in Fig. 6a and Fig. 7a, we next compare the performance
of NA-ORL against the well-known Deep Q-Network (DQN)
approach [38], [39]. As shown in Fig. 9, NA-ORL can achieve
better performance than DQN algorithm in both cases with 2
and 5 links, thanks to the nature of policy improvement of the
A-C method.
Ablation study of NA-MRL. We conduct an ablation study to

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3304969

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Boulder Labs Library. Downloaded on October 09,2023 at 01:48:11 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL 9

(a) Same arrival rates and different
QoS requirements.

(b) Different arrival rates and same
QoS requirements.

Fig. 8: Performance evaluation of
NA-MRL under non-stationary net-
work dynamics.

(a) QoS requirements:
[0.7, 0.4].

(b) QoS requirements:
[0.7, 0.7, 0.4, 0.4, 0.4].

Fig. 9: Ablation study of
NA-ORL algorithm.

(a) Same arrival rates and different
QoS requirements.

(b) Different arrival rates and same
QoS requirements.

Fig. 10: Ablation study of
NA-MRL algorithm.

analyze the meta-training process of the NA-MRL approach.
In particular, we evaluate the performance of the learnt meta-
policy after every 10000 meta-training steps, by studying
the scheduling performance of the task-specific policy that
is adapted from the meta-policy after 2000 steps of gradient
updates. Fig. 10 shows the meta-training performance for the
2 cases regarding the arrival rates and the QoS requirements.
In both cases, after enough meta training steps, NA-MRL can
achieve a better policy than AMIX-ND after quick adaptation.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we study the deadline-aware wireless traf-
fic scheduling by taking an offline RL approach to train
scheduling policies, which is ready to be used for online
scheduling. To tackle the challenges therein, we propose NA-
ORL, a network-aided offline RL framework for wireless
traffic scheduling, based on the fact that the network dynamics
follows a well-defined physics model. In particular, NA-ORL
initializes the scheduling policy through behavior cloning with
a good model-based scheduling algorithm AMIX-ND, and
trains a better scheduling policy by utilizing the actor-critic
method with carefully crafted states and reward function.
Building on NA-ORL, we further devise NA-MRL to deal
with the non-stationary network dynamics, by learning an
offline meta-policy to capture the network similarity among
multiple offline RL tasks through offline meta-training. Exten-
sive experiments are conducted to evaluate the performance
of both NA-ORL and NA-MRL. The experimental results

clearly demonstrate that the proposed NA-ORL and NA-MRL
algorithms can achieve better performance over LDF and
AMIX-ND, a very recent scheduling algorithm (regarded as
the state-of-the-art), in various scenarios for the deadline-
aware wireless scheduling.

For future work, we will investigate deadline-aware wire-
less scheduling problem in a more general network setting,
where multiple links without interference could be activated
simultaneously to transmit packets. It is worth noting that the
objective formulation is the same as in the collocated network
setting, but the action space is more complex. It is expected
that offline RL trained scheduling algorithms have potential to
significantly improve the performance.

REFERENCES

[1] I.-H. Hou, V. Borkar, and P. Kumar, “A theory of qos for wireless,” in
IEEE INFOCOM 2009, 2009.

[2] I.-H. Hou and P. Kumar, “Admission control and scheduling for qos
guarantees for variable-bit-rate applications on wireless channels,” in
Proceedings of the tenth ACM international symposium on Mobile ad
hoc networking and computing, 2009, pp. 175–184.

[3] I.-H. Hou, “Scheduling heterogeneous real-time traffic over fading
wireless channels,” IEEE/ACM Transactions on Networking, vol. 22,
no. 5, pp. 1631–1644, 2013.

[4] I.-H. Hou and P. Kumar, “Utility-optimal scheduling in time-varying
wireless networks with delay constraints,” in Proceedings of the eleventh
ACM international symposium on Mobile ad hoc networking and com-
puting, 2010, pp. 31–40.

[5] J. J. Jaramillo and R. Srikant, “Optimal scheduling for fair resource
allocation in ad hoc networks with elastic and inelastic traffic,” in 2010
Proceedings IEEE INFOCOM. IEEE, 2010, pp. 1–9.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3304969

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Boulder Labs Library. Downloaded on October 09,2023 at 01:48:11 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL 10

[6] J. J. Jaramillo, R. Srikant, and L. Ying, “Scheduling for optimal rate
allocation in ad hoc networks with heterogeneous delay constraints,”
IEEE Journal on Selected Areas in Communications, vol. 29, no. 5, pp.
979–987, 2011.

[7] X. Kang, W. Wang, J. J. Jaramillo, and L. Ying, “On the performance of
largest-deficit-first for scheduling real-time traffic in wireless networks,”
IEEE/ACM Transactions on Networking, vol. 24, no. 1, pp. 72–84, 2014.

[8] X. Kang, I.-H. Hou, and L. Ying, “On the capacity requirement of
largest-deficit-first for scheduling real-time traffic in wireless networks,”
in Proceedings of the 16th ACM International Symposium on Mobile Ad
Hoc Networking and Computing, 2015, pp. 217–226.

[9] C. Tsanikidis and J. Ghaderi, “On the power of randomization for
scheduling real-time traffic in wireless networks,” in IEEE INFOCOM
2020-IEEE Conference on Computer Communications. IEEE, 2020,
pp. 59–68.

[10] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[11] X. Cao, C. Sun, and M. Yan, “Target search control of auv in underwater
environment with deep reinforcement learning,” IEEE Access, vol. 7, pp.
96 549–96 559, 2019.

[12] Y. Ansari, M. Manti, E. Falotico, M. Cianchetti, and C. Laschi, “Multi-
objective optimization for stiffness and position control in a soft robot
arm module,” IEEE Robotics and Automation Letters, vol. 3, no. 1, pp.
108–115, 2017.

[13] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

[14] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering
the game of go without human knowledge,” nature, vol. 550, no. 7676,
pp. 354–359, 2017.

[15] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel et al., “A general
reinforcement learning algorithm that masters chess, shogi, and go
through self-play,” Science, vol. 362, no. 6419, pp. 1140–1144, 2018.

[16] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning.
PMLR, 2016, pp. 1928–1937.

[17] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu,
and N. de Freitas, “Sample efficient actor-critic with experience replay,”
arXiv preprint arXiv:1611.01224, 2016.

[18] S. Bhanja and A. Das, “Impact of data normalization on deep neural
network for time series forecasting,” arXiv preprint arXiv:1812.05519,
2018.

[19] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning. PMLR, 2018,
pp. 1861–1870.

[20] F. Torabi, G. Warnell, and P. Stone, “Behavioral cloning from observa-
tion,” arXiv preprint arXiv:1805.01954, 2018.

[21] S. Ross and D. Bagnell, “Efficient reductions for imitation learning,” in
Proceedings of the thirteenth international conference on artificial intel-
ligence and statistics. JMLR Workshop and Conference Proceedings,
2010, pp. 661–668.

[22] H. Hasselt, “Double q-learning,” Advances in neural information pro-
cessing systems, vol. 23, pp. 2613–2621, 2010.

[23] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 30, no. 1, 2016.

[24] O. Anschel, N. Baram, and N. Shimkin, “Averaged-dqn: Variance reduc-
tion and stabilization for deep reinforcement learning,” in International
conference on machine learning. PMLR, 2017, pp. 176–185.

[25] Q. Lan, Y. Pan, A. Fyshe, and M. White, “Maxmin q-learning: Control-
ling the estimation bias of q-learning,” arXiv preprint arXiv:2002.06487,
2020.

[26] X. Chen, C. Wang, Z. Zhou, and K. Ross, “Randomized ensembled
double q-learning: Learning fast without a model,” arXiv preprint
arXiv:2101.05982, 2021.

[27] S. Y. Lee, C. Sungik, and S.-Y. Chung, “Sample-efficient deep rein-
forcement learning via episodic backward update,” Advances in Neural
Information Processing Systems, vol. 32, 2019.

[28] H. Wang, S. Lin, and J. Zhang, “Adaptive ensemble q-learning: Minimiz-
ing estimation bias via error feedback,” Advances in Neural Information
Processing Systems, vol. 34, 2021.

[29] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement learn-
ing with deep energy-based policies,” in International Conference on
Machine Learning. PMLR, 2017, pp. 1352–1361.

[30] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
gumbel-softmax,” arXiv preprint arXiv:1611.01144, 2016.

[31] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in International Conference on
Machine Learning. PMLR, 2017, pp. 1126–1135.

[32] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and
P. Abbeel, “rl2: Fast reinforcement learning via slow reinforcement
learning,” arXiv preprint arXiv:1611.02779, 2016.

[33] J. X. Wang, Z. Kurth-Nelson, D. Tirumala, H. Soyer, J. Z. Leibo,
R. Munos, C. Blundell, D. Kumaran, and M. Botvinick, “Learning to
reinforcement learn,” arXiv preprint arXiv:1611.05763, 2016.

[34] J. Humplik, A. Galashov, L. Hasenclever, P. A. Ortega, Y. W. Teh,
and N. Heess, “Meta reinforcement learning as task inference,” arXiv
preprint arXiv:1905.06424, 2019.

[35] A. Gupta, R. Mendonca, Y. Liu, P. Abbeel, and S. Levine, “Meta-
reinforcement learning of structured exploration strategies,” arXiv
preprint arXiv:1802.07245, 2018.

[36] A. Nagabandi, I. Clavera, S. Liu, R. S. Fearing, P. Abbeel, S. Levine,
and C. Finn, “Learning to adapt in dynamic, real-world environments
through meta-reinforcement learning,” arXiv preprint arXiv:1803.11347,
2018.

[37] K. Rakelly, A. Zhou, C. Finn, S. Levine, and D. Quillen, “Efficient off-
policy meta-reinforcement learning via probabilistic context variables,”
in International conference on machine learning. PMLR, 2019, pp.
5331–5340.

[38] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[39] Y. S. Nasir and D. Guo, “Multi-agent deep reinforcement learning
for dynamic power allocation in wireless networks,” IEEE Journal on
Selected Areas in Communications, vol. 37, no. 10, pp. 2239–2250,
2019.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3304969

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Boulder Labs Library. Downloaded on October 09,2023 at 01:48:11 UTC from IEEE Xplore. Restrictions apply.

