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Abstract 

In 2011, a working group of the Consultative Committee for Thermometry published their best 

estimates of the differences between the thermodynamic temperature T and its approximation 

(T90), the temperature according to the International Temperature Scale of 1990, ITS-90. These 

consensus estimates, in combination with measurements made in accordance with ITS-90, are 

an important alternative to primary thermometry for those requiring accurate measurements of 

thermodynamic temperature. Since 2011, there has been a change in the definition of the kelvin 

and significant improvements in primary thermometry. This paper updates the (T − T90) 

estimates by combining and analysing the data used for the 2011 estimates and data from more 

recent primary thermometry. The results of the analysis are presented as a 12th-order 

polynomial representing the updated consensus values for the differences and a 6th-order 

polynomial for their uncertainty estimates. 

Keywords: Thermodynamic temperature, primary thermometry, International Temperature 

Scale, ITS-90, gas thermometry 

 

1. Introduction 

On 20 May 2019, four of the base units of the International System of Units (SI) were redefined 

by fixing the values of four fundamental physical constants [1] (for details see [2]). Among 
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these, the base unit of thermodynamic temperature has been defined by fixing the value of the 

Boltzmann constant, rather than by fixing the temperature of a particular state of matter [3]. 

The new definition eliminates the uncertainty in the realisation of the triple point of water from 

the realisation of the kelvin and encourages direct realisation of the kelvin using any 

thermodynamic method appropriate for the temperature of interest. In the mise en pratique for 

the kelvin (MeP-K), the Consultative Committee for Thermometry (CCT) identifies the primary 

methods that are both well documented and achieve state-of-the-art uncertainties [4, 5]. Primary 

methods are especially important for scientific purposes. 

However, primary methods are not suited to routine thermometry: all require a high 

level of expertise, and most are very slow and require expensive, often custom-built equipment. 

Additionally, primary methods have historically had unacceptably high measurement 

uncertainties [3]. The solution has been for the CIPM to define more practical International 

Temperature Scales (ITS) approximating thermodynamic temperatures using defined reference 

temperatures and interpolating thermometers.  The International Temperature Scale of 1990, 

ITS-90 [6], is the current basis for internationally consistent temperature measurements, 

denoted T90, and defines scale temperatures from 0.65 K up to the highest measurable 

temperatures. The uncertainty of its realisation ranges from a few tenths of a millikelvin below 

335 K and increases to several millikelvin at 1225 K [7]. ITS-90 was defined so that the scale 

temperatures, T90, corresponded closely to the known thermodynamic temperatures, T, at the 

time of definition. 

As primary methods improve, the differences between T and T90 become increasingly 

apparent. In 2011, CCT Working Group 4 published the then best estimates of the differences 

(T − T90) [8]. This paper is the basis for the CCT guide “Estimates of the Differences between 

Thermodynamic Temperature and the ITS-90” [9]. Use of ITS-90 combined with knowledge 

of T−T90 is an important alternative to primary thermometry. 

Since 2011, several primary methods have undergone significant improvements 

accompanying research undertaken to determine the Boltzmann constant for the redefinition of 

the kelvin [10, 11].  Subsequently, the improved methods have been used to measure T−T90 

over temperatures ranging from 4 K to 323 K. The CCT Working Group for Contact 

Thermometry (CCT-WG-CTh) has now collated the new data and combined them with those 

published in [8] to update the best estimates of (T − T90). 

The data used in the analysis are presented in Section 2. Section 3 then identifies a 

polynomial representation of (T − T90) versus T90 and summarises the considerations in its 
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development. Section 4 discusses uncertainties associated with the estimates of (T - T90), and 

how they are to be applied. Finally, Section 5 summarises the results and conclusions.  

 

2. Overview of literature data 

For the 2011 estimates, the input data and the uncertainties were provided by the researchers in 

polynomial form and evaluated at the temperatures listed in Table 1. Especially in the case of 

the data published before 1990, corrections were required for the change in scale from IPTS-68 

[6], and some uncertainties required harmonisation following the publication of the Guide to 

the Expression of Uncertainty (GUM) [12]. This review was carried out by WG-4 in a process 

lasting more than 5 years. The corrected and harmonised data in Table 1 constitutes the first 

part of the input for the present work 1. It includes data from ten research groups using one of 

three primary methods: 

  

➢ Acoustic Gas Thermometry (AGT): INRIM (polynomial based on data from [13]), 

LNE-NIST (polynomial based on data from [14]), NIST (polynomial based on data from 

[15-17]), UL-ICL (polynomial based on data from [18]); 

➢ Dielectric-Constant Gas Thermometry (DCGT): PTB (in [8] a polynomial based on data 

from [19, 20] was used; this data was revised in [21] due to systematic changes in the 

compressibility values of the capacitors; in Table 1, therefore, the revised values from 

[21] are listed; in view of the large amount of data points, only 12 from 22 measuring 

temperatures between 4 K and 25 K given in [21] are used; the interpolation between 

the points and uncertainties was performed via cubic splines); 

➢ Constant-Volume Gas Thermometry (CVGT): VNIIFTRI (Polynomial based on data 

from [22]), KOL (Polynomial based on data from [23] recalculated by WG4 at that time 

to interpolate in ranges with very few data points), NMIJ (Polynomial based on data 

from [24]), NML (Polynomial based on data from [25]), NPL (Polynomial based on 

data from [26]). 

 

 
1

To reproduce the numbers given in Table 2 of [7], the following information is needed. Between 4.2 K and 24.5 K and from 290 K up to 

335 K (and above) simple weighted means of the tabulated values and the associated uncertainties were calculated (for the PTB data, the 

original data also listed in Table 1 in grey was used). (At 303 K a double counting of one data set in the evaluation of [7] led to a slightly 

different value (the correct value at 303 K would have been (T-T90) = 4.18 mK with an uncertainty of 0.48 mK).) From 35 K to 70 K the so-

called BOB method (the name comes from Type B On Bias, see M.S. Levenson et al. J. Res. Natl. Inst. Stand. Technol. 105, 571 (2000), 

section 4) and the associated uncertainty was used. From 77 K to 255 K the weighted mean was calculated, and its uncertainty was multiplied 

with a factor according to the Student's distribution (k = 2) considering the individual degrees of freedom at the specific temperature. 
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Table 1 

The data measured after 2011 and the related uncertainties are given in Table 2. The new results 

are from eight research groups using one of four primary methods: 

➢ Acoustic Gas Thermometry (AGT): INRIM (Table 1 in [27]), NIM (Tables 14 and 15 

in [28]), NPL (Table 1 in [29]), VNIIFTRI (Abstract in [30]); LNE-TIPC (Table 1 in 

[31], the values are not explicitly stated but obvious), NMIJ (Table 1 in [32]); 

➢ Dielectric-Constant Gas Thermometry (DCGT): PTB (Table 2 in [21], Table 2 in [33], 

Table 2 in [34]); 

➢ Refractive-Index Gas Thermometry (RIGT): NRC (Abstract in [35]), INRIM (Table 1 

in Corrigendum [36]), TIPC-LNE (Table 9 in Corrigendum [37]); 

➢ Constant-Volume Gas Thermometry (CVGT): NMIJ (Figure 4 in [38], the data in 

Table 1 of this publication is a private communication). 

 

The previous definition of the kelvin fixed the temperature of the triple point of water (TPW), 

TTPW, to 273.16 K with zero uncertainty, so that (T − T90)TPW was identically zero. This was 

reflected in the 2011 estimates in which the least-squares fit and uncertainty were forced to zero 

at the TPW [8]. 

On 20 May 2019, the new definition of the kelvin took effect, and the Boltzmann 

constant was fixed to the final CODATA adjusted value with zero uncertainty [1, 39]. Although 

TTPW remained 273.16 K at the moment of redefinition, it acquired an uncertainty of 0.1 mK 

transferred from the Boltzmann constant experiments, and it is no longer fixed. A corresponding 

data point, (T – T90)TPW = 0.0(1) mK, is included in the fitted data, and the D(T90) polynomial 

fit to the (T − T90) data, see next section, has not been forced to zero at the TPW. This reflects 

the fact that the value of TTPW is no longer defined. 

Table 2 

3. Fitting-function selection and tests 

The aim of the analysis is to develop a smooth analytic function, D(T90), describing the best 

estimate of T−T90 as a function of the measured scale temperature, T90. Ideally the function 

should cover the full range of the data, 4 K to 323 K, and achieve the best compromise between 

capturing the underlying structure of the data, while not exhibiting excessive sensitivity to 

measurement errors, i.e., overfitting. In the temperature range of interest, all data (including 

that used to establish ITS-90) was obtained with various types of gas thermometer for which 

all the known forms of measurement errors are free of asymptotic or exponential effects that 
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might cause discontinuities or other difficult-to-fit artefacts in the data. Therefore, there was a 

reasonable expectation that a fitted function based on a power series with linear coefficients 

would be both satisfactory and the simplest choice: 

90 90 90

0

( ) / mK ( ) / mK ( /K)
n

i

i

i

D T T T a T
=

= − =  . (1) 

It was the consensus of CCT-WG-CTh that all data listed in Table 1 and Table 2 were fitted 

together. The least-squares software used for the analysis employs Björck’s orthonormal 

modification of the Gram-Schmidt algorithm [40, 41], which minimises the effects of round-

off errors in the numerical computations. To confirm the correct operation of the software, the 

computations were checked using a generalised non-linear least-squares application written by 

Saunders [42, 43] employing the iterative Levenberg-Marquardt algorithm [44]. Saunders’ 

application was also used to calculate the propagated uncertainties and in numerical 

experiments evaluating the effects of correlations. An important benefit of the Björck algorithm 

is that the polynomials are orthonormal in the set of arguments (set of independent variables). 

The use of orthogonal functions has the advantage that the coefficients are independent of each 

other. Furthermore, their magnitude allows a rigorous but simple test for the selection of an 

appropriate fitting order. This selection is an important task since one must avoid either of the 

extremes of too high an order with a resultant overfit and unrepresentative oscillations or of too 

low an order with a resultant underfit and loss of experimental information. The left part of 

Figure 1 shows the natural logarithm of the absolute values of the orthogonal coefficients 

obtained with the Björck algorithm for data listed in Tables 1 and 2 in dependence on the fitting 

order. If the fitting functions are necessary for describing the data (called “true or signal 

functions” in [45]), there is a tendency of decreasing absolute value, i.e., the coefficients 

converge. But the coefficients of further, not necessary (“noise”) functions show no tendency 

to converge. From Figure 1 it can, therefore, be concluded that the order 11 or 12 may be 

sufficient.  

One further traditional statistical test for the quality of a least-squares fit is the chi-

square test. If all the uncertainty estimates, ui, are correct and the measurement errors are 

independent and normally distributed, the weighted least-squares sum minimised by the 

software, 
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is a sample drawn from a chi-square distribution with the degree of freedom  = N-k, where N 

is the number of data points and k is the number of coefficients in the fitted function. 
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Figure 1: Left: Natural logarithm of the absolute values of the orthogonal coefficients i, 

obtained by fitting power series to the (T – T90) data listed in Tables 1 and 2 applying the Björck 

algorithm, in dependence on the fitting order. The dashed lines are a line fit to the steep and a 

fit of a constant to the flat part of the data, respectively. Their intersection suggests a 11th or 

12th order fit. Right: Statistical measures for fit quality vs polynomial order:2, AICc, and BIC 

(for details see text). 

 

Typically, the calculated 2 value falls as the order of the fit increases and converges to 

a constant value when there is no more structure to be detected in the data. If the asymptotic 

value for  2 is too large or too small, then one or more of the assumptions is incorrect. Figure 2 

shows that the residuals to the weighted fit are very nearly normally distributed, and the  2 

value calculated from the fits of order larger than 10 to the combined data of Table 1 and Table 2 

is also within expected bounds. While the chi-square test is a useful indicator confirming that a 

model is consistent with measurement uncertainties, it is not a discerning test of fit order.  

Two commonly used tests for the quality of fit are based on the Bayesian Information 

Criterion (BIC) and the Akaike Information Criterion with the small-number correction (AICc) 

(for details see [46]). For a weighted least-squares fit using normally distributed data with 

correctly estimated uncertainties, both the AICc and the BIC for an nth-order polynomial can be 

expressed as: 

 

2ln( )BIC k N = + , (3) 

and 

22 ( 1)
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with k = n+2. 
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Figure 2: Number of measurements versus the ratio of the deviation between the single 

experiment (T-T90)meas and D(T90) to the combined uncertainty of the single experiment and 

u(D(T90)), ucombined. 

 

The right part of Figure 1 plots the values of 2, AICc, and BIC versus the fit order, n. 

The optimum fit order is identified by the minimum of the curves. There is a subtle difference 

between the two criteria. Ideally, the minimum of the BIC identifies the model that is the best 

descriptor of the analysed data, whereas the minimum of the AICc identifies the model that is 

the best predictor of new data. Since the polynomial is to be used to correct new temperature 

measurements, the AICc is the appropriate measure of fit quality. It suggests that any 

polynomial in the range 11th- to 13th-order would be similarly satisfactory. The BIC and AICc 

tests are comparative measures, but they do not indicate that we have found the best of all 

possible models. Therefore, there is still a requirement for the model to be reasonable and to fit 

the data well. In addition to the evidence from the 2 value and the distribution of residuals 

showing that the model is reasonable, a visual inspection of the data and the fitted polynomials 

showed that there was little difference between all of models of 11th- order and above, except 

for a small ‘bulge’ in the residuals near 320 K, which largely disappeared with the 12th-order 

model.  
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Figure 3: Left: The data listed in Tables 1 and 2 was allocated in data sets for the three primary 

thermometer types CVGT, AGT and PGT (polarizing gas thermometry, PGT, combines DCGT 

and RIGT as defined in the MeP-K [4, 5]). The results of weighted fits of 7th order of (T-T90) 

versus temperature for the three primary thermometers are shown as solid lines. The thin dashed 

lines of specific colour envelop the range (T-T90) ± uminexp, with uminexp corresponding to the 

minimal single-experiment standard uncertainty estimates and marked in Tables 1 and 2 by 

asterisk. Right: Deviation of different fitting results from the function D(T90) obtained by a 

weighted 12th order fit: Blue line: reduced dataset (see text); Red line: unweighted 12th order fit 

of the complete dataset; Black line: weighted 9th order fit. The thin dashed lines of specific 

colour envelop ((T-T90)fit-D(T90)) ± ufit, with the specific standard fitting uncertainty estimates 

ufit. 

 

To test for some hidden uncertainty components due to the use of different primary 

thermometers, the data sets listed in Tables 1 and 2 were allocated in three groups. The first one 

is the CVGT group, the second one the AGT group, and the third one the PGT group, which 

combines data from both DCGT and RIGT. A separate study of DCGT and RIGT is not 

reasonable due to similarity of the methods. The only difference is the detection technique, 

which is in the case of DCGT a capacitance measurement and in the case of RIGT a microwave 

frequency measurement. Therefore, both techniques have been merged to PGT (see MeP-K 

[4, 5]). The three individual data sets have been treated in the same way as the complete dataset 

discussed before. The only difference is the use of fit order seven instead of twelve to avoid 

oscillations. The uncertainty estimates are simply the smallest uncertainties of individual 

experiments for the specific temperature range (marked with an asterisk in Tables 1 and 2). In 

the left part of Figure 3 it is clearly shown that all primary thermometers agree well within their 
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uncertainties. This is a strong argument that the datasets can be treated together as one data set, 

and a splitting into individual primary thermometers is not necessary. 

The following stability checks of the result have been made. The first test was performed 

with a reduced dataset, where the number of data points was almost halved. In particular, the 

most accurate data from [29] has been thinned out. The choice was random with the idea to 

demonstrate that the fit is not solely dominated by the data with the lowest uncertainty. The 

specific points used for the reduced dataset are marked in red in Table 2. The next check was 

performed with an unweighted fit of 12th order to the complete dataset, and finally a weighted 

9th order fit was made. All deviations relative to the weighted 12th order full-data-set fit D(T90) 

are shown in the right part of Figure 3. It is clearly visible that the fitting result is extremely 

stable. D(T90) is neither dominated by the fit order nor, in most parts, by the weighting of a 

specific dataset. The reason for the larger deviation of the unweighted fit between 50 K and 

100 K is that most of data in this range has larger uncertainties and larger deviations from the 

overall fit. This has no effect on the weighted fit, but leads to stronger, unrealistic deviations 

for the unweighted fit. In other temperature ranges, this is not the case.  

Finally, the 12th-order polynomial was chosen: the coefficients are given in Table 3, and 

the agreement between the fit function D(T90) and the individual experimental data (T - T90)meas 

is analysed as follows. Figure 2 plots a histogram of the normalised residuals of the fit, 

((T -T90)meas-D(T90))  /  ucombined, where ucombined is the combined uncertainty of the fit and the 

uncertainties listed in Tables 1 and 2. Ideally, the normalised residuals should be normally 

distributed. The actual distribution is close to normal, perhaps very slightly skewed, and has 

most of the 219 points within ±3, as expected. There are also no conspicuous outliers. In 

Figure 4 the experimental data together with D(T90) is plotted, and in Figure 5 corresponding 

residuals are shown with a remarkable consistency between the residuals and the uncertainties. 

Evidently, the number of outliers is negligible, and their deviations are tolerable. 

The fitted polynomial is continuous in all derivatives over the range of the data and has 

a slope at TPW of 0.132(6) mK K-1. In contrast, the 2011 formulation of D2011(T90) used 

different analytical functions below and above TPW, with slopes of 0.070 mK K-1 (below TPW) 

and 0.101 mK K-1 (above TPW) [8]. The steeper slope of the present work reflects the extra 

detail from new low-uncertainty acoustic gas thermometry measurements in the vicinity of the 

TPW [27-29]. No anomaly in thermodynamic temperature, T, is expected at TPW, but the scale 

temperature, T90, has small discontinuities in the first and third derivatives due, respectively, to 

the different ITS-90 interpolating equations [3,47] and the different reference functions [48] 

below and above TPW. 
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Figure 4: Left: (T – T90) data as listed in Tables 1 and 2 versus temperature T90. The institutes 

at which the data has been obtained are listed in the legend. WG4 is the data contained in 

Table 2 of [8] and shown for comparison purposes. The red full line shows the fitting function 

D(T90), and the dashed lines envelop the range D(T90) ± ucombined(D(T90)), with the combined 

standard uncertainty ucombined(D(T90)). Right: The same as on the left but in a restricted 

temperature range. 

 

 

Figure 5: Left: The residual deviation of the (T-T90)meas data listed in Tables 1 and 2 from the 

12th order fit function D(T90) is shown versus temperature. WG4 is the data contained in Table 2 

of [8] and shown for comparison purposes. The red dashed lines envelop the range 

± ucombined(D(T90)), with the combined standard uncertainty ucombined(D(T90)). Right: The same 

as on the left but in a restricted temperature range. 
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4. Uncertainties 

 

Table 3 

 

The two dashed lines in Figure 5 plot the envelope of the standard uncertainty, u(D(T90)), 

derived from three contributions. The first contribution, ufit(D(T90)), is propagated from the 

uncertainties reported in the data used in the least squares fit (Tables 1 and 2). See [44] for the 

uncertainty propagation equations. The uncertainty propagation for weighted least-squares fits 

assumes the weighted residuals in the fit are independent and identically distributed. As 

Figure 2 shows, the residuals are very close to expectations. However, the patterns of residuals 

in Figure 5 shows the residuals are not independent. Correlations in the residuals arise from 

small systematic effects within each dataset, including non-uniqueness in the realisations of 

ITS-90 used in each experiment. To investigate the effects of correlations, generalised least-

squares fits with non-diagonal covariance matrices were performed. It was found that the fit 

uncertainties were insensitive to modest correlations and unreasonably large correlations were 

required to yield any significant effects. Therefore, the effects of correlations are assumed to be 

negligible. 

 The second contribution to the uncertainty, u(T - T90)TPW, arises from the fact that most 

of the measurements of (T − T90) used the TPW as a reference, and the uncertainty in the 

thermodynamic temperature of the TPW, u(TTPW), is now 0.10 mK. Consequently, this 

uncertainty must be propagated to other temperatures by multiplying u(TTPW) with the ratio 

T/TTPW and adding in quadrature to the fit uncertainty. Note that the best estimate of the 

thermodynamic temperature of the triple point of water remains 273.1600(1) K, and readers 

who wish to use the triple point of water as a thermodynamic reference point should continue 

to use this value and uncertainty. 

 The third contribution is the non-uniqueness of the ITS-90, u(T90)NU. It consists of 

different sub contributions. In the present work, the dominating one is by nature a component 

that cannot be reduced. It is an inherent feature of the ITS-90 itself and not of the individual 

standard platinum resistance thermometer as interpolation instrument. The complete input from 

Table 2 and partially the input from Table 1 already includes the non-uniqueness component. 

For the present (T − T90) data this component is a clear and omnipresent Type B component and 

cannot be reduced by averaging of different results as in this case for a fit to different data sets. 
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It is clearly visible in Table 4, that for temperatures below 25 K and above 255 K, the 

uncertainty of the fit ufit(D(T90)) is below u(T90)NU. Consequently, to avoid underestimation of 

the overall uncertainty, it is preferable to allow for a potential double counting in some cases 

because the size of a possible overestimation is acceptable. Below 25 K, the estimates for the 

non-uniqueness are based on the standard deviation of the results obtained in Key Comparisons 

CCT-K1 [49] and EURAMET.T-K1.1 [50] in the temperature range from 4K to 25K. From 

25 K to 335 K, recommendations of the CCT were considered that are given in [51]. 

The combination of the uncertainty components leads finally to the combined standard 

uncertainty u(D(T90)) shown by the dashed lines in Figure 5. Numerical values of the 

uncertainty are tabulated in Table 4 at the same temperatures as treated in [8]. A polynomial of 

6th order has also been fitted to the uncertainty estimates listed in Table 4 to give a simple 

smooth functional description. The coefficients are also listed in Table 3. 

 The uncertainty u(D(T90)) is the uncertainty in the correction D(T90). To obtain the 

uncertainty in the thermodynamic temperature, this uncertainty must be added in quadrature to 

the uncertainty in users’ realisations of ITS-90. Guidance on the realisation of ITS-90 and on 

the calculation of the uncertainty can be found in the online BIPM guides [52]. 

The function D(T90) is valid in the range of the fitted data from 4 K to 335 K, with a 

reduction in uncertainty of an order of magnitude compared to those given in [8]. Users working 

in a broader temperature range above and below 335 K might be interested in a smooth 

correction. A smooth transition from the new function D(T90) to the old WG4 fitting function 

for temperatures from the TPW up to the copper point, D2011(T90), deduced in [8], is the point 

of intersection at T90 = 288.418 K. D2011(T90) is given by 

4
2

2011 90 90 90 90

0

( ) / mK ( ) / mK ( / K) (273.16 K / ) i

i

i

D T T T T c T
=

= − =  , (7) 

with c0 = 0.0497; c1 = -0.3032; c2 = 1.0254; c3 = -1.2895 and c4 = 0.5176 (for more details see 

[8]). In addition, the change of slope at the transition point is very small. If the user is only 

interested in the temperature range below 335 K, the new function D(T90) is recommended. 

 

Table 4 

 

5. Summary and conclusions 

Since 2011, when the previous estimates of (T − T90) were published by the CCT, there has been 

a change in the definition of the kelvin, and significant advances in primary thermometry were 

achieved, yielding much improved measurements of (T − T90) over the range from 4 K to 323 K. 
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The analysis here combines the new data with the older data used in the 2011 analysis to update 

the consensus values for (T − T90) over the range from 4K to 323 K. The updated values are 

represented by a 12th-order polynomial (coefficients listed in Table 3) with uncertainties given 

by a 6th-order polynomial (Table 3). The uncertainties in the (T − T90) values are now 

comparable with the uncertainty in the best primary measurements of thermodynamic 

temperatures and the uncertainties in ITS-90 realisations. So, in combination with ITS-90 

measurements, the results presented here offer an important means for achieving a state-of-the-

art determination of thermodynamic temperature without the high cost and inconvenience of 

primary thermometry. 

For the temperature range below 4 K, the recommendations of [8] should be used. From 

0.65 K to 2 K, the application of the helium-3 vapour-pressure scale PTB-2006 [53] is 

recommended. This scale is consistent with the Provisional Low Temperature Scale of 2000, 

PLTS-2000 [54], from 0.65 K to 1 K. From 2 K to 4 K, the ITS-90 can be used. In this range, 

PTB-2006 and ITS-90 are equivalent. The recommendation is supported by a recently 

performed direct comparison of the melting and vapour pressures of helium-3 at the LNE [55]. 

The overview [56] shows that the thermodynamic deviation of the ITS-90 below 1.5 K has been 

verified consistently in three different ways by two independent groups in each case. 
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Table 1:  =(T − T90) input data together with uncertainty estimates. The references are given in the top row. The uncertainty values marked with an 

asterisk are the ones used for estimating of Uminexp (k=1) shown in Figure 3. Dataset PTB_2011_org is superseded by PTB_2011_rev. It is listed to allow 

for complete reproduction of the values published in [8] see footnote 1. 

 VNIIFTRI_2011 

[22] 
INRIM_2011 [13] NPL_2011 [29] PTB_2011_org 

[19,20] 

PTB_2011_rev [21] UL-ICL_2011 

[18] 
NML_2011 [25] KOL_2011 based on 

[23] 
NIST_2011 [15-

17]), 
LNE_NIST_2011 

[14] 
NMIJ_2011 [24] 

T90  u  u  u  u  u  u  u  u  u  u  u 

4.2 0.02 0.40   0.00 0.20 0.04 0.17 -0.07 0.23     -0.57 0.48     -0.22 0.64 

5 -0.08 0.42   0.04 0.21 0.24 0.18 0.03 0.18     -0.25 0.50     -0.05 0.67 

6 -0.16 0.44   0.09 0.22 0.10 0.19 0.09 0.19     -0.46 0.52     0.14 0.71 

7 -0.20 0.46   0.14 0.23 -0.03 0.2 0.07 0.19     -0.47 0.54   -0.14 0.12 0.31 0.76 

8 -0.20 0.48   0.18 0.25 -0.04 0.2 0.03 0.20     -0.36 0.56   0.01 0.13 0.46 0.80 

9.288 -0.16 0.51   0.23 0.27 0.04 0.22 -0.01 0.21     -0.37 0.59   0.20 0.15 0.62 0.84 

11 -0.05 0.54   0.28 0.30 0.14 0.23 0.03 0.22     -0.69 0.63   0.43 0.17 0.78 0.89 

13.8033 0.17 0.61   0.33 0.34 0.26 0.25 0.20 0.24     -0.70 0.70   0.72 0.21 0.90 0.91 

17.035 0.36 0.68   0.35 0.37 0.41 0.28 0.25 0.27   -0.70 1.12 -0.24 0.80   0.80 0.25 0.83 0.84 

20.27 0.35 0.75   0.32 0.40 0.28 0.31 0.12 0.30   -0.35 1.29 -0.59 0.90   0.46 0.29 0.52 0.73 

22.5 0.18 0.80   0.27 0.43 0.31 0.33 0.08 0.31   -0.14 1.40 -0.87 0.97   -0.10 0.32 0.18 0.66 

24.5561 -0.21 0.84   0.21 0.48 0.42 0.35 0.03 0.31   0.03 1.49 -1.34 1.05   -0.90 0.35 -0.23 0.64 

35 -0.62 1.07           0.63 1.97 -1.70 1.48       

45 -0.14 1.29           0.85 2.39 -2.35 1.98       

54.3584 0.40 1.50           0.82 2.74 -2.93 2.54       

70 0.52 1.82           0.46 3.25 -3.66 3.63       

77.657 0.04 1.97           0.20 3.47 -3.84 4.24   -3.98 0.37*   

83.8058 -0.60 2.09           -0.02 3.62 -4.10 4.77   -4.58 0.40*   

90 -1.46 2.19         -7.29 1.02 -0.26 3.76 -5.03 5.34   -5.16 0.44*   

100 -3.20 2.35         -7.74 1.00 -0.64 3.96 -6.19 6.33   -6.04 0.48   

130 -9.04 2.67         -8.49 0.94 -1.55 4.31     -7.98 0.60   

161.405 -11.57 2.68         -8.33 0.93 -2.00 4.29     -8.44 0.68   

195 -7.65 2.32         -7.11 0.95 -2.00 3.83     -7.00 0.70   

234.3156 -0.42 1.61 -2.95 0.91       -4.28 1.04 -1.59 2.72   -3.33 0.60 -3.48 0.67   

255 0.81 1.30 -2.01 0.90       -2.18 1.11 -1.05 1.88   -2.08 0.60 -1.45 0.62   

273.16 In 2011, T-T90=0 mK with u(T-T90)=0; after the redefinition of the kelvin, still T-T90=0 mK, but now u(T-T90)=0.10 mK temperature equivalent uncertainty of the Boltzmann constant right before its redefinition).” 

290 0.08 1.40 1.61 0.96       1.78 1.26     2.81 0.56     

302.9146 3.04 1.87 3.26 1.01             4.58 0.57     

335   7.23 1.21             7.72 0.60     
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Table 2:  =(T − T90) input data together with uncertainty estimates. The references are given in the top row. The data points highlighted in red are 

the ones used for the reduced dataset (see Figure 3). The uncertainty values marked with an asterisk are the ones used for estimating Uminexp (k=1) shown 

in Figure 3 
TIPC-LNE [36] LNE-TIPC [30] INRIM [27, 36] NIM [28] NMIJ [32, 38] NPL [29] NRC [35] PTB [21, 33, 34] VNIIFTRI [30] 

T90  u T90  u T90  u T90  u T90  u T90  u T90  u T90  u T90  u 

24.55535 -0.35 0.26 24.5561 -0.95 0.24* 13.8033 0.75 1.7 234.2107 -1.8 0.5 4.22194 0.10 0.7 118.15 -6.27 0.42 24.5561 -0.61 0.49 28.5 -0.23 0.45 83.8058 -4.81 1.02 

23.00025 -0.21 0.25    24.5561 -1.11 0.39 243.1051 -3.3 0.5 4.59018 0.19 0.7 133.15 -7.08 0.44* 54.3584 -2 0.8 30 -0.25 0.50 79 -4.47 0.97 

21.99973 -0.05 0.22*    54.3584 -3.44 0.53 258.078 -0.6 0.5 5.00227 0.27 0.7 148.15 -7.5 0.44 83.8058 -4.1 1.6 30 -0.76 0.78    

20.99828 0.15 0.2    83.8058 -4.35 1.05 292.6937 2.1 0.6 5.47085 0.35 0.7 163.15 -7.08 0.42* 161.406 -6.9 1.7 31.5 -0.25 0.52    

20.2679 0.28 0.19*    161.406 -6.37 2.9 298.2272 2.4 0.7 6.00147 0.47 0.8 178.15 -5.94 0.39    32 -0.46 0.55    

18.99873 0.56 0.21    236.619 -2.43 0.34 303.2614 3.7 0.8 6.59957 0.57 0.8 191.15 -4.76 0.36*    33 -0.24 0.52    

17.99977 0.7 0.22*    247 -2.65 0.25    7.30268 0.68 0.8 207.15 -3.46 0.34    34 -0.87 0.41*    

17.03389 0.79 0.22    260.12 -1.58 0.29    8.1035 0.80 0.9 223.15 -3.08 0.26    34.5 -0.24 0.52    

16.00012 0.81 0.22    302.914

6 

3.73 0.33    10.001 1.00 0.9 233.15 -2.83 0.23*    36 -0.95 0.42    

15.00062 0.76 0.19    334.17 6.57 0.42*    12.0011 1.12 1 243.15 -2.73 0.21    36 -0.26 0.52    

13.80428 0.62 0.16*          13.8044 1.14 0.9 253.15 -2.26 0.19*    38 -0.86 0.63    

12.00052 0.37 0.13*          15.4197 1.09 0.9 258.15 -1.86 0.21    130 -7.21 1.57    

10.00094 0.24 0.13*          17.036 0.99 0.9 263.15 -1.29 0.2    140 -6.15 1.67    

8.00097 0.3 0.11*          18.6461 0.83 0.8 268.15 -0.94 0.2    49.83501 -1.86 0.30*    

7.00026 0.37 0.1*          20.2706 0.61 0.7 278.15 0.77 0.18    50.786863 -1.93 0.27    

6.00006 0.4 0.11*          22.3002 0.25 0.7 283.15 1.32 0.21    59.784505 -2.11 0.31*    

5.00021 0.33 0.1*          24.5559 -0.23 0.6 288.15 2.06 0.25*    69.738738 -3.09 0.39*    

            283.15 1.3 0.7 293.15 2.70 0.28    78.558011 -3.82 0.42    

            293.15 2.7 0.8 298.15 3.24 0.32    100.49553 -5.16 0.48*    

            302.9146 4.1 0.8 303.15 3.79 0.32*    200.08784 -4.40 0.99    

               313.15 5.00 0.43    84 -3.74 0.43    

               323.15 5.68 0.51    120 -5.06 0.65    

                     3.99831 0.12 0.21*    

                     13.76466 0.07 0.25    

                     24.55518 -0.56 0.28    
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Table 3: Fitting coefficients for the power series approximating the T -T90 input data 

(D(T90): i) and its standard uncertainty estimates (ucombined-LS(D(T90)): i) resulting from a least 

squares (LS) fit to ucombined in specific temperature ranges, respectively. 

 

  
i i i 

0 -6.393509785E-01 6.362639E-02 

1 2.044362025E-01 1.251359E-02 

2 -1.453482491E-02 -3.880108E-04 

3 4.860355653E-04 4.878407E-06 

4 -1.152913045E-05 -2.789077E-08 

5 1.932372065E-07 7.268939E-11 

6 -2.222708123E-09 -6.999818E-14 

7 1.722390583E-11  

8 -8.878574513E-14  

9 2.985516966E-16  

10 -6.273436285E-19  

11 7.467125710E-22  

12 -3.840581614E-25  
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Table 4: The fitting function (T – T90) versus T90, D(T90), is tabulated at the same temperatures 

as in [8]. In the next column the uncertainty of the weighted fit ufit(D(T90)) is listed. The 

following columns give the contributions that must be added to ufit(D(T90)) to give finally 

u(D(T90)) as a combined uncertainty estimate for D(T90). The ucombined(D(T90)) values can be 

accessed in fitted form by the power series of 6th order (ucombined-LS(D(T90))) using the 

coefficients i given in Table 3. 

T/K D(T90) 

/ mK 

ufit(D(T90)) 

/ mK 

u(T − T90)TPW 

/ mK 

u(T90)NU 

/ mK 

ucombined(D(T90)) 

/ mK 

4.2 0.00 0.06 0.00 0.12 0.13 

5 0.07 0.05 0.00 0.12 0.13 

6 0.16 0.03 0.00 0.12 0.12 

7 0.22 0.03 0.00 0.12 0.12 

8 0.27 0.03 0.00 0.12 0.13 

9.288 0.32 0.04 0.00 0.12 0.13 

11 0.36 0.04 0.00 0.14 0.15 

13.8033 0.36 0.04 0.01 0.19 0.19 

17.035 0.29 0.04 0.01 0.19 0.19 

20.27 0.16 0.05 0.01 0.19 0.19 

22.5 0.05 0.05 0.01 0.19 0.19 

24.5561 -0.06 0.06 0.01 0.19 0.20 

35 -0.76 0.10 0.01 0.24 0.26 

45 -1.51 0.13 0.02 0.11 0.17 

54.3584 -2.21 0.14 0.02 0.00 0.14 

70 -3.30 0.14 0.03 0.07 0.15 

77.657 -3.80 0.14 0.03 0.05 0.15 

83.8058 -4.21 0.15 0.03 0.00 0.15 

90 -4.62 0.15 0.03 0.05 0.16 

100 -5.32 0.17 0.04 0.10 0.20 

130 -7.30 0.21 0.05 0.16 0.27 

161.405 -7.34 0.21 0.06 0.16 0.27 

195 -4.73 0.18 0.07 0.12 0.23 

234.3156 -2.89 0.10 0.09 0.00 0.13 

255 -1.97 0.08 0.09 0.09 0.15 

273.16 -0.07 0.07 0.10 0.00 0.12 

290 2.29 0.09 0.11 0.18 0.23 

302.9146 3.84 0.14 0.11 0.28 0.34 

335 7.09 0.37 0.12 0.46 0.60 

 


