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Executive Summary

As individuals and communities interact in and with an environment that is increasingly
virtual, they are often vulnerable to the commodification of their digital footprint. Concepts
and behavior that are ambiguous in nature are captured in this environment, quantified,
and used to categorize, sort, recommend, or make decisions about people’s lives. While
many organizations seek to utilize this information in a responsible manner, biases remain
endemic across technology processes and can lead to harmful impacts regardless of intent.
These harmful outcomes, even if inadvertent, create significant challenges for cultivating
public trust in artificial intelligence (AI).

While there are many approaches for ensuring the technology we use every day is
safe and secure, there are factors specific to AI that require new perspectives. AI sys-
tems are often placed in contexts where they can have the most impact. Whether that
impact is helpful or harmful is a fundamental question in the area of Trustworthy and
Responsible AI. Harmful impacts stemming from AI are not just at the individual or en-
terprise level, but are able to ripple into the broader society. The scale of damage, and
the speed at which it can be perpetrated by AI applications or through the extension of
large machine learning MODELs across domains and industries requires concerted effort.

Fig. 1. The challenge of managing AI bias

Current attempts for addressing the
harmful effects of AI bias remain focused
on computational factors such as rep-
resentativeness of datasets and fairness
of machine learning algorithms. These
remedies are vital for mitigating bias,
and more work remains. Yet, as illus-
trated in Fig. 1, human and systemic in-
stitutional and societal factors are sig-
nificant sources of AI bias as well, and
are currently overlooked. Successfully
meeting this challenge will require tak-
ing all forms of bias into account. This
means expanding our perspective beyond
the machine learning pipeline to recog-
nize and investigate how this technology
is both created within and impacts our so-
ciety.

Trustworthy and Responsible AI is not just about whether a given AI system is biased,
fair or ethical, but whether it does what is claimed. Many practices exist for responsibly
producing AI. The importance of transparency, datasets, and test, evaluation, validation,
and verification (TEVV) cannot be overstated. Human factors such as participatory design
techniques and multi-stakeholder approaches, and a human-in-the-loop are also important
for mitigating risks related to AI bias. However none of these practices individually or in
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concert are a panacea against bias and each brings its own set of pitfalls. What is miss-
ing from current remedies is guidance from a broader SOCIO-TECHNICAL perspective that
connects these practices to societal values. Experts in the area of Trustworthy and Respon-
sible AI counsel that to successfully manage the risks of AI bias we must operationalize
these values and create new norms around how AI is built and deployed. This document,
and work by the National Institute of Standards and Technology (NIST) in the area of AI
bias, is based on a socio-technical perspective.

The intent of this document is to surface the salient issues in the challenging area of
AI bias, and to provide a first step on the roadmap for developing detailed socio-technical
guidance for identifying and managing AI bias. Specifically, this special publication:

• describes the stakes and challenge of bias in artificial intelligence and provides ex-
amples of how and why it can chip away at public trust;

• identifies three categories of bias in AI — systemic, statistical, and human — and
describes how and where they contribute to harms;

• describes three broad challenges for mitigating bias — datasets, testing and eval-
uation, and human factors — and introduces preliminary guidance for addressing
them.

Bias is neither new nor unique to AI and it is not possible to achieve zero risk of bias in an
AI system. NIST intends to develop methods for increasing assurance, GOVERNANCE and
practice improvements for identifying, understanding, measuring, managing, and reducing
bias. To reach this goal, techniques are needed that are flexible, can be applied across con-
texts regardless of industry, and are easily communicated to different stakeholder groups.
To contribute to the growth of this burgeoning topic area, NIST will continue its work in
measuring and evaluating computational biases, and seeks to create a hub for evaluating
socio-technical factors. This will include development of formal guidance and standards,
supporting standards development activities such as workshops and public comment pe-
riods for draft documents, and ongoing discussion of these topics with the stakeholder
community.

Key words

bias, trustworthiness, AI safety, AI lifecycle, AI development
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The Information Technology Laboratory (ITL) at NIST develops tests, test methods,
reference data, proof of concept implementations, and technical analyses to advance the de-
velopment and productive use of information technology. ITL’s responsibilities include the
development of management, administrative, technical, and physical standards and guide-
lines.

This special publication focuses on addressing and managing risks associated with bias
in the design, development, and use of AI. It is one of a series of documents and workshops
related to the NIST AI Risk Management Framework (AI RMF) and is intended to advance
the trustworthiness of AI technologies. As with other documents in the AI RMF series,
this publication provides reference information and technical guidance on terminology,
processes and procedures, and test and evaluation, validation, and verification (TEVV).
While practical guidance4 published by NIST may serve as an informative reference, this
guidance remains voluntary.

The content of this document reflects recommended practices. This document is not
intended to serve as or supersede existing regulations, laws, or other mandatory guidance.

4The term ’practice guide,’ ’guide,’ ’guidance’ or the like, in the context of this paper, is a consensus-created,
informative reference intended for voluntary use; it should not be interpreted as equal to the use of the term
’guidance’ in a legal or regulatory context.” This document does not establish any legal standard or any other
legal requirement or defense under any law, nor have the force or effect of law.
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How to read this document
Section 1 lays out the purpose and scope of NIST’s work in AI bias. Section 2 describes
three categories of bias and how they may occur in the commission, design, development,
and deployment of AI technologies that can be used to generate predictions, recommenda-
tions, or decisions (such as the use of algorithmic decision systems), and how AI systems
may impact individuals and communities or create broader societal harms. Section 3 de-
scribes the challenge of bias related to three core areas: datasets; test, evaluation, validation
and verification; and human factors, and provides general guidance for managing AI bias
in each of those areas.

This document uses terms such as AI technology, AI system, and AI applications inter-
changeably. Terms related to the machine learning pipeline, such as AI model or algorithm
are also used in this document interchangeably. Depending on context, when the term
“system” is used it may refer to the broader organizational and/or social ecosystem within
which the technology was designed, developed, deployed, and used, instead of the more
traditional use related to computational hardware or software.

Important reading notes:

• The document includes a series of vignettes, shown in red callout boxes, to help
exemplify how and why AI bias can reduce public trust. Interesting nuances/aspects
are highlighted in blue callout boxes, important takeaways are shown as framed text.

• Terms that are displayed as small caps in the text are defined in the GLOSSARY.
Clicking on a word shown in small caps, e.g. MODEL, takes the reader directly to the
definition of that term in the Glossary. From there, one may click on a page number
shown at the end of the definition to return.
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1. Purpose and Scope

In August 2019, fulfilling an assignment in an Executive Order on AI,5 NIST released “A
Plan for Federal Engagement in Developing Technical Standards and Related Tools” [1].
Based on broad public and private sector input, this plan recommended a deeper, more
consistent, and long-term engagement in AI standards “to help the United States to speed
the pace of reliable, robust, and trustworthy AI technology development.” NIST research
in AI continues along this path to focus on how to measure, evaluate, and enhance the
trustworthiness of AI systems and the responsible practices for designing, developing, and
deploying such systems. Working with the AI community, NIST has identified the follow-
ing technical and socio-technical characteristics needed to cultivate trust in AI systems:
accuracy, explainability and interpretability, privacy, reliability, robustness, safety, and se-
curity resilience—and that harmful biases are mitigated or controlled.

While AI has significant potential as a transformative technology, it also poses inher-
ent risks. Since trust and risk are closely related, NIST’s work in the area of trustworthy
and responsible AI centers around development of a voluntary Risk Management Frame-
work (RMF). The unique challenges of AI require a deeper understanding of how AI risks
differ from other domains. The NIST AI RMF is intended to address risks in the de-
sign, development, use, and evaluation of AI products, services, and systems for such tasks
as recommendation, diagnosis, pattern recognition, and automated planning and decision-
making. The framework is intended to enable the development and use of AI in ways that
will increase trustworthiness, advance usefulness, and address potential harms. NIST is
leveraging a multi-stakeholder approach to creating and maintaining actionable practice
guides via the RMF that is broadly adoptable.

AI risk management
AI risk management seeks to minimize anticipated and emergent negative impacts of AI
systems, including threats to civil liberties and rights. One of those risks is bias. Bias exists
in many forms, is omnipresent in society, and can become ingrained in the automated
systems that help make decisions about our lives. While bias is not always a negative
phenomenon, certain biases exhibited in AI models and systems can perpetuate and amplify
negative impacts on individuals, organizations, and society. These biases can also indirectly
reduce public trust in AI. There is no shortage of examples where bias in some aspect of
AI technology and its use has caused harm and negatively impacted lives, such as in hiring,
[2–7] health care, [8–17] and criminal justice [18–30]. Indeed, there are many instances
in which the deployment of AI technologies have been accompanied by concerns about
whether and how societal biases are being perpetuated or amplified [31–46].

Public perspectives
Depending on the application, most Americans are likely to be unaware of when they are

5Exec. Order No. 13,859, 84 Fed. Reg. 3,967 (Feb. 11, 2019), https://www.federalregister.gov/documents/
2019/02/14/2019-02544/maitaining-american-leadership-in-artificial-intelligence.
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interacting with AI enabled technology [47]. However, there is a general view that there
needs to be a “higher ethical standard” for AI than for other forms of technology [48]. This
mainly stems from the perceptions and fears about loss of control and privacy [46, 49–51].

Bias is tightly associated with the concepts of transparency and fairness in society. For
much of the public, the assumptions underlying algorithms are rarely transparent. The com-
plex web of code and decisions that went into the design, development, and deployment of
AI rarely is easily accessible or understandable to non-technical audiences. Nevertheless,
many people are affected by—or their data is used as inputs for—AI technologies and sys-
tems without their consent, such as when they apply to college, [52] for a new apartment,
[53] or search the internet. When individuals feel that they are not being fairly judged
when applying for jobs [2, 3, 5, 7, 54–57] or loans [58–60] it can reduce public trust in AI
technology [61, 62].

When an end user is presented with information online that stigmatizes them based
on their race, age, or gender, or doesn’t accurately perceive their identity, it causes harm
[34, 36, 37, 41]. Consumers can be impacted by price gouging practices resulting from an
AI application, even when it is not used to make decisions directly affecting that individual
[43].
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2. AI Bias: Context and Terminology

For purposes of this publication, the term Artificial Intelligence (AI) refers to a large class
of software-based systems that receive signals from the environment and take actions that
affect that environment by generating outputs such as content, predictions, recommenda-
tions, classifications, or decisions influencing the environments they interact with, among
other outputs [63]. Machine learning (ML) refers more specifically to the “field of study
that gives computers the ability to learn without being explicitly programmed,” [64] or to
computer programs that utilize data to learn and apply patterns or discern statistical rela-
tionships. Common ML approaches include, but are not limited to, regression, random
forests, support vector machines, and artificial neural networks. ML programs may or may
not be used to make predictions of future events. ML programs also may be used to create
input for additional ML programs. AI includes ML within its scope.

While AI holds great promise, the convenience of automated classification and discov-
ery within large datasets can come with significant downsides to individuals and society
through the amplification of existing biases. Bias can be introduced purposefully or inad-
vertently into an AI system, or it can emerge as the AI is used in an application. Some
types of AI bias are purposeful and beneficial. For example, the ML systems that underlie
AI applications often model our implicit biases with the intent of creating positive expe-
riences for online shopping or identifying content of interest [65, 66]. The proliferation
of recommender systems and other modeling and predictive approaches has also helped to
expose the many negative social biases baked into these processes, which can reduce public
trust [67–70].

AI is neither built nor deployed in a vacuum, sealed off from societal realities of dis-
crimination or unfair practices. Understanding AI as a socio-technical system acknowl-
edges that the processes used to develop technology are more than their mathematical and
computational constructs. A socio-technical approach to AI takes into account the val-
ues and behavior modeled from the datasets, the humans who interact with them, and the
complex organizational factors that go into their commission, design, development, and
ultimate deployment.

2.1 Characterizing AI bias

2.1.1 Contexts for addressing AI bias

Statistical context
In technical systems, bias is most commonly understood and treated as a statistical phe-
nomenon. Bias is an effect that deprives a statistical result of representativeness by system-
atically distorting it, as distinct from a random error, which may distort on any one occasion
but balances out on the average [71]. The International Organization for Standardization
(ISO) defines bias more generally as: “the degree to which a reference value deviates from
the truth”[72]. In this context, an AI system is said to be biased when it exhibits system-
atically inaccurate behavior. This statistical perspective does not sufficiently encompass or
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communicate the full spectrum of risks posed by bias in AI systems.

Legal context
This section was developed in response to public comments. Stakeholder feedback noted
that the discussion of bias in AI could not be divorced from the treatment of bias in the
U.S. legal system and how it relates to laws and regulations addressing discrimination and
fairness, especially in the areas of consumer finance, housing, and employment.6,7 There
currently is no uniformly applied approach among the regulators and courts to measuring
impermissible bias in all such areas. Impermissible discriminatory bias generally is defined
by the courts as either consisting of disparate treatment, broadly defined as a decision that
treats an individual less favorably than similarly situated individuals because of a protected
characteristic such as race, sex, or other trait, or as disparate impact, which is broadly
defined as a facially neutral policy or practice that disproportionately harms a group based
on a protected trait.8

This section is presented not as legal guidance, rather as a
reminder for developers, deployers, and users of AI that they
must be cognizant of legal considerations in their work, par-
ticularly with regard to bias testing. This section provides
basic background understanding of some of the many ways
bias is treated in some federal laws.

As it relates to disparate impact, courts and regulators have utilized or considered as
acceptable various statistical tests to evaluate evidence of disparate impact. Traditional
methods of statistical bias testing look at differences in predictions across protected classes,
such as race or sex. In particular, courts have looked to statistical significance testing to
assess whether the challenged practice likely caused the disparity and was not the result of
chance or a nondiscriminatory factor.9

6Many laws, at the federal, state and even municipal levels focus on preventing discrimination in a host of
areas. See e.g. Title VII of the Civil Rights Act, regarding discrimination on the basis of sex, religion,
race, color, or national origin in employment, the Equal Credit Opportunity Act, focused, broadly, on dis-
crimination in finance, the Fair Housing Act, focused on discrimination in housing, and the Americans with
Disabilities Act, focused on discrimination related to disabilities, among others. Other federal agencies,
including the U.S. Equal Employment Opportunity Commission, the Federal Trade Commission, the U.S.
Department of Justice, and the Office Federal Contract Compliance Programs are responsible for enforce-
ment and interpretation of these laws.

7Note that the analysis in this section is not intended to serve as a fully comprehensive discussion of the law,
how it has been interpreted by the courts, or how it is enforced by regulatory agencies, but rather to provide
an initial high-level overview.

8See 42 U.S.C. 2000e-2(a) (2018) and 42 U.S.C. 2000e-2(k) (2018), respectively.
9The Uniform Guidelines on Employment Selection Procedures (UGESP) state “[a] selection rate for any
race, sex, or ethnic group which is less than four-fifths ( 4/5ths) (or eighty percent) of the rate for the group
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It is important to note, however, that the tests used to measure bias are not applied
uniformly within the legal context. In particular, federal circuit courts are split on whether
to require a plaintiff to demonstrate both statistical and practical significance to make out
a case of disparate impact. Some decisions have expressly rejected practical significance
tests in recent years while others have continued to endorse their utility. This split illustrates
that while the legal context provides several examples of how bias and fairness has been
quantified and adjudicated over the last several decades, the relevant standards are still
evolving.

It is also important to note that critical differences exist between traditional disparate
impact analyses described above and illegal discrimination as it relates to people with dis-
abilities, particularly under the Americans with Disabilities Act (ADA). Claims under the
ADA are frequently construed as “screen out” rather than as “disparate impact” claims.
”Screen out” may occur when an individual with a disability performs poorly on an evalua-
tion or assessment, or is otherwise unable to meet an employer’s job requirements, because
of a disability and the individual loses a job opportunity as a result. In addition, the ADA’s
prohibition against denial of reasonable accommodation, for example, may require an em-
ployer to change processes or procedures to enable a particular individual with a disability
to apply for a job, perform a job, or enjoy the benefits and privileges of employment. Such
disability-related protections are particularly important to AI systems because testing an
algorithm for bias by determining whether such groups perform equally well may fail to
detect certain kinds of bias. Likewise, eliminating group discrepancies will not necessarily
prevent screen out or the need for reasonable accommodation in such systems.

Cognitive and societal context
The teams involved in AI system design and development bring their cognitive biases, both
individual and group, into the process [73]. Bias is prevalent in the assumptions about
which data should be used, what AI models should be developed, where the AI system
should be placed — or if AI is required at all. There are systemic biases at the institu-
tional level that affect how organizations and teams are structured and who controls the
decision making processes, and individual and group heuristics and cognitive/perceptual
biases throughout the AI lifecycle (as described in Section 2.4). Decisions made by end
users, downstream decision makers, and policy makers are also impacted by these biases,
can reflect limited points of view and lead to biased outcomes [74–79]. Biases impacting
human decision making are usually implicit and unconscious, and therefore unable to be
easily controlled or mitigated [80]. Any assumption that biases can be remedied by human
control or awareness is not a recipe for success.

with the highest rate will generally be regarded by the Federal enforcement agencies as evidence of adverse
impact.” 29 C.F.R. § 1607.4(D)
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2.1.2 Categories of AI bias

Based on previous academic work to classify AI bias [81–91] and discussions with thought
leaders in the field, it is possible to identify three dominant categories of AI bias. This three-
way categorization helps to expand our understanding of AI bias beyond the computational
realm. By defining and describing how systemic and human biases present within AI,
we can build new approaches for analyzing, managing, and mitigating bias and begin to
understand how these biases interact with each other. Correspondingly, Fig. 2 presents three
categories of AI bias. Definitions for these terms are found in the GLOSSARY.10 This list
of biases, while not exhaustive, constitutes prominent risks and vulnerabilities to consider
when designing, developing, deploying, evaluating, using, or auditing AI applications.

Systemic
Systemic biases result from procedures and practices of particular institutions that operate
in ways which result in certain social groups being advantaged or favored and others be-
ing disadvantaged or devalued. This need not be the result of any conscious prejudice or
discrimination but rather of the majority following existing rules or norms. Institutional
racism and sexism are the most common examples [92]. Other systemic bias occurs when
infrastructures for daily living are not developed using universal design principles, thus
limiting or hindering accessibility for persons with disabilities. Systemic bias is also re-
ferred to as institutional or historical bias. These biases are present in the datasets used
in AI, and the institutional norms, practices, and processes across the AI lifecycle and in
broader culture and society. See VIGNETTE for more examples.

10Definitions for each category of bias were often selected based on either recently published papers on the
topic, or seminal work within the domain the term is most associated with. When multiple definitions were
identified, the most relevant definition was selected or adapted. The references provided are not intended
to indicate specific endorsement or to assign originator credit.
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Systemic bias in gender identification
Beyond personal identity, human faces encode a number of conspicuous traits
such as nonverbal expression, indicators of sexual attraction and selection, and
emotion. Facial recognition technology (FRT) is used in many types of appli-
cations including gender identification, which compares morphological distances
between faces to classify human faces by gender. The degree of sexual dimor-
phism between men and women appears to vary with age and ethnic group. As a
consequence, accuracy of FRT gender identification can vary with respect to the
age and ethnic group [93]. Prepubescent male faces are frequently misclassified as
female, and older female faces are progressively misclassified as male [93]. Stud-
ies have highlighted that human preferences for sexually dimorphic faces may be
evolutionarily novel [94, 95]. One study found differing levels of facial sexual di-
morphism in samples taken from countries located in Europe, South America, and
Africa [96]. Buolamwini and Gebru examined the accuracy of commercial tech-
nologies using skin types as a proxy for ethnic group and found lower accuracy
particularly among darker-skinned, female faces [36]. While training data based
on a limited or non-representative sample of a group results in lower accuracy
in categorizing members of that group, the degree of sexual monomorphism or
dimorphism within that group also affects accuracy. Additional biases can occur
due to a lack of awareness about the multiplicity of gender [97].
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SYSTEMIC BIAS

HUMAN BIAS

STATISTICAL/
COMPUTATIONAL
BIAS

historical

societal

institutional

SELECTION AND SAMPLING

USE AND INTERPRETATION

PROCESSING/VALIDATATION

INDIVIDUAL

INDIVIDUAL

GROUP

data generation;
detection;
ecological fallacy;
evaluation;
exclusion;
measurement;
popularity;
population;
representation;
Simpson’s Paradox;
temporal;
uncertainty.

activity;
concept drift;
emergent;
content production;
data dredging;
feedback loop;
linking.

amplification;
inherited;
error propagation;
model selection;
survivorship.

groupthink;
funding;
deployment;
sunk cost fallacy.

behavioral;
interpretation;
Rashomon effect or principle;
selective adherence;
streetlight effect;
annotator reporting;
human reporting;
presentation;
ranking.

automation complacency;
consumer;
mode confusion;
cognitive;
anchoring;
availability heuristic;
confirmation;
Dunning–Kruger effect;
implicit;
loss of situational awareness;
user interaction.

Fig. 2. Categories of AI Bias. The leaf node terms in each subcategory in the picture are
hyperlinked to the GLOSSARY. Clicking them will bring up the definition in the Glossary. To
return, click on the current page number (8) printed right after the glossary definition.
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Statistical and Computational
Statistical and computational biases stem from errors that result when the sample is not
representative of the population. These biases arise from systematic as opposed to random
error and can occur in the absence of prejudice, partiality, or discriminatory intent [98]. In
AI systems, these biases are present in the datasets and algorithmic processes used in the
development of AI applications, and often arise when algorithms are trained on one type
of data and cannot extrapolate beyond those data. The error may be due to heterogeneous
data, representation of complex data in simpler mathematical representations, wrong data,
and algorithmic biases such as over- and under-fitting, the treatment of outliers, and data
cleaning and imputation factors.

Human
Human biases reflect systematic errors in human thought based on a limited number of
heuristic principles and predicting values to simpler judgmental operations [99]. These
biases are often implicit and tend to relate to how an individual or group perceives infor-
mation (such as automated AI output) to make a decision or fill in missing or unknown
information. These biases are omnipresent in the institutional, group, and individual de-
cision making processes across the AI lifecycle, and in the use of AI applications once
deployed. There is a wide variety of human biases. Cognitive and perceptual biases show
themselves in all domains and are not unique to human interactions with AI. Rather, they
are a fundamental part of the human mind. There is an entire field of study centered around
biases and heuristics in thinking, decision-making, and behavioral economics for example
[99]. Such research investigates phenomena such as ANCHORING BIAS, availability heuris-
tic or bias, CONFIRMATION BIAS, and framing effects, among many others. It should be
noted that heuristics are adaptive mental shortcuts that can be helpful, allowing complexity
reduction in tasks of judgement and choice, yet can also lead to cognitive biases [99]. Hu-
man heuristics and biases are implicit; as such, simply increasing awareness of bias does
not ensure control over it. Here we focus on broader examples of human bias in the AI
space.

2.2 How AI bias contributes to harms

Technology based on AI has tighter connections to and broader impacts on society than
traditional software. Applications that utilize AI are often deployed across sectors and
contexts for decision-support and decision-making. In this role, they can replace humans
and human processes for high-impact decisions. For example, AI-based hiring technolo-
gies and the models that underlie them replace people-oriented hiring processes and are
implemented in any sector that seeks to automate their recruiting and employment pipeline
[100–102]. Yet, ML models tend to exhibit “unexpectedly poor behavior when deployed
in real world domains” without domain-specific constraints supplied by human operators
[103]. These contradictions are a cause for considerable concern with large language mod-
els (or so-called foundation models) due to their considerable EPISTEMIC and ALEATORIC
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uncertainty[104] (as described in Section 3.2.1)—among other factors. Methods for cap-
turing the poor performance, harmful impacts and other results of these models currently
are imprecise and non-comprehensive.

Values
While ML systems are able to model complex phenomena, whether they are capable of
learning and operating in line with our societal values remains an area of considerable re-
search and concern [61, 105–111]. Systemic and implicit biases such as racism and other
forms of discrimination can inadvertently manifest in AI through the data used in training,
as well as through the institutional policies and practices underlying how AI is commis-
sioned, developed, deployed, and used. Statistical/algorithmic and human cognitive and
perceptual biases enter the engineering and modeling processes themselves, and an inabil-
ity to properly validate model performance leaves these biases exposed during deployment
[62, 103, 112, 113]. These biases collide with the cognitive biases of the individuals inter-
acting with the AI systems as users, experts in the loop, or other decision makers. Teams
that develop and deploy AI often have inaccurate expectations of how the technology will
be used and what human oversight can accomplish, especially when deployed outside of
its original intent [114, 115]. Left unaddressed, these biases and accompanying contextual
factors can combine into a complex and pernicious mixture. These biases can negatively
impact individuals and society by amplifying and reinforcing discrimination at a speed and
scale far beyond the traditional discriminatory practices that can result from implicit human
or institutional biases such as racism, sexism, ageism or ableism.

2.3 A Socio-technical Systems Approach

Likely due to expectations based on techno-solutionism and a lack of mature AI process
governance, organizations often default to overly technical solutions for AI bias issues. Yet,
these mathematical and computational approaches do not adequately capture the societal
impact of AI systems [62, 74, 76, 113]. The limitations of a computational-only perspective
for addressing bias have become evident as AI systems increasingly expand into our lives.

The reviewed literature suggests that the expansion of AI into many aspects of public
life requires extending our view from a mainly technical perspective to one that is socio-
technical in nature, and considers AI within the larger social system in which it operates
[7, 19, 31, 37, 75, 76, 79, 116–121]. Using a socio-technical approach to AI bias makes it
possible to evaluate dynamic systems of bias and understand how they impact each other
and under what conditions these biases are attenuated or amplified. Adopting a socio-
technical perspective can enable a broader understanding of AI impacts and the key de-
cisions that happen throughout, and beyond, the AI lifecycle–such as whether technology
is even a solution to a given task or problem [3, 109]. Reframing AI-related factors such
as datasets, TEVV, participatory design, and human-in-the-loop practices through a socio-
technical lens means understanding how they are both functions of society and, through
the power of AI, can impact society. A socio-technical approach also enables analytic
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approaches that take into account the needs of individuals, groups and society.

Techno-solutionism
As computational technologies have evolved, there has been an increasing
tendency to believe that technical solutions alone are sufficient for addressing
complex problems that may have social, political, ecological, economic, and/or
ethical dimensions. This approach to problem-solving, often termed techno-
solutionism,[122] assumes that the “right” code or algorithm can be applied to any
problem and ignores or minimizes the relevance of human, organizational, and so-
cietal values and behaviors that inform design, deployment, and use of technology.

In the context of socio-technical AI systems, techno-solutionism promotes a view-
point that is too narrow to effectively address bias risks. One control, for exam-
ple, used in model risk management to mitigate against techno-solutionism and
other anti-patterns, is to establish, document, and review the anticipated real-world
value of an AI system.

Socio-technical approaches in AI are an emerging area, and identifying measurement tech-
niques to take these factors into consideration will require a broad set of disciplines and
stakeholders. Identifying contextual requirements for evaluating socio-technical systems
is necessary. Developing scientifically supportable guidelines to meet socio-technical re-
quirements will be a core focus.
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AI bias extends beyond computational algorithms and models, and the datasets
upon which they are built. The assumptions and decisions made within the pro-
cesses used to develop technology are key factors, as well as how AI technology
is used and interpreted once deployed. The idea that quantitative measures are
better and more objective than other observations is known as the MCNAMARA

FALLACY. This fallacy, and the related concept TECHNOCHAUVINISM [35], are
at the center of many of the issues related to algorithmic bias. Traditional ML
approaches attempt to turn ambiguity, context, human subjectivity, and cate-
gorical observations into objectively measurable quantities based on numerical
mathematical models of their representations. This well-intentioned process
enables data-driven modeling but it also inadvertently creates new challenges for
socio-technical systems. Representing these complex human phenomena with
mathematical models comes at the cost of disentangling the context necessary
for understanding individual and societal impact and contributes to a fallacy of
objectivity [123]. Science has made great strides in understanding the limitations
of human cognition, including how humans perceive, learn, and store visual,
aural, and textual information, and make decisions under risk. Yet, significant
gaps remain. Thus, any mathematical attempt to model such human traits is
limited and incomplete. This is a key challenge in model causality and predicting
human interpretation of model output. And without proper governance, excising
context and flattening the categories into numerical constructs makes traceability
more difficult [124].

Finding approaches in TEVV to compensate for these limitations in the un-
derlying modeling technology and bringing back the necessary context is an
important area of study.

2.4 An Updated AI Lifecycle

Improving trust in AI by mitigating and managing bias starts with identifying a structure
for how it presents within AI systems and uses. Organizations that design and develop
AI technology use the AI lifecycle to keep track of their processes and ensure delivery of
high-performing functional technology—but not necessarily to identify harms or manage
them. This document has adapted a four-stage AI lifecycle from other stakeholder ver-
sions.11 The intent is to enable AI designers, developers, evaluators and deployers to relate

11AI lifecycles utilized as key guidance in the development of the four-stage approach are: Centers of Ex-
cellence (CoE) at the U.S. General Services Administration [70] [IT Modernization CoE. (n.d.)], the Or-
ganisation for Economic Co-operation and Development [106] [Organisation for Economic Co-operation
and Development. (2019).]. Another model of the AI lifecycle is currently under development with the
Joint Technical Committee of the International Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC). See Information technology — Artificial intelligence — AI system life
cycle processes, ISO/IEC CD 5338 (under development, 1st ed.), https://www.iso.org/standard/81118.html.
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lifecycle processes with AI bias categories and effectively facilitate its identification and
management. The academic literature and best practice guidelines strongly encourage a
multi-stakeholder approach to developing AI applications using a lifecycle. Guidance for
how organizations can enable this approach is described in Section 3.3.2 and focuses on
participatory design methods such as human-centered design.

Test & 
Evaluation

Pre-Design Design & 
Development

Deployment

Fig. 3. The AI Development Lifecycle

AI Lifecycles are iterative, and begin
in the Pre-Design stage, where plan-
ning, problem specification, background
research, and identification of data take
place. Decisions here include how to
frame the problem, the purpose of the AI
component, and the general notion that
there is a problem requiring or benefit-
ing from AI. Central to these decisions is
who (individuals or groups) makes them
and which individuals or teams have the
most power or control over them. These
early decisions and who makes them
can reflect systemic biases within orga-
nizational settings, individual and group
heuristics, and limited points of view.
Systemic biases are also reflected in the

datasets selected within pre-design. All of these biases can affect later stages and decisions
in complex ways, and lead to biased outcomes [3, 75–79].

The Design and Development stage typically starts with analysis of the requirements
and the available data. Based on this, a model is designed or selected. A compatibility anal-
ysis should be performed to ensure that potential sources of bias are identified and plans
for mitigation are put into place. As model implementation progresses and is trained on
selected data, the effectiveness of bias mitigation should be evaluated and adjusted.During
development the organization should periodically assess the completeness of bias iden-
tification processes as well as the effectiveness of mitigation. Finally, at the end of the
development stage, and before deployment, a thorough assessment of bias mitigation is
necessary to ensure the system stays within pre-specified limits. The overall model speci-
fication must include the identified sources of bias, the implemented mitigation techniques
and related performance assessments before the model can be released for deployment.

The Deployment stage is when the AI system is released and used. Once humans
begin to interact with the AI system the performance of the system must be monitored
and reassessed to ensure proper function. Teams should engage in continuous monitoring
and have detailed policies and procedures for how to handle system output and behavior.
System retraining may be necessary to correct adverse events, or decommission may be
necessary. Since the lifecycle is iterative there are numerous opportunities for technology
development teams to carry out multi-stakeholder consultation and ensure their applications
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are not causing unintended effects or harms. Specific guidance for governing systems under
these conditions is the subject of Section 3.4.1.

The Test and Evaluation stage is continuous throughout the entire AI Development
Lifecycle. Organizations are encouraged to perform continuous testing and evaluation of
all AI system components and features where bias can contribute to harmful impacts. For
example, if during deployment the model is retrained with new data for a specific context,
the model deployer should work with the model producer to assess actual performance for
bias evaluation. Multi-stakeholder engagement is encouraged to ensure that the assessment
is balanced and comprehensive. If deviations from desired goals are observed, the findings
should feed into the model Pre-Design stage to ensure appropriate adjustments are made
in data curation and problem formulation. Any proposed changes to the design of the
model should then be evaluated together with the new data and requirements to ensure
compatibility and identification of any potential new sources of bias. Then another round
of design and implementation commences to formulate corresponding requirements for
the new model capabilities and features and for additional datasets. During this stage,
the model developer should perform continuous testing and evaluation to ensure that bias
mitigation maintains effectiveness in the new setting, as the model is optimized and tested
for performance. Once released, the deploying organization should use documented model
specifications to test and evaluate bias characteristics during deployment in the specific
context. Ideally, this evaluation should be performed together with other stakeholders to
ensure all previously identified problems are resolved to everyone’s satisfaction.

The most accurate model is not necessarily the one with the
least harmful impact [125].

3. AI Bias: Challenges and Guidance

Through a review of the literature, and various multi-stakeholder processes, including pub-
lic comments, workshops, and listening sessions, NIST has identified three broad areas that
present challenges for addressing AI bias. The first challenge relates to dataset factors such
as availability, representativeness, and baked-in societal biases. The second relates to issues
of measurement and metrics to support testing and evaluation, validation, and verification
(TEVV). The third area broadly comprises issues related to human factors, including so-
cietal and historic biases within individuals and organizations, as well as challenges related
to implementing human-in-the-loop. This section outlines some key challenges associated
with each of these three areas, along with recommended guidance.

It must be noted that TEVV does not amount to a full application of the scientific
method. TEVV is an engineering construct that seeks to detect and remediate problems in
a post-hoc fashion. The scientific method compels more holistic design thinking through
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rigorous experimental design, hypothesis generation, and hypothesis testing. In particular,
anecdotal evidence and the frequency of publicly-recorded AI bias incidents indicate that
solid experimental design techniques that focus on structured data collection and selection
and minimization of CONFIRMATION BIAS are being downplayed in many AI projects.
CONSTRUCT VALIDITY is particularly important in AI system development. AI develop-
ment teams should be able to demonstrate that the application is measuring the concept it
intends to measure. It is important for all stakeholders, including AI development teams, to
know how to evaluate scientific claims. That said, all the bias mitigants and governance pro-
cesses outlined in this document do show promise. Interestingly, they are often borrowed
from practices outside of core AI and ML – even technical guidance related to improved
experimental design and more rigorous application of the scientific method. None are a
panacea. All have pitfalls. NIST plans to work with the trustworthy and responsible AI
communities to explore the proposed mitigants and governance processes, and build asso-
ciated formal technical guidance over the coming years in concert with these communities.

The challenge of bias in AI is complex and multi-faceted.
While there are many approaches for mitigating this chal-
lenge there is no quick fix.The recommendations in this
document include a sampling of potentially promising tech-
niques. These approaches, individually or in concert, are not
a panacea against bias and each brings its own strengths and
weaknesses.

3.1 Who is Counted? Datasets in AI Bias

3.1.1 Dataset Challenges

AI design and development practices rely on large scale datasets to drive ML processes.
This ever-present need can lead researchers, developers, and practitioners to first “go where
the data is,” and adapt their questions accordingly [126]. This creates a culture focused
more on which datasets are available or accessible, rather than what dataset might be most
suitable [109]. As a result, the data used in these processes may not be fully representa-
tive of populations or the phenomena that are being modeled. The data that is collected
can differ significantly from what occurs in the real world [77, 78, 119]. For example,
sampling bias occurs when data is collected from responses to online questionnaires or is
scraped from social media. The datasets which result are based on samples that are neither
randomized nor representative of a population other than the users of a particular online
platform. Such datasets are not generalizable, yet frequently are used to train ML appli-
cations which are deployed for use in broader socio-technical contexts, even though data
representing certain societal groups may be excluded [118]. Systemic biases may also be
manifested in the form of availability bias when datasets that are readily available but not
fully representative of the target population (including proxy data) are used and reused as
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training data. Disadvantaged groups including indigenous populations, women, and dis-
abled people are consistently underrepresented [37, 118, 127, 128]. Similarly, datasets
used in natural language processing (NLP) often differ significantly from their real-world
applications, [129] which can lead to discrimination [130] and systematic gaps in perfor-
mance. Other issues arise due to the common ML practice of reusing datasets. Under such
practices, datasets may become disconnected from the social contexts and time periods of
their creation. Scholars are beginning to examine the ethical and adverse impact impli-
cations of using data collected at a specific time for a specific purpose for uses that were
not originally intended. Decontextualizing data raises questions related to privacy, consent,
and internal validity of ML model results [131].

Even when datasets are representative, they may still exhibit entrenched historical and
systemic biases, improperly utilize protected attributes, or utilize culturally or contextually
unsuitable attributes. Developers sometimes exclude protected attributes, associated with
social groups which have historically been discriminated against. However, this does not
remedy the problem, since the information can be inadvertently inferred in other ways
through proxy or latent variables. Latent variables such as gender can be inferred through
browsing history, and race can be inferred through zip code. So models based on such
variables can still negatively impact individuals or classes of individuals [74]. Thus, the
proxies used in development may be both a poor fit for the concept or characteristic seeking
to be measured, and reveal unintended information about persons and groups. There is
also sensitivity related to attributes and inferences that do not receive protection under
civil rights laws, but which may enable discrimination when inferred and used by an ML
model, such as low income status. Alternately, when there is not sufficient knowledge or
awareness of the socio-technical context of a process or phenomenon, the attributes that are
collected for use in an ML application may not be universally applicable for modeling the
different social groups or cultures who are analyzed using the application. For example,
using (past) medical costs to predict the need for future health interventions leads to severe
under-prediction of healthcare needs in groups that do not have sufficient access to health
care, such as African Americans [14].

Protected attributes: A host of laws and regulations have
been established to prohibit discrimination based on grounds
such as race, sex, age, religious affiliation, national origin,
and disability status, among others. Local laws can apply
protections across a wide variety of groups and activities.

Once end users start to interact with an AI system, any early design and development
decisions that were poorly or incompletely specified or based on narrow perspectives can be
exposed, leaving the process vulnerable to additive statistical or human biases [78]. By not
designing to compensate for activity biases, algorithmic models may be built on data from
only the most active users, likely creating downstream system activity that does not reflect
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the intended or real user population [132, 133] resulting in potentially harmful impacts.
In one example, by considering that ads for jobs in Science, Technology, Engineering and
Mathematics (STEM) might be seen most often by men due to how marketing algorithms
optimize for cost in ad placement, the women who were the intended audience of the ads
never saw them [134] cf., VIGNETTE for details. Furthermore, feedback loops can result
in disparity amplification in which marginalized individuals or groups are less likely to
use an AI system and the subsequent training data are based on the most frequent users.
For example, non-native English speakers are less likely to use a voice-enabled personal
assistant and people living in transit deserts are often dependent on ride-hailing services.
So, the experiences of these groups do not match the intended purpose or operation of the
AI system.

3.1.2 Dataset Guidance

A key question that must be asked for the development and deployment of an AI system
is: do datasets exist that are fit or suitable for the purpose of the various applications, do-
mains and tasks for which the AI system is being developed and deployed? Not only is the
predictive behavior of the ML system determined by the data, but the data also largely de-
fines the machine learning task itself [62]. The question of dataset fit or suitability requires
attention to three factors: statistical methods for mitigating representation issues; processes
to account for the socio-technical context in which the application is being deployed; and
awareness of the interaction of human factors with the AI technical system at all stages of
the AI lifecycle. When datasets are available, the set of metrics for demonstrating fairness
are many, context-specific, and unable to be reduced to a concise mathematical definition
[135].

Statistical Factors AI bias problems are exacerbated by the variety of statistical biases
that are prevalent in the large scale datasets used in ML modeling. When these models
are deployed for decision-based applications, often in high-risk settings and off-label uses,
harms can be perpetuated and amplified.

A major trend for addressing AI bias is to focus on balanced statistical representation
in the datasets used in modeling processes. Simple but effective techniques, such as class
imbalance measures or label imbalance measures, or analysis using statistical phenomena
such as SIMPSON’S PARADOX,[136] can be used to detect bias in datasets, and sometimes
help mitigate it [86, 137–140]. Numerous studies and software libraries invoke data rebal-
ancing processes (e.g., [141]). Causal models and graphs may also be used to detect direct
discrimination in the data [62, 86].

Generalized linear models require that variables are independent with little multicollinear-
ity and that residuals are normally distributed and homoscedastic. Furthermore, common
algorithmic techniques such as L1 and L2 regularization in ML cost functions assume that
the variables are unimodal. However, data is often heterogeneous and multimodal espe-
cially when populations are not disaggregated by gender, age, race, or income.
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Thus, it is important to document and communicate the limitations of the applicability
of AI outputs, whether a model is used for benchmarking, prediction, or classification. In
many cases, practitioners train models on benchmark datasets and use them on real data
in specific applications. However, it may not be possible to fully address mathematically
the imbalances in representation and the heterogeneous nature of real-world heterogeneous
datasets. A recent study highlighted serious errors in commonly used benchmark dataset
[142]. Consequently, a model trained on biased and erroneous data may lead to biased and
inaccurate predictions. Moreover, training a model on one dataset and using it to operate
on another requires special care to account for potential differences in the distributions of
the datasets that may further exacerbate the unfairness and errors of the model.

Accounting for Socio-technical Factors
While statistical methods are indeed necessary, they are not sufficient for addressing the
AI bias challenges associated with datasets. Modeling processes have the intent of making
contextual concepts measurable. Once the context has been removed, however, it is difficult
to get it back, leading AI models to learn from inexact representations. Just as building
codes are designed based on general principles, but designed to incorporate the specific
geographic characteristics of a region, so too must the use of datasets in ML applications
be adapted to take into the full spectrum of socio-technical factors of the context in which
they are deployed.

Word embeddings represent text data as positions in a high-dimensional mathe-
matical space. Such a representation allows arithmetic (measurable comparisons)
to be performed on words [143]. However, when text data are simplified as math-
ematical objects, contextual information including homographs or idioms that do
not fit neatly into the model may be lost. When asked to compute “doctor” - “fa-
ther” + “mother” using this arithmetic, an AI system might respond with “nurse.”
Is the AI system’s answer due to historical gender stereotypes in professions or due
to the natural, close association of the gender-specific verb “nurse” with mother?
In other scenarios, even when attempts are made to explicitly remove bias from
training data, biases may still exist because of deep, complex connections within
the text data [81, 144].

Attention to the socio-technical factors for an AI system is essential at all phases of the
lifecycle, most importantly in design, development, and deployment. In the design phase,
socio-technical analysis provides insights into social variations in the dynamics or charac-
teristics of a phenomenon. This can help better frame questions for analysis and enable
assessment of dataset fit. A socio-technical perspective in the development phase facili-
tates selection of data sources and attributes, and explicitly integrates impact assessment as
a complement to algorithmic accuracy. Studies have shown how it is possible to mathemat-
ically address statistical bias in a dataset, then develop an algorithm which performs with
high accuracy, yet produce outcomes that are harmful to a social class and diametrically
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opposed to the intended purpose of the AI system [14]. The need for new ways to mea-
sure the impact of AI systems is a current theme in the literature and the trustworthy and
responsible AI research community. The practice of deploying AI in off-label uses, that is
AI systems being applied to a task or within a social or organizational context for which it
was not designed, must be approached with caution, especially in high-risk settings. Socio-
technical analysis can help determine if such use, with modification, is both ethically and
technically feasible. In all cases, a socio-technical perspective implicates adopting pro-
cesses that include involving stakeholders, examining cultural dynamics and norms, and
assessing societal impacts.

AI technologies can be perfectly accurate and still contribute
to harmful outcomes.

Interaction of human factors and datasets Systemic institutional biases are captured
in the datasets used to build the models underlying AI applications. These biases are com-
pounded by the decisions and assumptions made by AI design and development teams
about which datasets to use [145]. These decisions affect who and what gets counted, and
who and what does not get counted. The issue of “flattening” the societal and behavioral
factors within the datasets themselves is problematic, but often overlooked [67, 145–147].
The problem is further exacerbated by the variety of statistical biases that are prevalent in
the large scale datasets used in ML modeling.

Human biases, whether conditioned socially or unconscious cognitive bias, are factors
in data selection, curation, preparation and analysis processes. A person who annotates
training data (for example, for gesture recognition and sentiment analysis) may impart their
own perception biases. A person who chooses which data sources and variables to leave in
or take out may do so in a way that aligns with a held belief. Data typically needs to be
cleaned in some way, removing outliers and spurious data. Missing data may be imputed
(replacing the missing values with nearest neighbors or extrapolated values) or removed
entirely. Missing data may be more frequent in marginalized populations. Furthermore,
because of compounding collection biases, missing and spurious data is often not random.
Data analysis decisions such as the cardinal treatment of ordinal data in a Likert-scale or
rating-scale data may lead to a biased estimator [148]. Processes for documenting poten-
tial sources of human bias are essential but often overlooked elements for characterizing
AI model transparency and explainability, in addition to addressing AI bias and fairness.
As with statistical factors and socio-technical analysis, incorporating awareness and docu-
mentation in the AI lifecycle helps to define limitations and ensure ethically and socially
appropriate uses that do not perpetuate or amplify harms. See Section 3.3 for a more thor-
ough discussion of challenges and guidance related to human factors and AI bias.
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3.2 How do we know what is right? TEVV Considerations for AI Bias

3.2.1 TEVV Challenges

Delegating decision-making to algorithms is appealing because ML systems produce more
consistent decisions compared to humans [149]. However, AI systems do not work in a
vacuum. Operational context, such as the jurisdiction and industry vertical in which a
system operates, serves to frame fairness goals. Even the algorithm itself relies on data
for training and performance tuning, which in turn can be assessed by a fairness metric.
Therefore, when we consider the computational approaches to mitigating bias, we must
take into consideration these three components together: algorithms, data, and fairness
metrics.

AI systems regularly model concepts that are—at best—only partially observable or
capturable by data. Without direct measures for these highly complex considerations, AI
development teams use proxies, which can create many risks [150]. For example, for
“criminality,” a measurable index or construct, might be created from other information,
such as arrests and convictions, which are used as PROXY variables for predicting a certain
outcome—in this case, whether a certain individual is likely to be a repeat offender. In
algorithmic hiring, an AI system might be developed using input variables such as “length
of time in prior employment,” “productivity,” and “number of lost hours” as measurable
proxies in lieu of the not directly measurable concept of “employment suitability.” The al-
gorithm might also include a predictor variable such as distance from the employment site
[151] because it might correlate with employees quitting their job due to long commutes
or bad traffic. However, since “distance from the employment site” might disadvantage
candidates from certain neighborhoods, and “length of time in prior employment” might
disadvantage candidates who are unable to find stable transportation (or relate to other
socio-economic factors) the AI system will contribute to biased outcomes.

Epistemic and aleatoric uncertainty
ML distinguishes two types of predictive uncertainty: EPISTEMIC and ALEATORIC [152].
For example, models produced by deep learning ML systems exhibit EPISTEMIC UNCER-
TAINTY in the parameters of the computed model. The model parameters are typically
computed as the result of a nonconvex minimization of an appropriately chosen cost func-
tion. It is well known from mathematics that such a formulation of the problem does not
have a unique solution [153, 154]. While epistemic uncertainty can be reduced by in-
creasing the amount of representative training data, it cannot be fully eliminated. This can
impact the behavior of a deep learning system in deployment when used with real-world
data, especially when there is a mismatch in the distributions of the real and training data
[103]. This can lead to undesirable effects on many of the AI system’s critical attributes
(e.g., robustness, resilience), including inducing harmful bias. Even convex problems (e.g.,
multiple linear regression) may suffer from epistemic uncertainty when a decision variable
is not included in the model.

Another inherent type of uncertainty associated with machine learning is ALEATORIC.
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It represents the uncertainty inherent in the data, e.g., the uncertainty in the label assigning
process of the training dataset. Aleatoric uncertainty is the irreducible part of the predic-
tive uncertainty. Since these two types of uncertainties (EPISTEMIC and ALEATORIC) are
highly context-dependent, changing the context may blur the difference between them or
even cause one to turn into the other. Thus, their characterization as reducible and irre-
ducible is not absolute. For example, datasets containing overlapping samples with dif-
ferent attributes could be embedded into higher dimensions so that the samples are clearly
separated, thus reducing aleatoric uncertainty at the expense of epistemic uncertainty - be-
cause the model would likely overfit the existing data in the larger space. Some of the
difficulty in distinguishing epistemic and aleatoric uncertainty is that ML models are (im-
plicit) mathematical representations of the data on which they are trained [155].

The growth of Large Language Models
Large LANGUAGE MODELs (LLMs) have become the dominant trend in deep learning to-
day and are expected to continue to grow in importance [156, 157]. Although LLMs have
been able to achieve impressive advances in performance on a number of important tasks,
they come with significant risks that could potentially undermine public trust in the technol-
ogy. LLMs create significant challenges for both EPISTEMIC and ALEATORIC uncertainty.
Relying on large amounts of uncurated web data increases aleatoric uncertainty [158]. In-
depth knowledge of the data and its statistical properties is critically important for detecting
bias in the predictive output of ML models.

Identifying sources of bias is the first step in any bias mitiga-
tion strategy.
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Epistemic uncertainty and large-scale AI models
With the availability of large and fast computing resources, massive artificial neu-
ral networks are becoming increasingly common. In particular, some language
models now consist of trillion-dimensional parameter spaces trained on hundreds
of gigabytes of data. The training data, often scraped from internet sources, com-
monly has known gender, racial, cultural, and socio-economic biases [158, 159].
Alternative approaches to large-sized language datasets have been proposed to
mitigate harmful bias, but such an approach may introduce other human biases in
the selection of values-targeted datasets. Beyond the systemic and selection bi-
ases, large language models also highlight EPISTEMIC UNCERTAINTY. Stochastic
gradient descent (or other accelerated methods) methods [154] are used to find a
set of parameters that minimize a cost function associated with the model, but deep
neural networks exhibit complicated nonlinearities which result in many potential
local minima. A trillion-dimensional manifold may have a huge, unknown num-
ber of minima [160]. Furthermore, to fit these parameters into computer memory,
it is often necessary to use half-precision floating-point numbers [161], introduc-
ing rounding error which may undermine stability in the numerical methods [162].
As a result, the model may demonstrate unknown and erratic behavior and chal-
lenges for reproducibility and explainability [163].

In the quest for fitting larger and larger models into existing finite computational re-
sources, LLMs rely on techniques, e.g., reduced-precision numerical representations of
models, that further increase the epistemic uncertainty of deep learning models, [164]
cf., VIGNETTE. Early practice has shown that concerns about the use of LLMs are in-
deed valid, with preliminary experimental results showing LLMs exhibit significant bias
[158, 165, 166]. To reduce risks from the use of LLMs, future work in this area should
move towards efforts to fully understand and characterize their behavior, and to devise
effective mitigation measures against the biases they bring.

Processes
While datasets exhibit numerous biases that lead to harmful impacts, they feed directly into
other system level processes that determine what is important to model. For AI systems
to determine this importance, and effectively categorize and sort the firehose of data for
downstream recommendations and decisions, contextual information is flattened and unob-
servable phenomena are quantified through the development of indices and use of proxies.
The use of data attributes with names like “criminality,” “hireability,” “creditworthiness,”
or similar can be indicative of experimental design problems that give rise to harmful bias.

The software designers and data scientists working in design and development are of-
ten highly focused on system performance and optimization. This focus can inadvertently
be a source of bias in AI systems. For example, during model development and selection,
modelers will almost always select the most accurate models. Yet, as Forde et al describe
in their paper, [167] selecting models based solely on accuracy is not necessarily the best
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approach for bias reduction. Furthermore, the choice of the model’s objective function,
upon which a model’s definition of accuracy is based, can reflect bias. Not taking context
into consideration during model selection can lead to biased results for sub-populations
(for example, disparities in health care delivery). Relatedly, systems that are designed to
use aggregated data about groups to make predictions about individual behavior—a prac-
tice initially meant to be a remedy for non-representative datasets[18]—can lead to biased
outcomes. This bias, known as ECOLOGICAL FALLACY, occurs when an inference is made
about an individual based on their membership within a group (for example, predicting
college performance risk based on an individual’s race [52]). These unintentional weight-
ings of certain factors can cause algorithmic results that exacerbate and reinforce societal
inequities.

Natural language processing (NLP) is a powerful computational approach to al-
low machines to meaningfully understand human spoken and written languages.
Powering activities such as algorithmic search, speech translation, and even con-
versational text generation, NLP is able to help us communicate with computer
systems to carry out a variety of tasks. The set of harms that can arise from the
use of NLP however has become a recent concern in the area of trustworthy AI
[81, 91, 158, 168, 169]. Hovy and Prabhumoye describe five sources of bias in
NLP and potential ways to counteract it [170].
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Spurious Correlations
The speed and scope of machine learning processes can unfortunately ex-
pand the development of systems based on questionable scientific underpin-
nings that learn spurious correlations related to human characteristics. For ex-
ample, the German public radio outlet BR24 examined a system that purport-
edly assessed tone of voice, language, gestures, and facial expressions to cre-
ate a personality profile for use in hiring processes [6]. The analysis showed
the AI system was easily manipulated by superficial changes to its inputs,

Fig. 4. The output of an AI system
altered by background content.

awarding candidates higher scores when they
wore glasses or when a bookshelf was in the
background, diminishing claims that the sys-
tem analyzed human expressions, and raising
concerns about shortcut learning [171]. In-
deed, many AI systems now attempt to make
inferences about individuals based on their fa-
cial characteristics that are not scientifically
supportable, such as their propensity for com-
mitting crimes or even their sexual orienta-
tion [123, 172–176]. The basis for draw-
ing conclusions about emotional state from
facial characteristics ranges from unscientific
and debunked theories to emerging experimen-
tal studies [177], presenting concerning chal-
lenges to AI systems that claim to make such
judgements. By mechanizing human charac-

teristics these systems can obfuscate significant uncertainty and result in harmful
biases. AI-based hiring systems that claim to glean information about candidates
from audio and video have been shown to increase bias in outcome decisions and
may present untenable trade-offs between bias mitigation and prediction accuracy
[178]. AI systems marketed as making predictions based on facial expressions
often generate decisions based on biased experimental design premises [172] or
spurious patterns learned by the system (e.g., shortcut learning). These cases illus-
trate the risks associated with using AI systems for tasks like sentiment or affect
analysis, along with using systems to infer spurious correlations more broadly,
which can perpetuate biases across groups and, in several instances can be scien-
tifically unsound [179]. AI systems in consequential or sensitive areas should not
be built on the basis of spurious correlations. They can provide faux-objective jus-
tification for biased outcomes. A socio-technical perspective broadens awareness
of these risky computational approaches.

The rise of predictive analytics as a mechanism for identifying patterns in human be-
havior is a recent example of a process that can produce biased outcomes and therefore
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should be used carefully. These applications can be highly effective at identifying key in-
sights in data that are unable to be gleaned by humans [180]. This technology is also often
presented and perceived as a way to reduce human cognitive biases and make decisions
more fair and objective [27, 181, 182]. In well defined and constrained settings these tech-
nologies can result in accurate and fair outcomes. However, the assumption that AI-based
systems are more objective, especially in high stakes decision making, remains unclear.
Categorizing unobservable behavior and phenomena leads to increased uncertainty in sys-
tem performance. Measuring whether the patterns identified by these applications are real
or a result of spurious correlations is difficult. Adding to the challenge is the reality that
these systems are built and placed within organizational settings along with their accompa-
nying — often unstated — policies and priorities, and used by subject matter experts and
decision makers who have their own implicit heuristics and biases [183]. A fallacy of ob-
jectivity can often surround these processes, and may create conditions where technology’s
capacity and capabilities are oversold [123]. See VIGNETTE for an example.

Algorithmic effects
Algorithmic complexity can vary greatly across AI models. The number of parameters,
which mathematically encode the training data, may be as few as one and as many as
one trillion. Simple models with fewer parameters are often used because they tend to be
less expensive to build, more explainable and more transparent, and easier to implement.
However, such models can exacerbate statistical biases because restrictive assumptions on
the training data often do not hold with nuanced demographics. Furthermore, designers
who must make decisions on what variables to include or exclude can impart their own
cognitive biases into the model [112, 184]. Complex models are often used on nonlinear,
multimodal data such as text and images. Such models may capture latent systemic bias
in ways that are difficult to recognize and predict. Expert systems, another AI paradigm,
may encode cognitive and perceptual biases in the knowledge accumulated by practitioners
from which the system is designed to emulate.

Validity
Ultimately, AI systems should demonstrate that they perform accurately, but how do we
know what constitutes a “right answer”? Validating performance is a difficult but nec-
essary endeavor for any system being deployed to the public and effective management
and mitigation of AI bias. Many difficulties and flaws can arise in system validation. A
common challenge in system testing is a lack of ground truth, or noisy labeling and other
annotation factors which make it difficult to know what is accurate. The use of proxy vari-
ables compounds this difficulty, since what is being measured isn’t directly observable.
Performing system tests under optimal conditions — or conditions that are not close to the
deployed state — is another challenging design flaw. System performance metrics are also
difficult to generalize and can lead to issues with unintended use. Due to these challenges,
subject matter experts should be relied upon during validation to create and oversee the
most realistic possible validation processes [103]. Also the practice of “stratified perfor-
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mance evaluations,” [103] where system performance is analyzed across segments in the
training or test data, whether demographic segments or otherwise, is a basic consideration
for understanding system validity across a population of users.

Validation and deployment
Validation also means ensuring that the system is not being used in unintended ways. DE-
PLOYMENT BIAS happens when an AI model is used in ways not intended by developers.
Emergent bias happens where the model is used in unanticipated contexts. Developers of
an algorithm used by major U.S. cities to assist in coordinating housing to homeless people
began phasing it out after several cities inappropriately used the algorithm as an assessment
tool rather than as the presecreening tool as it was designed [185]. In another instance, the
Chicago Police Department decommissioned an algorithm designed to predict the risk that
an individual might be involved in future gun violence, citing unintended use and misap-
plication of the model [186].

It is not uncommon for deployment to be used as system testing. Depending on the
context, institutional review may not be required to carry out this type of testing [187].
Without system validation, an AI system could be released that is technically flawed or
fails to establish appropriate underlying mechanisms for proper functioning [188–190]. A
system could be deployed in a negligent manner, be based on pseudoscience or spurious
correlations, prey on the user, or generally exaggerate claims. In such cases, the goal should
not be to ensure applications are bias-free, but to reject the development outright in order to
prevent disappointment or harm to the user as well as to the reputation of the provider. Such
systems may also run afoul of existing legal frameworks that proscribe unfair, deceptive,
and predatory practices (UDAP).12 This type of scenario may reinforce public distrust of
AI technology since untested or technically flawed systems can contribute to bias and other
harmful outcomes.

AI systems as magic
A further validation challenge of AI systems stems from their accessibility and hype. Physi-
cist Richard Feynman referred to practices that superficially resemble science but do not
follow the scientific method as cargo cult science. A core tenet of the scientific method is
that hypotheses should be testable, experiments should be interpretable, and models should
be falsifiable or at least verifiable. Commentators have drawn similarities between AI and
cargo cult science citing its black box interpretability, reproducibility problem, and trial-
and-error processes [191, 192]. High-level machine learning libraries and reduced costs
of cloud computing have made AI more affordable and easier to develop. As a result,
AI development is becoming increasingly democratized. Still, AI itself remains largely
opaque—deep neural networks and Bayesian inference require advanced mathematics to
understand. The DUNNING–KRUGER EFFECT is a cognitive bias in which a person with
limited knowledge in a domain may vastly overestimate their understanding of that domain.

12See, e.g., Federal Trade Commission Act, Section 5.
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Even among experts, data-driven technologies can exacer-
bate CONFIRMATION BIAS, particularly when they are im-
plicitly guided by expected outcomes. An analysis that ex-
amined hundreds of AI algorithms for identifying COVID
found that few of them were effective [193].

The danger is that with enough tweaking of hyperparameters across many candidate
AI models, one of them may appear to be highly accurate even when measured against
standard performance datasets. DATA DREDGING (also known as p-hacking) is a statistical
bias in which testing huge numbers of hypotheses of a dataset may appear to yield statistical
significance even when the results are statistically nonsignificant.

Fig. 5 provides examples of how the three categories of bias — systemic, statistical and
computational, and human - interact and contribute to harms within the data and processes
used in AI applications, and the validation procedures for determining performance.

Systemic Biases Statistical and 
Computational Biases

Human Biases

Systemic Biases

Processes and 
Human Factors

TEVV

Who is counted, and 
who is not counted?

What is important?

How do we know 
what is right?

Issues with latent variables

Underrepresentation of marginalized 
groups

Automation of inequalities

Underrepresentation in determining 
utility function

Processes that favor the majority/minority

Cultural bias in the objective function 
(best for individuals vs best for the 
group)
Reinforcement of inequalities (groups 
are impacted more with higher use of 
AI)
Predictive policing more negatively 
impacted
Widespread adoption of 
ridesharing/self-driving cars/etc. 
may change policies that impact 
population based on use

Sampling and selection bias
Using proxy variables because they 
are easier to measure
Automation bias

Likert scale (categorical to ordinal to 
cardinal)
Nonlinear vs linear
Ecological fallacy

Minimizing the L1 vs. L2 norm
General difficulty in quantifying 
contextual phenomena

Lack of adequate cross-validation

Survivorship bias

Difficulty with fairness

Observational bias (streetlight 
effect)
Availability bias (anchoring)

McNamara fallacy

Groupthink leads to narrow choices

Rashomon effect leads to subjective 
advocacy

Difficulty in quantifying objectives 
may lead to McNamara fallacy

Confirmation bias

Automation bias

Fig. 5. How biases contribute to harms

3.2.2 TEVV Guidance

To mitigate the risks stemming from epistemic and aleatoric uncertainties, model devel-
opers should work closely with the organizations deploying them. Teams should work to
ensure periodic model updates, and test and recalibrate model parameters on updated repre-
sentative datasets to meet the business objectives while staying within desired performance
targets and acceptable levels of bias. From a Bayesian inference perspective, this can be
seen as updating the prior of the model to help avoid issues that may arise from using stale
priors. Organizations are recommended to employ appropriate governance procedures to
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adequately capture this cross-organizational need and ensure no negative impacts from us-
ing the AI technology.

Algorithms
In ML, it is not meaningful to assign bias to the model or algorithm itself without con-
textual information about the specific tasks on which they may be used. This links the
model and algorithm to the dataset on which they are trained and tested (see VIGNETTE

for how contextual factors can play a role in bias). The catchphrase “bias in, bias out” is
widely used to describe the heavy dependence of the algorithmic behavior on the data. For
example, in a natural language processing context, hate speech detection models use di-
alect markers as toxicity predictors, which can result in bias against minority groups [194].
In another context, an algorithm designed to deliver gender-neutral advertisements about
jobs in STEM resulted in gender bias due to younger women being considered a valuable
subgroup and more expensive as the targets for advertisements [86, 134].

Methods that help to reduce algorithmic bias are another helpful construct for under-
standing it. Specific methods for algorithmic mitigation of bias for many different machine
learning tasks have been delineated or surveyed in recent studies [86, 195–198]. When
considering approaches to mitigating algorithmic bias in a specific task context, recent lit-
erature categorizes debiasing methods into one of three categories [62, 86, 195, 198]:

1. Pre-processing: transforming the data so that the underlying discrimination is mit-
igated. This method can be used if a modeling pipeline is allowed to modify the
training data.

2. In-processing: techniques that modify the algorithms in order to mitigate bias during
model training. Model training processes could incorporate changes to the objective
(cost) function or impose a new optimization constraint.

3. Post-processing: typically performed with the help of a holdout dataset (data not
used in the training of the model). Here, the learned model is treated as a black box
and its predictions are altered by a function during the post-processing phase. The
function is deduced from the performance of the black box model on the holdout
dataset. This technique may be useful in adapting a pre-trained large language model
to a dataset and task of interest.
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The limits of algorithmic transparency in eliminating bias
Automated decision-making is appealing but comes with risks that can result in
discriminatory outcomes. Researchers investigated settings where ads are allo-
cated by algorithm and found instances where historically–discriminated–against–
groups are less likely to see desirable ads [134]. In this setting, a field test was
performed with an ad that was intended to promote job opportunities and train-
ing in STEM. The STEM career ad campaign was motivated by widespread con-
cern about a shortage of underrepresented groups in the STEM sector, particularly
women. The assumption is that disseminating information about STEM careers to
women and encouraging women to enter this field helps to address this problem.
However, since women are far more likely to make decisions about household
purchases, they are more valuable targets for advertising, creating pricing differ-
entials for ad displays. The result of the ad campaign was that 20%+ more men
than women viewed the ad, with the largest difference in the 25-54 year old age
group.
The findings in this study help demonstrate the difficulty of evaluating algorithms
for preventing discrimination, and the need for a socio-technical lens on the chal-
lenge. It is insufficient to look for bias in the algorithm alone. Relatedly, according
to Lambrecht [134]:

“One popular policy prescription has been a focus on algorithmic trans-
parency where algorithmic codes are made public. Such policies are gaining
increasing momentum - for example, the Federal Trade Commission (FTC)
launched a new unit focused on algorithmic transparency, ... however, that
algorithmic transparency would not have helped regulators to foresee uneven
outcomes. The reason is that an examination of the algorithmic code would
likely have revealed an algorithm focused on minimizing ad costs for advertisers.
Without appropriate knowledge about the economic context and how such cost–
minimization might affect the distribution of advertising, such ‘transparency’
would not have been particularly helpful.”

While transparency into AI system mechanisms is rarely a direct bias mitigant,
as explained above, transparency enables many critical AI governance functions.
Transparency is very important, but should not be mistaken for fairness.

In sectors of the U.S. economy where the Equal Credit Opportunity Act,13 influential
court cases,14 or other legal and regulatory matters invoke the legal doctrine of Disparate
Treatment, debiasing efforts may be less likely to explicitly include pre-, in-, and post-
processing approaches, and instead rely on alternative modeling approaches. In consumer

13CFPB Supervision & Examination Manual, pt. II, § C, Equal Credit Opportunity Act (Oct. 2015).
14e.g., Ricci v. DeStefano, 557 U.S. 557 (2009).
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finance and employment litigation, where the practice of bias remediation, e.g., debias-
ing, has been pursued for decades, practitioners are more likely to consider adjustments
to input variables or model hyperparameters to improve bias testing results or real-world
outcomes. Demographic group membership, necessary for bias testing purposes, is often
inferred using the Bayesian improved surname geocoding (BISG) process (see [199]).

Modeling algorithms or debiasing techniques that rely on
demographic information, as most pre-, in-, and post-
processing methods do, may pose higher risks in regulated
environments where disparate treatment must be avoided
[200].

Fairness metrics
From a computational standpoint, defining a fairness metric for ML requires developing
a formal mathematical model to achieve desired predictive goals on a given dataset and
associated task. Numerous fairness metrics are proposed in the literature [86, 195, 198,
201–203]. Much of the work in determining fairness criteria involves supervised learning,
but the labeled data required for these tasks may not be readily available. This is particularly
true for large language models, where the sheer scale of the datasets used for training is
prohibitive for proper data labeling. This has a direct impact on both representativeness of
the training data and, in turn, its impact on the representativeness of the generated model
might exacerbate discriminatory outcomes, as large language models are adapted to specific
datasets and tasks. Moreover, even if datasets are representative they may still exhibit biases
or improperly utilize protected attributes, which in turn may lead to discrimination. Proxies
may be used for hiding protected attributes and care should be taken to avoid discrimination
resulting from badly chosen proxies [60, 138, 150, 204, 205]. And, even if proxies are used
to hide protected attributes, they may still reveal sensitive information about individuals or
groups [199, 206].

Recent literature [207] considers alternative learning tasks, e.g. unsupervised learning
and reinforcement learning where only intermediate feedback is provided to the model,
and tries to balance the effects of short- and long-term rewards. Several open questions still
remain about the use and representativeness of synthetically generated data, in applications
where little data is available. An emerging related line of research is to use simulations to
evaluate the long-term impact of machine learning systems by incorporating elements of
system level dynamics, feedback loops, and other long-term effects to make fair decisions
in dynamic environments [208].

Another challenge, with serious social ramifications, is how to measure fairness in
the emergent class of deployed generative models, such as large language models,
computer vision systems, or deep fakes, whose outputs are free form text, audio
or video [209].
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While academic research into mathematical notions of fairness has blossomed in recent
years, procedures for testing fairness in regulatory and litigation settings such as employ-
ment and consumer finance have been operational for decades, and reached a level of ma-
turity before the recent increase in interest on the topic. In these areas, statistical tests can
be applied to determine whether some automated decision-making system is acting out-
side the bounds of applicable law. t-tests, χ2-tests, analysis of regression coefficients, and
other traditional statistical tests can be used to show a statistically significant difference be-
tween ML system outcomes across demographic groups. In some cases, measurements of
differential validity are also used to ensure that applicants and employees receive roughly
equal service from systems in employment, where system performance quality is evaluated
across demographic groups.15

Credible attempts at bias mitigation should maintain align-
ment with acknowledged legal standards.

Generally, the majority of fairness metrics are observational as they can be expressed
using probability statements involving the available random variables [62]. These metrics
can be classified into many categories: fairness through unawareness, individual fairness,
demographic parity, disparate impact, differential validity, proxy discrimination, equality
of opportunity, etc. However, not all critically important lines of inquiry can be answered
through observations alone. Moreover, depending on the relationship between a protected
attribute and the data, certain observational definitions of fairness can increase discrimina-
tion. Hence, research to improve fairness metrics continues. For instance, a counterfactual
fairness definition has been developed [203] to capture the intuition that a decision is fair
towards an individual if it is the same in both the actual world and a counterfactual world—
where the individual belongs to a different demographic group. Simulations can also be
used to gain counterfactual information about how the data would have varied if a different
data collection or decision-making policy had been in place [208]. As algorithmic discrim-
ination can arise from the encoding of spurious correlations and noisy local dependencies
into ML systems during training, there is currently great focus on causal tools [210] and
how they can formally incorporate effects of hypothetical actions to solve a wide range of
fairness modeling problems. Until causal methods are more widely available and adopted,
minimizing the number of input variables, and ensuring that there is no strong correlation
amongst them and a logical relationship to the prediction target, is a mitigation tactic for
proxy discrimination and other AI risks.

15See, e.g., U.S. v. Ga. Power Co., 474 F.2d 906 (5th Cir. 1973).
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When deciding which fairness metric to adopt, it is important
to recognize the impossibility of satisfying certain mathemat-
ical fairness constraints at once except in highly constrained
special cases [211]. For example, there is an inherent incom-
patibility between two conditions: calibration and balancing
the positive and negative classes. These conditions cannot
be satisfied simultaneously unless under certain constraints
[79]. While not all mathematical fairness desiderata can be
achieved simultaneously, it is important to note that mitigated
bias and good performance can be achieved simultaneously
[212].

The plethora of fairness metric definitions illustrates that fairness cannot be reduced to
a concise mathematical definition. Fairness is dynamic, social in nature, application and
context specific, and not just an abstract or universal statistical problem. Therefore, it is
important to adopt a socio-technical approach to fairness in order to have realistic fair-
ness definitions for different contexts as well as task-specific datasets for machine learning
model development and evaluation.

3.3 Who makes decisions and how do they make them? Human Factors in AI Bias

3.3.1 Human Factors Challenges

As ML algorithms have evolved in accuracy and precision, computational systems have
moved from being used purely for decision support—or for explicit use by and under the
control of a human operator—to automated decision making with limited input from hu-
mans. Computational decision support systems augment another, typically human, system
in making decisions. Comparatively, for algorithmic decision systems there is less human
involvement, with the AI system itself more in the “driver’s seat,” and able to produce out-
comes with little human involvement to govern the impact. The growth and prevalence of
algorithmic decision systems has helped to drive a decreased sense of trust in AI among the
public [213]. This distrust is exacerbated by the reality that historical and social biases are
baked-in to the data and assumptions used in the algorithmic models generating automated
decisions. As a result, these algorithmic models have a higher probability of producing and
amplifying unjust outcomes (e.g. for racial and ethnic minorities in areas such as criminal
justice) [18–30, 214]. The systemic biases embedded in algorithmic models can also be
exploited and used as a weapon at scale, causing catastrophic harm [215–218]. Organiza-
tions that deploy AI models and systems without assessing and managing these risks can
not only harm their users but jeopardize their reputations.

Deployment Context of Use
AI systems are designed and developed to be used in specific real world settings, but are
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often tested in idealized scenarios. Once deployed, the original intent, idea, or impact
assessment can drift as the application is repurposed or used in unforeseen ways, and in
settings or contexts for which it was not originally intended. Different deployment con-
texts means a new set of risks to be considered. Engaging with the broad set of stakeholder
communities that may be impacted by the deployment of these technologies—before the
decision is made to build the AI system—is an important consideration and strongly rec-
ommended. For more on context of use and what it encompasses from a human-centered
design perspective, see subsequent Section 3.3.2.

One major purpose, and a significant benefit, of automated technology is that it
can make sense of information more quickly and consistently than humans. AI
systems are also often perceived as a way to make public interest decisions more
fair, or to reduce (or eliminate) biased human decision making and bring about a
more equitable society [27]. These perspectives have led to the deployment of au-
tomated and predictive modeling tools within trusted institutions and high-stakes
settings such as hiring or criminal justice. In such settings, automated decisions
that incorporate negative biases can perpetuate harms more quickly, extensively,
and systematically than human and societal biases on their own.

Human-in-the-loop
Most algorithmic decision systems are socio-technical systems. They are inextricably tied
to human social behavior, from the datasets used by ML processes and the decisions made
by those who build them, to the interactions with the humans who provide the insight
and oversight to make such systems actionable. The default assumption is that placing a
human “in-the-loop” of such systems can ensure that adverse events do not occur. Current
perceptions about the role and responsibility of the human-in-the-loop with AI are often
implicit, and expectations about level of performance for these systems are often based on
untested or outdated hypotheses. The bulk of academic literature available in this domain
often relates to humans working with automated systems that pre-date the broad scale use
of ML.

Some human-in-the-loop systems are deployed for use by subject matter experts. In
this expert-driven scenario, professionals with expertise in a specific domain work in con-
junction with an automated system towards a specific end goal—usually a consequential
decision about another individual(s). Depending on the purpose of the system, the expert
may interact with the ML model but is rarely part of the design or development of the
system itself. These experts are not necessarily familiar with ML, data science, computer
science, or other fields traditionally associated with AI design or development. For ex-
ample, for AI systems that are deployed in the domain of medicine, the experts are the
physicians and bring their expertise about medicine—not data science, data modeling and
engineering, or other computational factors.
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The perception that a human (expert or otherwise) can effectively and objectively
oversee the use of algorithmic decision systems is a problematic assumption.
More work needs to be done to understand the complex institutional and soci-
etal structures where these systems are developed and placed. Humans carry their
own significant cognitive biases and HEURISTICS into the operation of AI systems
and exactly how they can assist remains an understudied area. One challenge with
human-in-the-loop scenarios is finding a configuration that enables a system to be
used in a way that optimally leverages, instead of replaces, the subject matter ex-
pertise of the human. This is difficult since subject matter experts and AI develop-
ers often lack a common vernacular, which can contribute to miscommunication
and misunderstood expectations and capabilities on both sides of the human-AI
system.

Expert-system configurations are complex, even without the aid of a highly advanced
AI. Experts and operators can often be placed into AI-based system settings without explicit
declarations for governing authority over the specific task and outcome. With the promise
of approaches that are more quantitative, subject matter experts may inadvertently activate
the McNamara fallacy and leverage the AI system to take the pressure off of their often
more subjective processes for the presumed objectivity of automation (this bias is often
referred to as automation complacency). Expert users may also subconsciously find ways
to leverage this perceived objectivity as cover, or even justification, for their implicit biases
[219–221] and inadvertently make decisions that are inaccurate and harmful. Relatedly,
AI developer communities may subconsciously presume that experts’ methods have been
validated to a greater degree than is the case. These kinds of implicit individual and group
actions may create conditions that indirectly encourage the use of technology that is not
quite ready for use, especially in high-stakes settings [3, 79, 222]. Researchers recommend
that AI development teams work in tighter conjunction with subject matter experts and
practitioner end users, who in turn, must “consider a deliberate and modest approach”
when utilizing automated output [223].

Expert-driven ML and human-in-the-loop practices are not intended to serve as a form
of oversight on AI systems and accompanying results. Experts bring their particular sub-
ject matter knowledge to the process, and are not necessarily trained to govern the use of
an AI system they played no role in developing. But current legal and governance struc-
tures actively rely on humans—either expert or otherwise—to serve as a mechanism for
protecting society from faulty, mistaken, and/or dangerous algorithmic decisions. The fun-
damental assumption of such structures is that a human overseer, simply by virtue of being
human, will be able to provide adequate governance for systems.16 The reality however is

16This is most frequently emphasized in governance frameworks that associate human-in-the-loop
decisions as posing less risk, as opposed to fully automated decision making. See, for exam-
ple, the role of general human intervention in minimizing risks for AI systems in the FDA’s
“Good Machine Learning Practice for Medical Device Development: Guiding Principles,”
https://www.fda.gov/medical-devices/software-medical-device-samd/good-machine-learning-practice-
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that without significant procedural and cultural support, optimistic expectations about how
humans are able to serve in this administrative capacity are not borne out in practice. The
literature provides a thorough review of the flaws of human oversight policies [114].

General public
The challenge of interpretable systems is also a factor for consumer or citizen use
of AI applications. It is presumed that trust can improve if the public is able to
interrogate and engage with AI systems in a more transparent manner. In their ar-
ticle on public trust in AI, Knowles and Richards state “. . . members of the public
do not need to trust individual AIs at all; what they need instead is the sanction of
authority provided by suitably expert auditors that AI can be trusted” [224]. De-
veloping such an authority requires standard practices, metrics, and norms from a
socio-technical perspective. The NIST AI Risk Management Framework will help
create standard practices, metrics and norms in consensus with the AI community.

Reliance on various downstream professionals to act as a
governor on automated processes in complex societal sys-
tems is not a viable approach.

3.3.2 Human Factors Guidance

Impact assessments
The decision to deploy AI technology is a function of organizational incentives. AI is
designed and developed within a set of organizational norms and policies. One recent
proposed approach for ensuring that technology is developed in an ethical and respon-
sible manner is the algorithmic impact assessment. Identifying and addressing potential
biases is an important step in the assessment process. There is currently momentum for AI
researchers to include statements about potential societal impacts [225] when submitting
their work to journals or conferences. Similar to privacy impact assessments, which are re-
lied upon by data protection and privacy frameworks to gauge and respond to data privacy
risks, such impact assessments provide a high-level structure that enables organizations to
frame the risks of each algorithm or deployment while also accounting for the specifics of
each use case. Engaging in impact assessment can also serve as a forcing mechanism for

medical-device-development-guiding-principles; NHTSA’s “Automated Driving Systems 2.0 Voluntary
Guidance,” https://www.nhtsa.gov/sites/nhtsa.gov/files/documents/13069a-ads2.0 090617 v9a tag.pdf.
In the military context, even more emphasis has been placed on human intervention, such as
in “AI Principles: Recommendations on the Ethical Use of Artificial Intelligence,” Department
of Defense Defense Innovation Board, https://media.defense.gov/2019/Oct/31/2002204458/-1/-
1/0/DIB AI PRINCIPLES PRIMARY DOCUMENT.PDF; see also Brig. Gen. (ret.) Jean Michel Verney
et al., “Human-On-the-Loop,” Joint Air & Space Power Conference 2021, https://www.japcc.org/human-
on-the-loop/.
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organizations to articulate any risks, and then to generate documentation of any mitigation
activities in the event that any harms—and associated oversight—do arise17[226–230]. A
misstep with impact assessments is to only apply them once at the beginning of a long
and iterative process in which goals and outcomes can change over time. To overcome
the challenge of the point-in-time nature of impact assessments, impact assessments must
be applied at some reasonable cadence when used with iterative and evolving AI systems.
Another concern with impact assessments is that the technology groups, or others who will
be assessed, may have undue influence on building or using the assessment.

Multi-stakeholder engagement
The practice of technology development is also complicated by the role of power and de-
cision making within the organizational structure [231]. A consistent theme from the lit-
erature is the benefit of engaging a variety of stakeholders and maintaining diversity along
social lines where bias is a concern (racial diversity, gender diversity, age diversity, di-
versity of physical ability) [232, 233]. These kinds of practices can lead to broadening
perspectives, and in turn, more thorough evaluation of the societal impacts of technology-
based applications. Using the demographic traits of organizational personnel to identify
problematic aspects within development culture and practice is not sufficient and may not
be fair. Identifying downstream impacts may take time and require the involvement of end-
users, practitioners, subject matter experts, and interdisciplinary professionals from the law
and social science. Expertise matters, and these stakeholders can bring their varied expe-
riences to bear on the core challenge of identifying harmful outcomes and context shifts
within the specific setting the AI system will be deployed.

Technology or datasets that seem non-problematic to one group may be deemed disas-
trous by others. The manner in which different user groups can game certain applications
may also not be so obvious to the teams charged with bringing an AI-based technology
to market. These kinds of impacts can sometimes be identified in early testing stages, but
are usually very specific to the contextual end-use and will change over time. Acquiring
these types of resources for risk and associated impacts does not necessarily require a huge
allocation, but it does require deliberate planning and guidance. This is also a place where
innovation in approaching bias could improve practice. These factors are part of changing
norms and creating an organizational risk culture where teams improve capacity for con-
sidering the impact of the technology they design and develop, and communicating about
these impacts more broadly.

Diversity, Equity & Inclusion
Without prioritizing diversity, equity, and inclusion in the teams involved in training and
deploying AI systems it is difficult to move beyond a focus on system optimization or to
address design considerations and risks beyond a narrow subset of users. Consider for
example how character limits impact some languages and cultures more so than others; in

17H.R. 2231, 116th Cong. (2019), https://www.congress.gov/bill/116th-congress/house-bill/2231/text.
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recognition of this effect, Twitter increased its character limit from 140 to 280 characters
[234]. In another example, a recent exercise by the same social media company found that
AI used to filter image content disfavored people with white hair and memes written in
non-latin scripts [235, 236].

As recent research has shown that developers with similar demographic backgrounds
make similar misjudgements, [73] ensuring that individuals involved in training, testing,
and deploying the system have a diversity of experience, expertise and backgrounds is
a critical risk mitigant that can help organizations manage the potential harms of AI. The
human heuristics and biases that lead to examples such as these are implicit; as such, simply
increasing awareness of bias does not ensure control over it. As previously described in
Section 3.3, heuristics are adaptive mental shortcuts than can often be beneficial to reduce
complexity in tasks of judgement and choice, yet also lead to cognitive biases.

The concepts and reasoning behind diversity, equity, and inclusion in the workplace are
closely tied to the need for broad multi-stakeholder engagement during all aspects of the
AI lifecycle. Numerous studies have touted the benefits of increased diversity, equity, and
inclusion in the workplace [237–240]. Yet, the AI field noticeably lacks diversity [241].
To extend the benefits of diversity, equity, and inclusion to both the users and develop-
ers of AI systems, commentators and experts now recommend that bias mitigation efforts
should be multifaceted, empowering a diverse group of individuals who reflect a range of
backgrounds, perspectives and expertise, which in turn can help to broaden the views of
AI system designers and engineers [242, 243]. In particular, diversity, equity and inclusion
efforts can help organizations better understand: how the system is likely to impact a wide
variety of users, how such users might interact with the system in practice, the potential
harms and benefits of systems across users and groups, whether troubleshooting efforts—
such as the recourse channels described below—are likely to be effective in practice, as
well as how the system might impact broader populations beyond direct users of the sys-
tem, among others.

Practice Improvements
By taking a lifecycle approach it is possible to identify junctures where well-developed
guidance, assurance, and governance processes can assist business units and data and social
scientists to collaboratively integrate processes to reduce bias without being cumbersome
or blocking progress. Several technology companies are developing or utilizing guidance
to improve organizational decision making and make the practice of AI development more
responsible by implementing processes such as striving to identify potential bias impacts
of algorithmic models. One approach is to enumerate institutional assumptions when de-
veloping algorithmic decision systems and map these assumptions to the expectations of
the groups impacted by the technology–which requires deliberate multi-stakeholder and
community engagement. “Cultural effective challenge” is a practice that seeks to create
an environment where technology developers can actively challenge and question steps in
modeling and engineering to help root out statistical biases and the biases inherent in hu-
man decision making [244]. Requiring AI practitioners to defend their techniques, within
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a demographically and professionally diverse setting, can incentivize new ways of think-
ing, stimulate improved practices, and help create change in approaches by individuals and
organizations [231].

Human–AI configuration
AI systems are often deliberately placed into high-risk settings to counteract the known
subjectivity and bias of humans. Yet considerable questions remain about how to optimally
configure humans and automation. An approach to human-in-the-loop that takes into con-
sideration the broad set of socio-technical factors is necessary, especially in the context of
AI bias. The list of relevant sub-topics span fields such as human factors, psychology, orga-
nizational behavior, and human-AI interaction, and building bridges between these and the
technology communities is still necessary. NIST seeks to develop formal guidance about
how to implement human-in-the-loop processes that do not amplify or perpetuate the many
human, systemic and computational biases that can degrade outcomes in this complex set-
ting. Identifying system configurations and necessary qualifications for their components
that result in outcomes that are accurate and trustworthy will be a key focus.

System and procedural transparency
A consistent finding in the literature is that AI systems need to be more explainable and in-
terpretable. The proliferation of tools such as datasheets and model cards are intended to fill
that gap [245, 246]. Bias intersects with transparency in complex ways. Groups who invent
and produce technology have specific intentions for its use and are unlikely to be aware of
all the ways a given application will be used and repurposed once deployed. Transparency
tools are especially helpful for addressing the problem of unintended use, but even when AI
systems are used as intended there are significant individual differences in how humans in-
terpret AI model output. This issue becomes particularly relevant when deploying systems
for use by subject matter experts, who are less interested in how a system works and more
concerned with why a system provided a given output. When system designers do not take
these perceptual differences into consideration it can lead to misinterpretation of output,
which is especially problematic in high-risk settings [247, 248]. Coordinated guidance is
necessary to ensure that transparency tools are effectively supporting the professionals who
use them and not indirectly contributing to processes that could amplify bias.

There are techniques to flag factors in datasets and modeling processes that can produce
biased outcomes or cause noncompliance with legal requirements. The intent here is that
flagging information for somebody along the AI lifecycle or the end user will serve as a
system check. Yet, flagging such information for downstream users does not always result
in a directly positive outcome, and can in fact create the opposite[185, 249]. Developing
guidance in this area will require more information about the settings under which human
biases may amplify harmful outcomes, and where humans can work optimally with and
complement an AI-based system. These questions, like those related to AI system design,
are notably dependent on setting (e.g., aircraft, cyber-physical systems, public safety and
forensics, manufacturing), operator (e.g., expert, trained, naive), and task (e.g., recognition,
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event detection, forecasting, reasoning).

Keeping humans at the center of AI design
Human-centered design (HCD) is an approach to the design and development of a system
or technology that aims to improve the ability of users to effectively and efficiently use
a product. HCD seeks to improve the user experience of an entire system, involving all
aspects of a technology, from hardware design to software design. HCD is a methodology
that has been successfully applied to a myriad of important domains, and NIST itself has
authored several HCD handbooks tailored for particular domains, e.g.:, biometrics and
public safety [250, 251].

HCD is an ongoing, iterative process in which project teams design, test, and contin-
ually refine a system, placing users at the core of the process. Humans and their needs
drive the process, rather than having a techno-centric focus. HCD works as part of other
development lifecycles, including waterfall, spiral and agile models. User-centered design,
HCD, participatory design, co-design, and value-sensitive design all have key similarities;
at the highest level, they seek to provide humans with designs that are ultimately beneficial
to their lives. Furthermore, by placing humans at the center of such approaches, they nat-
urally lend themselves to a deeper focus on larger societal considerations such as fairness,
bias, values, and ethics. HCD works to create more usable products that meet the needs of
its users. This, in turn, reduces the risk that the resulting system will under-deliver, pose
risks to users, result in user harms, or fail.

The HCD process is illustrated in Fig. 6 below.
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Fig. 6. Human-centered Design Process [ISO 9241-210:2019]

As defined in International Organization for Standardization (ISO) standard 9241-210:2019
[252], HCD involves:

• an explicit understanding of users, tasks and environments–the context of use;

• the involvement of users throughout design and development;

• a design driven and refined by human-centered evaluation;

• an iterative process whereby a prototype is designed, tested and modified;

• addressing the whole user experience;

• a design team including multidisciplinary skills and perspectives.

Based on the ISO standard, a HCD methodology for the development of AI systems could
iteratively comprise the following, as shown in Fig. 7:

• Defining the Context of Use, including operational environment, user characteristics,
tasks, and social environment;
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• Determining the User & Organizational Requirements, including business require-
ments, user requirements, and technical requirements;

• Developing the Design Solution, including the system design, user interface, and
training materials; and

• Conducting the Evaluation, including usability and conformance testing.

Although all components of HCD are critical, the context of use has key socio-technical
considerations for AI systems. The socio-technical dynamics and conditions under which
an AI system is used must be considered at the front end of any project to ensure that
the design of the system will meet the needs of users, the objectives of the organization,
and larger societal needs once the system is implemented in a real-world environment.

Evalua�on

Context	of	
Use

Design	
Solu�on

User	&	
Organizatonal
Requirements	

USERS

Fig. 7. Human-centered Design Process for AI
Systems

A deep understanding of contextual fac-
tors is important throughout the AI life-
cycle. Context of use does not simply
involve the users’ context of use, it in-
volves a much broader view of context:
the organizational environment in which
the AI system is being developed (in-
cluding existing systems and products);
the operational environment in which the
system will be used; and the larger so-
cietal environment in which the system
will be implemented. For example, some
intended users of AI systems may not
have consistent or reliable access to fun-
damental internet technologies (a phe-
nomenon widely described as the “digital
divide” [253, 254]), leading to biases in
how different communities access a sys-

tem. Similarly, those with disabilities may experience difficulties interacting with AI sys-
tems. Crucially, such difficulties often cannot be mitigated by mathematical or software
de-biasing approaches, and failure to address these important design issues may pose legal
risks, for example in employment related activities affecting persons with disabilities.18

18Congress has recognized that objects, systems, and processes often are not designed with individuals with
disabilities in mind. By ensuring that these protections apply at the individual rather than group level,
Congress further recognized that the means of placing an individual with disabilities on equal footing
with others may require an individualized solution—one person with a disability may require a reasonable
accommodation, and a different individual with a disability may require a different accommodation or no
accommodation at all. Some disabilities are so heterogeneous that even two individuals with the same
disability may need different accommodations. In the employment context, an algorithm may screen out a
particular individual, and therefore may violate the Americans with Disabilities Act, regardless of whether
broadly defined groups of individuals with disabilities tend to be assessed highly by a given algorithm.
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A growing number of researchers have pointed out the benefits of socio-technical ap-
proaches. For example, Ferrer et al [255] note: “This challenge could be addressed through
a socio-technical approach which can consider both the technical dimensions and the com-
plex social contexts in which these systems are deployed. Building public confidence and
greater democratic participation in AI systems requires ongoing development of not just
explainable AI but of better Human-AI interaction methods and socio-technical platforms,
tools and public engagement to increase critical public understanding and agency.”

Research to integrate HCD with the standard design, development, evaluation, and de-
ployment processes of today’s AI systems is relatively recent. In their chapter on HCD of
AI in the Handbook of Human Factors and Ergonomics, Margetis et al state that “A core
concept of HCD is that of actively involving end-users and appropriate stakeholders in the
process. In the context of AI, this means placing humans in the loop, not only through
meaningful human control [256], but also through their active participation in the prepa-
ration, learning, and decision-making phases of AI [257].” Human-centered AI (HCAI) is
an emerging area of scholarship that reconceptualizes HCD in the context of AI, providing
human-centered AI design metaphors and suggested governance structures to develop reli-
able, safe, and trustworthy AI systems [258]. Schneiderman envisages HCAI as ”bridg[ing]
the gap between ethics and practice with specific recommendations for making successful
technologies that augment, amplify, empower, and enhance humans rather than replace
them. This shift in thinking could lead to a safer, more understandable, and more manage-
able future. An HCAI approach will reduce the prospects for out-of-control technologies,
calm fears of robot-driven unemployment, and diminish the threats to privacy and security.
A human-centered future will also support human values, respect human dignity, and raise
appreciation for the human capacities that bring creative discoveries and inventions.”

3.4 How do we manage and provide oversight? Governance and AI Bias

Governance processes impact nearly every aspect of managing AI bias. For that reason, it
is essential to view governance as a holistic implementation tier, socio-technical in nature,
and informing each phase of the bias management process. It is also important to note that
governance does not simply focus on technical artifacts, such as AI systems alone, but also
on organizational processes and cultural competencies that directly impact the individuals
involved in training, deploying and monitoring such systems. While there are a number
of components to effective governance for managing bias in AI systems, we focus here on
organizational measures and culture.

3.4.1 Governance Guidance

Monitoring
AI systems may perform differently than expected once deployed, which can lead to dif-
ferential treatment of individuals from different groups. A key measure to control this risk
is to deploy additional systems that monitor for potential bias issues, which can alert the
proper personnel when potential problems are detected. Without such monitoring in place,

42/77



it can be difficult to know if deployed system performance in the real world matches up
to the measurements conducted in a laboratory environment, or whether newly collected
data match the distribution of the training data. A key consideration for the success of live
monitoring for bias is the collection of data from the active user population, especially data
related to user demographics such as age and gender, to enable calculation of assessment
measures. These type of data can have a variety of privacy implications and may be subject
to legal restrictions on what types of data can be collected and under what conditions.

Recourse Channels
Availability of feedback channels allow system end users to flag incorrect or potentially
harmful results, and seek recourse for errors or harms. A number of legal frameworks pri-
oritize the ability of users to appeal and override unfavorable decisions, and are applied in
a subset of algorithmic systems deployed in areas like consumer finance. Because appeal
and override recourse often requires a logical description of the questionable ML deci-
sion, these processes are tightly connected to AI system explainability and interpretability.
Though not without criticism [259], adverse action notices for negative consumer credit
decisions, as mandated by the Equal Credit Opportunity Act and the Fair Credit Reporting
Act, are an example of an explanation and appeal process19[260]. Additional appeal and
override processes could include options for customers to interact with a human instead of
an AI system or options to avoid similar AI-generated content in the future. Embedding
such processes and technologies into AI systems allows users to appeal wrong decisions
(or even suggestions) while also empowering technology development teams to remediate
potential incidents at or near their inception point.

Policies and Procedures
In the context of AI systems, ensuring that written policies and procedures address key
roles, responsibilities, and processes at all stages of the AI model lifecycle is critical to
managing and detecting potential overall issues of AI system performance.20 Policies and
procedures can enable consistent development and testing practices, which in turn can help
to ensure that results from AI systems are repeatable and that related risks are consistently
mapped, measured and managed. Without such policies, the management of AI bias can
easily become subjective and inconsistent across organizations, which can exacerbate risks
over time rather than minimize them—if, for example, irreconcilably different metrics are
used across systems. Policies may:

• define the key terms and concepts related to AI systems and the scope of their in-
tended impact;

• address the use of sensitive or otherwise potentially risky data;

19See 15 U.S.C., § 1691(d).
20Bd. Governors Fed. Rsrv. Sys., Supervisory Guidance on Model Risk Management, SR Letter 11-7 (Apr.

4, 2011).
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• detail standards for experimental design, data quality, and model training;

• outline how the risks of bias should be mapped and measured, and according to what
standards;

• detail processes for model testing and validation;

• detail the process of review by legal or risk functions;

• set forth the periodicity and depth of ongoing auditing and review;

• outline requirements for change management; and

• detail any plans related to incident response for such systems, in the event that any
significant risks do materialize during deployment.

Documentation
Clear documentation practices can help to systematically implement policies and proce-
dures, standardizing how an organization’s bias management processes are implemented
and recorded at each stage. Standardized documentation can, in turn, help to ensure ac-
countability, as described in further detail below. Model documents should contain in-
terpretable descriptions of system mechanisms, enabling oversight personnel to make in-
formed, risk-based decisions about the system’s potential to perpetuate bias. Documen-
tation also serves as a single repository for important information, supporting not only
internal oversight of AI systems and related business processes, but also enhancing system
maintenance, and serving as a valuable resource for any necessary corrective or debugging
activities.21

Model documentation is especially important in the context of accountability. The
use of documentation templates with specific requirements enables practitioners to walk
through workflows as they are prescribed in written policies and procedures, or by other
best practices. Omission of key documentation elements can indicate a lack of adherence
to written policies and procedures on the part of system developers or testers. Some model
documentation templates also include contact information for developers and stakeholders
[245, 246]. The act of adding contact information to a document describing a work product
can enable more efficient oversight and communications. This type of practice should also
lead to greater concern and responsibility for the quality of the product, which in turn, can
impact bias management efforts within an organization.

21Off. Comptroller Currency, Comptroller’s Handbook: Model Risk Management (Aug. 2021), https://ww
w.occ.gov/publications-and-resources/publications/comptrollers-handbook/files/model-risk-management
/index-model-risk-management.html.
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Accountability
Accountability plays a critical role in governance efforts [261]. Governance without ac-
countability is, in practice, unlikely to be effective. Ensuring that a specific team, and
often, a specific individual – such as a Chief Model Risk Officer, as is now common in
large consumer finance organizations – is responsible for bias management in AI systems
is a fundamental accountability mechanism.22 Ensuring individuals or teams bear respon-
sibility for risks and associated harms provides a direct incentive for their mitigation. Put
simply, when someone’s boss is accountable for bias issues, they too are accountable for
bias issues—and this phenomenon promulgates down to front-line practitioners. Account-
ability for AI bias cannot lie on the shoulders of a single individual, which is why account-
ability mandates should also be embedded within and across the various teams involved in
the training and deployment of AI systems. Existing technical and procedural frameworks
for accountability related to AI include general governance procedures, and application of
system monitoring, data quality measures, computer security countermeasures, and nondis-
crimination mechanisms, among others [262, 263].

Fundamentally, accountability requires a clear assessment of the role of the AI system
itself. For example, decision-support systems, which may be claimed not to result in direct
decision-making and therefore pose less risks, can easily become overly relied upon by
users, or misused or abused. In these cases, the AI system would generate similar harms as
if it were engaging in decision-making directly. Model or algorithmic audits [264] can be
used to assess and document such crucial accountability considerations. There are several
notions of audits commonly discussed in the responsible and trustworthy AI communities.
Audit may refer to a traditional internal audit function employed to track issues of model
risk, as in traditional model governance. Audit may refer to a structured and principled
application of lessons learned in financial audit practices to AI systems [265]. Alternatively,
audit may refer to some general documentation and transparency approach. Audits can be
an effective accountability, bias, and general risk mitigation mechanism. Indeed, laws
are being passed that demand bias audits of AI-based systems used in employment [266].
However, audits currently exist in a wide range of forms with varying levels of quality and
consensus [267]. Audits will be addressed in future NIST documents related to the AI risk
management framework.

Culture & Practice
For AI governance to be effective, it needs to be embedded throughout the culture of an
organization. While organizational culture and practice can be defined in a variety of ways,
the central theme of most such definitions emphasize beliefs, norms and values - or, in other
words, the behavior an organization prioritizes in practice, even if such behavior is not
codified or written down [268]. Risk management culture and practices can be a powerful
technique for identifying biases across the AI lifecycle and from a socio-technical system
perspective.

22Bd. Governors Fed. Rsrv. Sys., supra note 20.
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Effective challenge The principal of effective challenge is a central component of
model risk management frameworks. This practice is heavily relied on by the financial
sector to mitigate algorithmic risk, and mandates that important model design and im-
plementation decisions be questioned by experts with the authority and stature to make
changes in design and implementation.23 Fostering a culture of effective challenge encour-
ages actively challenging and questioning steps in the development of AI systems, and can
help to raise issues of AI bias before they materialize in deployed systems. An organiza-
tional culture that encourages serious questioning of AI system designs will be more likely
to identify problems before they turn into harmful incidents. Relatedly, while individuals
who are part of the development of AI systems may be knowledgeable about the potential
harmful impacts of the technology they build, impact assessments should not be exclu-
sively developed by these teams due to increased likelihood of confirmation bias and other
incentives that may cause conflicts of interest.

Three lines of defense Because culture can be difficult to map or measure directly,
one way to encourage this approach is to incentivize critical thinking and review at an or-
ganizational and procedural level. Model risk management frameworks, for example, are
often systematically implemented through the so-called “three lines of defense,” which
creates separate teams that are held accountable for different aspects of the model lifecy-
cle. Typically, the first line of defense focuses on model development, the second on risk
management, and the third on auditing.24 While a traditional three-lines approach may
be impractical for smaller organizations, ensuring that a culture of effective challenge is
encouraged and sustained can help organizations to anticipate, and therefore to effectively
mitigate, risks of bias before they materialize.

Risk Mitigation, Risk Tiering & Incentive Structures
Some applications of AI are high-risk.25 A central cultural component of effective risk
management for AI bias lies in a clear acknowledgment that risk mitigation, rather than
risk avoidance, is often the most effective factor in managing such risks.26 Developing
a risk mitigation mindset, meaning a clear acceptance that incidents can and will occur,
and emphasizing practical detection and mitigation once they do, can help ensure that any
risks of bias are quickly mitigated in practice. This acknowledgement enables a clear triag-
ing of risks which can enable organizations to focus finite resources on the risks of bias
that are most material, and therefore most likely to cause real-world harm. An additional
component of effective organizational culture includes aligning pay and promotion incen-
tives across teams to AI risk mitigation efforts, such that participants in the risk mitigation

23Id.
24Off. Superintendent Fin. Inst. Canada, Enterprise-Wide Model Risk Management for Deposit-Taking

Institutions, E-23 (Sept. 2017).
25Eur. Comm’n, Regulation of the European Parliament and of the Council Laying Down Harmonised Rules

on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Acts (pro-
posed Apr. 21, 2021), https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0206.

26Bd. Governors Fed. Rsrv. Sys., supra note 20
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mechanisms—like the three lines of defense—are truly motivated to use sound develop-
ment approaches, test rigorously and audit thoroughly.27

Information Sharing
As described in a NIST special publication [269], sharing cyber threat information helps
organizations improve both their own security postures, and those of other organizations.
Identifying internal mechanisms for teams to share information about bias incidents or
other harmful impacts from AI helps to elevate the importance of AI risks and provides
information for teams to avoid past failed designs. Some initial efforts are already under-
way [270]. As teams begin to create norms for tracking such incidents, it can potentially
transform AI practices and the organizational culture. Improving awareness of how bias
presents in deployed AI and its related impacts can enhance knowledge and capabilities,
and prevent incidents. Fostering a culture of information sharing can also serve as a new
area for community engagement.

4. Conclusions

This document has provided a broad overview of the complex challenge of addressing and
managing risks associated with AI bias. It is clear that developing detailed technical guid-
ance to address this challenging area will take time and input from diverse stakeholders,
within and beyond those groups who design, develop, and deploy AI applications, and in-
cluding members of communities that may be impacted by the deployment of AI systems.

Since AI is neither built nor deployed in a vacuum, we approach AI as a socio-technical
system, acknowledging that AI systems and associated bias extend beyond the computa-
tional level. Bias can be introduced purposefully or inadvertently, or it can emerge as the AI
system is used, impacting society at large through perpetuating and amplifying biased and
discriminatory outcomes. Adopting a socio-technical perspective brings new requirements,
many of which are contextual in nature, to the processes that comprise the AI lifecycle. It is
important to gain understanding in how computational and statistical factors interact with
systemic and human biases.

NIST has provided an initial socio-technical framing for AI bias in this document, in-
cluding key context and terminology, highlights of the main challenges, and foundational
directions for future guidance. This information is classified and discussed through the
document according to three key areas:

1. dataset availability, representativeness, and suitability in socio-technical contexts;

2. TEVV considerations for measurement and metrics to support testing and evaluation;

3. human factors, including societal and historic biases within individuals and organiza-
tions, participatory approaches such as human-centered design, and human–in–the–
loop practices.

27Id.
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Identifying the key requirements for improving our knowledge in this area is a neces-
sary first step. To ensure broad input, engagement, and consensus, NIST will carry out
supporting standards development activities such as workshops and public comment peri-
ods for draft documents.

NIST intends to develop further consensus socio-technical guidance in collaboration
with the research community and a broad set of other stakeholders, including those who
are directly impacted by AI bias. The intent is for this guidance to be of specific assistance
for organizations who commission, design, develop, deploy, use, or evaluate AI for a variety
of use cases. By providing these entities with clear, explicit, and technically valid guidance
NIST intends to improve the state of practice for AI bias and assure system trustworthiness.
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5. Glossary

activity bias A type of selection bias that occurs when systems/platforms get their training
data from their most active users, rather than those less active (or inactive) [133]. 8

aleatoric uncertainty Aleatoric uncertainty, also known as statistical uncertainty, refers
to unknowns that differ each time we run the same experiment. It refers to the vari-
ability in the outcome of an experiment which is due to inherently random effects.
For example, in machine learning context, the data-generating process may have a
stochastic component that cannot be reduced by any additional source of information.
Consequently, even the best model trained on this data will not be able to provide a
definite answer. 9, 20, 21

amplification bias Arises when the distribution over prediction outputs is skewed in com-
parison to the prior distribution of the prediction target [271]. 8

anchoring bias A cognitive bias, the influence of a particular reference point or anchor
on people’s decisions. Often more fully referred to as anchoring-and-adjustment,
or anchoring-and-adjusting: after an anchor is set, people adjust insufficiently from
that anchor point to arrive at a final answer. Decision makers are biased towards an
initially presented value [80]. 8, 9

annotator reporting bias When users rely on automation as a heuristic replacement for
their own information seeking and processing [272]. A form of individual bias but
often discussed as a group bias, or the larger effects on natural language processing
models. 8

automation complacency When humans over-rely on automated systems or have their
skills attenuated by such over-reliance (e.g., spelling and autocorrect or spellcheck-
ers). 8

availability heuristic Also referred to as availability bias. A mental shortcut whereby
people tend to overweight what comes easily or quickly to mind, meaning that what
is easier to recall—e.g., more “available”—receives greater emphasis in judgement
and decision-making. 8

behavioral bias Systematic distortions in user behavior across platforms or contexts, or
across users represented in different datasets [147, 273]. 8

cognitive bias A broad term referring generally to a systematic pattern of deviation from
rational judgement and decision-making. A large variety of cognitive biases have
been identified over many decades of research in judgement and decision-making,
some of which are adaptive mental shortcuts known as heuristics. 8
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concept drift Use of a system outside the planned domain of application, and a common
cause of performance gaps between laboratory settings and the real world. 8

confirmation bias also called confirmatory bias, a cognitive bias where people tend to
prefer information that aligns with, or confirms, their existing beliefs. People can ex-
hibit confirmation bias in the search for, interpretation of, and recall of information.
In the famous Wason selection task experiments, participants repeatedly showed a
preference for confirmation over falsification. They were tasked with identifying an
underlying rule that applied to number triples they were shown, and they overwhelm-
ingly tested triples that confirmed rather than falsified their hypothesized rule [274].
8, 9, 27

construct validity A form of validation that seeks to answer whether a test measures what
it intends to measure. [275]. 15

consumer bias Arises when an algorithm or platform provides users with a new venue
within which to express their biases, and may occur from either side, or party, in a
digital interaction [276]. 8

content production bias Arises from structural, lexical, semantic, and syntactic differ-
ences in the contents generated by users [147]. 8

data dredging A statistical bias in which testing huge numbers of hypotheses of a dataset
may appear to yield statistical significance even when the results are statistically
nonsignificant. 8, 27

data generation bias Arises from the addition of synthetic or redundant data samples to a
dataset [277]. 8

deployment bias Arises when systems are used as decision aids for humans, since the
human intermediary may act on predictions in ways that are typically not modeled in
the system [91]. However, it is still individuals using the deployed system. 8, 26

detection bias Systematic differences between groups in how outcomes are determined
and may cause an over- or underestimation of the size of the effect [278]. 8

Dunning–Kruger effect A cognitive bias, the tendency of people with low ability in a
given area or task to overestimate their self-assessed ability. Typically measured
by comparing self-assessment with objective performance, often called subjective
ability and objective ability, respectively [279]. 8, 26

ecological fallacy Occurs when an inference is made about an individual based on their
membership within a group. 8, 23

emergent bias Use of a system outside the planned domain of application, and a common
cause of performance gaps between laboratory settings and the real world. 8
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epistemic uncertainty An epistemic uncertainty, also known as systematic uncertainty,
refers to deficiencies by a lack of knowledge or information. This may be because the
methodology on which a model is built neglects certain effects or because particular
data have been deliberately hidden. 9, 20–22

error propagation Arises when applications that are built with machine learning are used
to generate inputs for other machine learning algorithms. If the output is biased in
any way, this bias may be inherited by systems using the output as input to learn
other models [83]. 8

evaluation bias Arises when the testing or external benchmark populations do not equally
represent the various parts of the user population or from the use of performance
metrics that are not appropriate for the way in which the model will be used [91]. 8

exclusion bias When specific groups of user populations are excluded from testing and
subsequent analyses [280]. 8

feedback loop bias Effects that may occur when an algorithm learns from user behavior
and feeds that behavior back into the model [276]. 8

funding bias Arises when biased results are reported in order to support or satisfy the
funding agency or financial supporter of the research study [86], but it can also be
the individual researcher. 8

governance a framework of policies, rules, and processes for ensuring direction, manage-
ment and accountability. ii

groupthink A psychological phenomenon that occurs when people in a group tend to
make non-optimal decisions based on their desire to conform to the group, or fear of
dissenting with the group. In groupthink, individuals often refrain from expressing
their personal disagreement with the group, hesitating to voice opinions that do not
align with the group. 8

heuristics in the context of human decision making, often referred to as “mental short-
cuts,” a term that encompasses many methods that may be less than fully rational or
optimal, yet are often sufficient for an approximate solution. Although heuristics can
reduce cognitive load and aid people when making decisions, such heuristics also
result in systematic errors and cognitive biases [80]. 34

historical bias referring to the long-standing biases encoded in society over time. Related
to, but distinct from, biases in historical description, or the interpretation, analysis,
and explanation of history. A common example of historical bias is the tendency to
view the larger world from a Western or European view. 8
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human reporting bias When users rely on automation as a heuristic replacement for their
own information seeking and processing [272]. 8

implicit bias An unconscious belief, attitude, feeling, association, or stereotype that can
affect the way in which humans process information, make decisions, and take ac-
tions. 8

inherited bias Arises when applications that are built with machine learning are used to
generate inputs for other machine learning algorithms. If the output is biased in any
way, this bias may be inherited by systems using the output as input to learn other
models [83]. 8

institutional bias In contrast to biases exhibited at the level of individual persons, insti-
tutional bias refers to a tendency exhibited at the level of entire institutions, where
practices or norms result in the favoring or disadvantaging of certain social groups.
Common examples include institutional racism and institutional sexism [92]. 8

interpretation bias A form of information processing bias that can occur when users in-
terpret algorithmic outputs according to their internalized biases and views [276].
8

language model A computational model that has been trained using statistical methods to
find patterns in written and/or spoken language, in order to predict or classify words,
text, or speech. 21

linking bias Arises when network attributes obtained from user connections, activities, or
interactions differ and misrepresent the true behavior of the users [147]. 8

loss of situational awareness bias When automation leads to humans being unaware of
their situation such that, when control of a system is given back to them in a situation
where humans and machines cooperate, they are unprepared to assume their duties.
This can be a loss of awareness over what automation is and isn’t taking care of. 8

McNamara fallacy The belief that quantitative information is more valuable than other
information. 12

measurement bias Arises when features and labels are proxies for desired quantities, po-
tentially leaving out important factors or introducing group or input-dependent noise
that leads to differential performance [91]. 8

mode confusion bias When modal interfaces confuse human operators, who misunder-
stand which mode the system is using, taking actions which are correct for a differ-
ent mode but incorrect for their current situation. This is the cause of many deadly
accidents, but also a source of confusion in everyday life. 8
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model A conceptual, mathematical, or physical representation of phenomenon observed
in a system of ideas, events, or processes. In computationally-based models used in
AI, phenomenon are often abstracted for mathematical representation, which means
that characteristics that can not be represented mathematically may not be captured
in the model. i, v

model selection bias The bias introduced while using the data to select a single seemingly
“best” model from a large set of models employing many predictor variables. Model
selection bias also occurs when an explanatory variable has a weak relationship with
the response variable [281]. 8

popularity bias A form of selection bias that occurs when items that are more popular are
more exposed and less popular items are under-represented [132]. 8

population bias Systematic distortions in demographics or other user characteristics be-
tween a population of users represented in a dataset or on a platform and some target
population [282]. 8

presentation bias Biases arising from how information is presented on the Web, via a
user interface, due to rating or ranking of output, or through users’ own self-selected,
biased interaction [133]. 8

proxy A variable that can stand in for another, usually not directly observable or measur-
able, variable. 20

ranking bias A form of anchoring bias. The idea that top-ranked results are the most
relevant and important and will result in more clicks than other results [133, 283]. 8

Rashomon effect or principle Refers to differences in perspective, memory and recall,
interpretation, and reporting on the same event from multiple persons or witnesses.
8

representation bias Arises due to non-random sampling of subgroups, causing trends es-
timated for one population to not be generalizable to data collected from a new pop-
ulation [86]. 8

selective adherence Decision-makers’ inclination to selectively adopt algorithmic advice
when it matches their pre-existing beliefs and stereotypes [219]. 8

Simpson’s Paradox A statistical phenomenon where the marginal association between
two categorical variables is qualitatively different from the partial association be-
tween the same two variables after controlling for one or more other variables. For
example, the statistical association or correlation that has been detected between two
variables for an entire population disappears or reverses when the population is di-
vided into subgroups. 8, 17
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societal bias often referred to as social bias. Can be positive or negative, and take a num-
ber of different forms, but is typically characterized as being for or against groups
or individuals based on social identities, demographic factors, or immutable physical
characteristics. Societal or social biases are often stereotypes. Common examples
of societal or social biases are based on concepts like race, ethnicity, gender, sexual
orientation, socioeconomic status, education, and more. Societal bias is often recog-
nized and discussed in the context of NLP (Natural Language Processing) models.
8

socio-technical A term used to describe how humans interact with technology within the
broader societal context. ii

streetlight effect A bias whereby people tend to search only where it is easiest to look [284].
8

sunk cost fallacy A human tendency where people opt to continue with an endeavor or
behavior due to previously spent or invested resources, such as money, time, and
effort, regardless of whether costs outweigh benefits. For example, in AI, the sunk
cost fallacy could lead development teams and organizations to feel that because they
have already invested so much time and money into a particular AI application, they
must pursue it to market rather than deciding to end the effort, even in the face of
significant technical debt and/or ethical debt. 8

survivorship bias tendency for people to focus on the items, observations, or people that
“survive” or make it past a selection process, while overlooking those that did not. 8

technochauvinism The belief that technology is always the solution [35]. 12

temporal bias Bias that arises from differences in populations and behaviors over time [147,
285]. 8

uncertainty bias Arises when predictive algorithms favor groups that are better repre-
sented in the training data, since there will be less uncertainty associated with those
predictions [286]. 8

user interaction bias Arises when a user imposes their own self-selected biases and be-
havior during interaction with data, output, results, etc [133]. 8
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