
Integrating Multiple HLA Federations for Effective
Simulation-Based Evaluations of CPS

Himanshu Neema
Vanderbilt University
Nashville, TN USA

himanshu.neema@vanderbilt.edu

Thomas Roth
National Inst. of Standards & Technology

Gaithersburg, MD, USA
thomas.roth@nist.gov

Chenli Wang
National Inst. of Standards & Technology

Gaithersburg, MD, USA
chenli.wang@nist.gov

Wenqi Wendy Guo
National Inst. of Standards & Technology

Gaithersburg, MD, USA
wenqi.guo@nist.gov

Anirban Bhattacharjee
National Inst. of Standards & Technology

Gaithersburg, MD, USA
anirban.bhattacharjee@nist.gov

Abstract—Cyber-Physical Systems (CPS) are complex systems
of computational, physical, and human components integrated to
achieve some function over one or more networks. The use of
distributed simulation, or co-simulation, is one method often used
to analyze the behavior and properties of these systems. High-
Level Architecture (HLA) is an IEEE co-simulation standard
that supports the development and orchestration of distributed
simulations. However, a simple HLA federation constructed with
the component simulations (i.e., federates) does not satisfy several
requirements that arise in real-world use cases such as the shared
use of limited physical and computational resources, the need
to selectively hide information from participating federates, the
creation of reusable federates and federations for supporting
configurable shared services, achieving performant distributed
simulations, organizing federations across different model types
or application concerns, and coordinating federations across
organizations with different information technology policies. This
paper describes these core requirements that necessitate the use
of multiple HLA federations and presents various mechanisms
for constructing such integrated HLA federations. An example
use case is implemented using a model-based rapid simulation
integration framework called the Universal CPS Environment
for Federation (UCEF) to illustrate these requirements and
demonstrate techniques for integrating multiple HLA federations.

Index Terms—co-simulation, cyber-physical systems, dis-
tributed simulation, high-level architecture, modeling and sim-
ulation, shared federations

I. INTRODUCTION

Cyber-Physical Systems (CPS) comprise networked com-
putational, physical, and human components engineered for
function through integrated physics and logic [1]. CPS include
critical infrastructures such as the electric grid, transportation,
advanced manufacturing, health care, and others. The co-
simulation of CPS often requires the collaboration of do-
main experts across organizational boundaries, leading to the
integration of different organizational policies and propri-
etary information into an integrated distribution simulation.
Furthermore, some CPS are system-of-systems (SoS) that
are comprised of multiple subsystems with complex needs
for synchronization, consistency, security, performance, and

interoperability. For example, a smart city may integrate its
electric grid, transportation, and health care systems into one
integrated service for its residents.

This study explores various complex requirements that
arise when using the High-Level Architecture (HLA) [2] for
distributed simulations of CPS. It proposes that the real-
world concerns of CPS and SoS can no longer be adequately
addressed by using a single HLA federation that considers
all of its subsystems (federates) as equal peers. It argues
that these situations require separation of the system into
multiple federations - each dedicated to simulation of part of
the CPS - with defined mechanisms for inter-federation com-
munication for joint coordination and control. The federations
may be split based on proprietary information, geographic
distribution of their member simulations, time-scale of the
processes involved, or some other organizing principle. This
study first describes the real-world concerns that may lead
to the use of multiple interactive federations, then it presents
different implementations of time synchronization and data
exchange across federation boundaries. In addition, a use
case is implemented using a model-based rapid simulation
integration framework called the Universal CPS Environment
for Federation (UCEF) [3] [4] to demonstrate these concepts.

HLA was designed to be comprehensive and supportive
of distributed simulations, which involve different models
of computation, physical systems and processes, and even
human-in-the-loop for simulated training exercises. However,
developing federates that conform to the standard requires a
non-trivial amount of effort. UCEF addresses this challenge
using a model-based simulation integration technology that
can rapidly synthesize HLA-based distributed simulations. The
automatic creation of HLA federations is less error-prone due
to the use of defined model semantics and a validated synthesis
environment. In addition, these automation capabilities can be
extended to create co-simulation configurations that require
multiple integrated HLA federations.

Consider the use of distributed simulations to analyze an
airport system (see Fig. 1). An airport provides services and



infrastructure (e.g., transport, baggage routing, airport security,
runway allocation, etc.) to passengers and airlines. The airlines
are independent entities that utilize the airport as a shared
resource and can be thought of as individual CPS that each
requires an HLA federation to represent its functionalities.
Joining all of the airlines’ subsystems and airport infrastructure
together into a single federation is complicated and leads to
other drawbacks. For example, it can impact performance
due to the large amount of combined network traffic and
may not be suitable for information hiding between airlines’
subsystems. Alternatively, the use of multiple federations can
isolate network traffic and restrict unwanted communication
between different airlines. In addition, the use of multiple
federations is more intuitive, easier to maintain and manage,
and better separates the concerns of the individual federations.
However, developing these separate HLA federations and
integrating them in a holistic, consistent manner is highly
challenging. Here, UCEF’s modeling and federation synthesis
tools can accelerate and simplify the development process.

Fig. 1. Using Multiple Federations for an Airport System

The paper is organized as follows: Section II summarizes
the related work. Section III enumerates the requirements of
real-world use cases that lead to the need for the integration
of multiple HLA federations. Section IV identifies various
mechanisms to organize and integrate multiple HLA feder-
ations. Appendix A illustrates how these mechanisms address
the above-mentioned requirements. An example use case is
implemented in Section V to demonstrate some of the above
requirements and mechanisms. Finally, Section VI concludes
the paper and provides limited directions for future research.

II. RELATED WORK

Distributed simulation is widely used in domains where
independent subsystems need to be integrated into a larger
system, such as in the military. A detailed overview of different
technologies for simulation integration for CPS can be found
in [5]. Related test beds for cybersecurity research are covered
in [6] and [7]. However, many real-world use cases require
interconnecting multiple HLA federations for the large-scale
simulations, especially simulations over a wide-area network.

Hierarchical Simulation has been used in many different
simulation environments. It holds great promise, especially in
terms of modeling efficiency and model reuse. A hierarchical
simulation-based software architecture is proposed in [8]. An
integrated model-driven framework is proposed in [9].

Proxy methods have been used to enable inter-operating
federations without modifying the HLA Run-Time Infras-
tructure (RTI). Federation bridges to wire multiple HLA
federations were proposed in [10], [11], and [12]. HLA ser-
vice management modules to address scalability and security
issues was proposed in [12]. Further, [13] provides several
bridge topologies (e.g., linear and cyclic inter-federations)
and their associated issues and potential solutions. A dynam-
ically adapting bridging federate was proposed in [14] that
can change connection paths among bridged federations as
systems evolve during the simulation. Further, a forwarder
concept [15] was also introduced in the Portico RTI [16] that
enables transforming the flat structure of HLA federations into
a hierarchical structure where federates are partitioned into
different interconnected clusters.

Information hiding is often needed in distributed simu-
lations, but HLA does not provide direct mechanisms for
it. A related hierarchical federation architecture based on a
hybrid gateway/proxy approach for interoperability between
simulation federations was given in [17].

An obvious trade-off in decomposing large federations into
multiple smaller, interconnected federations is the overhead of
communication. A composed federation framework to achieve
a level of balance between information hiding and reducing
the communication overhead was given in [18]. It also pro-
vides methods to create a secure distributed environment that
minimizes critical security concerns with HLA RTIs.

III. USE CASES FOR MULTIPLE FEDERATIONS

This section describes several use cases that can benefit from
using multiple HLA federations. Each subsection describes
one requirement that leads to multiple federations and provides
an example application.

A. Shared and Limited Resource

Some resources are limited and cannot be easily repro-
duced. These include licensed software, prototype hardware,
human experts such as surgeons, and entire test facilities.
This category represents use cases where multiple independent
entities must share access to one of these limited resources.
The limitation on availability generates contention among the
entities, thus requiring them to collaborate and coordinate.
For instance, consider large manufacturing plants located on
different floors of a building. The manufacturing operations
might be highly complex and require distributed simulation for
analysis. At the same time, these plants use shared building
infrastructure such as an elevator, a stairwell, and a warehouse.
The plants may need to develop a sharing strategy, a priority
order, a scheduling mechanism, and an effective method for
coordination and control of the shared resource.



B. Information Hiding

A distributed simulation can include actors from different
organizations with the subsystems for these organizations split
across multiple security domains. Some information such as
business secrets and classified data may be restricted for
exchange between actors in the same security domain. This
category represents use cases where a subsystem exchanges
sensitive information that must be protected, while at the
same time it has a requirement to interact with external
entities, which may even extend to geographically distributed
Internet of Things (IoT) [19]. For instance, consider a large
organization comprised of multiple departments. The low-level
information within the department (e.g., staffing, workplace
policies) may not be relevant to other departments, while other
information must be shared across the organization (e.g., status
updates, product flows, process workflow events). Another
example is an office which internally may argue over problems
and solutions, but choose to present only a unified, filtered, and
vetted view (e.g., a report) to external entities.

C. Model Reuse

Real-world distributed simulations can be highly complex
such that both the models used, and their curated config-
urations may require a large amount of experimentation,
analysis, and even certification. Deviations from the approved
configurations can be unacceptable. For instance, military ex-
ercises (e.g., pilot flight training, astronaut zero-gravity train-
ing) require a well-defined and standardized set of software,
hardware, and policies for use. Misconfigured equipment can
result in a failed exercise and even injury to the trainees. In
distributed simulations, this requires creating reusable feder-
ates/federations. The larger distributed simulation is created
through composition of these well-curated federates and/or
federations. In addition, many reusable federations use a rigid,
custom Federation Object Model (FOM) (e.g., Distributed
Interactive Simulation (DIS) [20] federates based on Real-time
Platform Reference Federation Object Model (RPR-FOM)
[21]). Here, techniques to map messages in one federation’s
FOM to the other are needed (as provided in UCEF).

Another use case involves use of a remote federation. For
example, a laboratory that interacts with external systems may
require its own curated HLA federation with a fixed FOM.
The laboratory services remotely accessed through this curated
federation might have access control mechanisms and policies
to schedule their use. This necessitates designing reusable,
validated federations that can be effectively used by composing
them with other integrated federations.

D. Performance Benefit

As the size of federations increases, the performance of
the distributed simulation tends to decrease significantly. This
is mainly due to increased traffic of messages on the HLA
RTI, but often also due to sub-optimal RTI implementations
[22]. For example, if all the three federations shown in Fig. 1
were combined into a single federation, there would be a
large amount of HLA network traffic which could lead to

both dropped messages (in case where ‘best effort’ message
delivery is used) and significant network delays. In general,
when a federation comprises a large number of federates, a
performance benefit in terms of reduced number of messages
on the HLA bus could be achieved by grouping related HLA
federates into a separate federation.

It is also possible that different federates in a federation
use different logical time resolutions (i.e., step-size). Here, if
certain federates are slow in computing their behavior in every
step or they require a smaller step-size, processing bottlenecks
can arise in the integrated simulation. In time-constrained
HLA simulations, these federates with a very small step-size
can trigger recalculation of state variables in fast computing
federates as well as in the RTI. This leads to an increase
in runtime of the distributed simulation. Separating federates
with larger step-sizes can enable them to execute at large step-
sizes. An example using the same principle but with Functional
Mock-up Interface (FMI) was previously published in [23].

Another interesting example is federates that dynamically
change step-sizes during the co-simulation. For instance, if a
fire extinguishing exercise uses a water spraying federate, this
federate does nothing until a fire has been reported. Once the
water spraying federate begins putting out an active fire, it
reduces its step-size to a very small value to keep track of
highly dynamic simulation of fire propagation. Splitting this
federate into a separate federation can help the other federates
run at larger step-sizes and thus execute in less time.

E. Organizing Principles

When a federation has different sets of federates simulating
different aspects of the systems, it can be useful to organize
the related federates into separate federations. For example,
in a biological simulation of the human body, different body
functional systems (e.g., nervous system, digestive system,
respiratory system, muscular system) represent fundamentally
different concerns in the body and as such might be better or-
ganized as separate federations. These federations will interact
with each other for their inter-dependencies.

F. Different IT Policies

This category refers to situations where the use of multi-
ple HLA federations is needed due to different information
technology (IT) policies within an organization. For example,
some federates may be located at different (potentially remote)
locations or may require different access mechanisms such as
passing through a network firewall, and their use in distributed
simulations may require complying with IT policies. This, in
turn, may require federates to be packaged into different HLA
federations.

Another use case in this category may emerge due to
high computational requirements of federates. In this case,
depending on where and how much compute resources are
available, the federates will need to be grouped into separate
federations and managed accordingly.



IV. MECHANISMS FOR MULTIPLE HLA FEDERATIONS

In this section, various mechanisms (or architectural pat-
terns) to develop integrated multiple HLA federations are
described. Various patterns have emerged in the literature as
described in Section II, but a consistent and comprehensive
categorization is missing. Therefore, five representative mech-
anisms (Fig. 2) that cover these patterns are presented below:

• M1: Shared Federate: Shared federates are typically used
for largely independent federations that only need to inter-
act to utilize a limited resource (e.g., a remote laboratory).
Here, these independent federations are created normally,
but a new shared federate is created to participate in all
the federations. The shared federate is responsible for
passing messages between the independent federations
and for providing logical time translation when the time
advancement mechanisms of federations are not synchro-
nized. The use cases that involve a limited resource, such
as an elevator shared between multiple organizations on
different floors of a building, or a remote server that
provides integral services to multiple, independent fed-
erations, fit within the scope of this mechanism. Another
example could be a Quality of Service (QoS) module
that monitors resource utilization (e.g., CPU, memory,
storage, database, network bandwidth) and performance
across federations and performs modifications in their
execution for better balancing the resource loads and their
priorities. Fig. 2(M1) shows the architecture of how a
shared federate is used in multiple federations. In this
case, the shared federate is a member of both federations
‘a’ and ‘b’. This mechanism can also provide perfor-
mance benefits compared to using a single federation
containing all the federates. This benefit is demonstrated
in the case study in Section V.

• M2: Shared Federation: The mechanism M1 can be
further extended when, instead of a single limited re-
source, different federations need multiple resources and
services. A crucial aspect of this architectural pattern is
that the different resources and services (provided by a
shared federation) can be used independently of each
other. The airport example shown in Fig. 1 is a good
candidate for this mechanism. In that example, multiple
airlines’ federations need to access a large number of
airport infrastructure and services. However, the airport
services such as airport security and airport transport
are largely independent. The resource contention occurs
when multiple federations (in this case the different
airlines) attempt to utilize the same service at the same
time. Note that in this architecture the independent feder-
ations do not share a federate, and any interaction among
them occurs only via the shared federation services. As
shown in Fig. 2(M2), the federations ‘a’ and ‘b’ execute
independently but use a federate that participates in a
third federation (‘c’) to access c’s services.

• M3: Parallel Connected Federations: This mechanism
effectively generalizes M1 (that used only a single shared

federate) by allowing all independent federations to use
a shared federate with each of the other integrated feder-
ations. These independent federations execute in parallel
but interact directly through shared federates. This is in
contrast to the mechanism M2, where the independent
federations interacted only through the services of a
separate federation. A good use case of this from the
electrical grid domain is integrated systems of power
transmission, distribution, and markets. Each of these
systems operate independently, but also are connected to
each other. For example, the transmission system must
maintain the power quality and quantity desired by the
city power distribution system. The transmission system
also interacts with power markets (both bulk power and
local power markets). The distribution system may also
interact with markets through smart grid systems where
many participants can use transactive controllers to buy
and sell power. As shown in Fig. 2(M3), the independent
federations ‘a’, ‘b’, ‘c’ are running concurrently but do
use shared federates for interacting with each other when
necessary for their coordination and control.

• M4: Hierarchical Federations (a.k.a. Federation of
Federations): This mechanism reflects how things are
typically organized in a large organization, where the
organization can have several smaller entities or depart-
ments, which can further have smaller entities or divisions
internally, and so on. Modeling real-world operations
that follow this organization requires similar federation
designs. Another important advantage of hierarchical
federations is that it can easily scale to accommodate
very large federations. Owing to the limitations of RTIs,
a single federation with thousands of federates is not
practically feasible. However, composing related feder-
ates in a hierarchical manner allow them to be executed
in parallel, potentially split across computation clusters
in a cloud, while still time synchronized and exchanging
data. In Fig. 2(M4), the federations {‘a’, ‘b’} are used
in a higher-level federation ‘ab’, federations {‘b’, ‘c’}
are used in federation ‘bc’, and federations ‘ab’, ‘bc’ are
used in the root level federation ‘abbc’.

• M5: Clustered Federations: This mechanism represents
the use case where many independently operating federa-
tion clusters are analyzed in a larger application context.
Consider the use case of joint military operations being
conducted in different countries (or areas). Each of these
military operations may use different military forces
(e.g., army, air force, navy, or space force) that conduct
missions in a coordinated manner to achieve common
objectives. The individual military force operation may
involve many organizations and commands. For example,
the army might operate using many remote military bases,
utilize a mix of weapons (e.g., machine guns, cannons)
and military equipment (e.g., tanks), and deploy a range
of communication, control, and reconnaissance tools and
software. Therefore, this independent yet communicating
processes and workflows might be modeled well using



Fig. 2. Mechanisms for Multiple HLA Federations

mechanism M3 (i.e., parallel connected federations). At
the same time, the overall organization conducting these
joint military operations can be modeled using a top-level
federation that interacts with the concurrently running
cluster of connected federations. Fig. 2(M5) shows the
use of three connected federations (each using a M3
mechanism internally) ‘a’, ‘b’, and ‘c’ and a top-level
federation that is connected to all three federations.

Note that multiple mechanisms can be utilized for address-
ing specific application requirements and it depends on the
constituent systems that are modeled in the federations, how
they are organized, where they are physically located, and
their specific resource and performance needs. Appendix A
shows how different mechanisms in Section IV can be useful
in addressing the requirements listed in Section III.

V. CASE STUDY

The following case study demonstrates the performance
benefit achieved with multiple federations using an example
CPS. Advanced manufacturing systems use communications
networks and distributed control to operate equipment in
response to changing factory conditions and customer needs.
This case study models a simplified manufacturing plant that
adjusts its outputs based on the performance of its products in
a market.

A manufacturing company has internal organizations for
purchasing of raw materials, production of products, and
selling of products at market. The production, market, and
buyers are implemented as separate federates. Figure 3 shows
a federation diagram for this example created in UCEF. The
federates in Figure 3 were implemented in Java for two
scenarios: one where all the federates were integrated into
a single federation, and one with separate federations for
the manufacturing company (Federation 1) and the potential
buyers (Federation 2).

The production federate uses the income from the market
to produce a random distribution of three products. These

products are sent to the market federate, which implements a
Dutch auction. The market offers the products at a high asking
price and waits for buyers to accept the price with a bid. If
enough buyers do not accept the price, the market reduces the
asking price and starts another round of the auction. The price
will continue to be reduced until all products are sold.

A. Single Federation Implementation

When the market receives product, it starts the auction.
Each auction round lasts one logical time step. The market
collects bids for the current asking price, then determines if
all the products have been sold. If a product remains unsold,
the market starts another round with reduced asking price. If
no product remains, the market ends the auction and sends
the income to the production company. The auction duration
depends on the initial asking price and the buyer behavior, and
each auction will require a different number of rounds (and
thus require a different amount of logical time progression).

For the production federate, an unknown amount of logical
time will progress between sending a product to market and
receiving the income in return. Thus, the production federate
has dynamic logical time progression responsive to the market.
This can be implemented in two ways: either it can use the
HLA NextEventRequest service to wait for the income, or it
must also have a logical time step of 1 s and continuously
poll if the auction has concluded. This paper implemented the
production federate with a logical time step of 1 s.

B. Multiple Federation Implementation

A single federation implementation requires the production
federate to waste logical time waiting on the auction. If the av-
erage auction requires 99 rounds, then the production federate
will perform meaningful work in only 1 of 100 logical time
steps. Based on HLA implementation, the synchronization
requirements of additional time steps and the network traffic
from the buyers can have unnecessary performance impact. An



Fig. 3. Federation Model for the Manufacturing Scenario

alternative implementation is using two federations to isolate
the behavior of the market from the production company.

As shown in Figure 3, Federation 1 contains the production
and market federate. In every logical time step, in Federation 1,
the production federate will receive its latest income from the
market and produce some amount of product. Federation 2
contains the market federate and the buyers. The market
implementation is the same as for the single federation case,
with one logical time step (in Federation 2) corresponding to
one auction round. Each federation has independent logical
time progression, and there is no mapping between the logical
time values due to the random nature of the auction.

The market federate co-exists in two different federations.
It was implemented in Java using two threads where each
thread represents one of its identities: one thread dedicated to
Federation 1, and another to Federation 2. The main method
controls the logical time progression of both threads, and
ferries messages between the two federations using the HLA
services. This corresponds to mechanism M1 in Section IV.

C. Performance Results
In this example, the quantity of products is determined

by income amount and a random function in the production
federate. The testing starts from the market federate sending
1,000 dollars to the production federate as the initial income.
After the Buyer federate reaches the logical time of 10,000 s,
the federations is stopped and the number of interactions in
the federations is collected. Table 1 shows the testing results
of single and multiple federation implementations.

TABLE I
COMPARISON OF REGISTERED NUMBER OF INTERACTIONS

Design Time Step #Interactions

Multiple Federations Federation 1 23 23
Federation 2 10,000 9,999

Single Federation 10,000 10,015

In the multiple federation design, Federation 2 (i.e., auction
federation) registered 9,999 interactions, while Federation 1
(i.e., production federation) only registered 23 interactions.
On the other hand, 10,015 interactions were propagated in
the single federation design during the test. The result shows
that the multiple federation structure effectively reduces the
network traffic through the production federate by 99.8%.

Moreover, the number of HLA TimeAdvanceRequest calls in
the production federate dramatically decreased from 10,000
to 23. Such designs can help low-performance or low-power
simulation devices by reducing unnecessary interactions and
calls to RTI services in federations.

VI. CONCLUSIONS & FUTURE WORK

Real-world use of HLA federations for evaluating complex
scenarios can become highly challenging, sub-optimal, and
even practically infeasible. In these situations, to manage
the complexity of scenarios, federation designers need to
resort to decomposition, reorganization, and parallelization.
This paper reviewed related work on various methods used
to deal with these complexities and provided a classification
of these real-world requirements. Further, it identified a set
of key mechanisms that can be used to develop integrated
multiple HLA federations. It also provided use cases where
each of these mechanisms are well-suited. Furthermore, it
demonstrated the use of integrated multiple HLA federations
using a detailed case-study.

Our future work focuses on developing quantitative metrics
to measure different mechanisms of creating integrated mul-
tiple HLA federations and designing realistic scenarios and
evaluating them with these metrics. The outcome of these eval-
uations will be reported in future publications. These metrics
will further serve as a useful guideline for federation designers,
particularly when multiple mechanisms are applicable for a
given scenario. In addition, UCEF will be extended with a
library of tools and reusable components that will simplify
creation of the various mechanisms for integrating multiple
HLA federations.

ACKNOWLEDGMENT

This work at Vanderbilt University is supported in part
by the US National Institute of Standards and Technology
(NIST) (award #70NANB21H164) and the US National Se-
curity Agency (NSA) (award #H98230-18-D-0010). Official
contribution of the NIST and NSA; not subject to copyright
in the US. Certain commercial products are identified in
order to adequately specify the procedure; this does not imply
endorsement or recommendation by NIST or NSA, nor does
it imply that such products are necessarily the best available
for the purpose.



REFERENCES

[1] E. Griffor, C. Greer, D. Wollman, and M. Burns, ”Framework
for Cyber-Physical Systems: Volume 1, Overview”, 2017, DOI:
10.6028/NIST.SP.1500-201.

[2] IEEE Std 1516-2010, IEEE Standard for Modeling and Simulation
(M&S) High Level Architecture (HLA)- Framework and Rules., 2010.

[3] B. Martin, T. Roth, E. Griffor, P. Boynton, J. Sztipanovits, and H. Neema,
”Universal CPS environment for federation (UCEF),” In 2018 Winter
Simulation Innovation Workshop, 2018.

[4] T. Roth, E. Song, M. Burns, H. Neema, W. Emfinger, and J. Szti-
panovits, ”Cyber-Physical System Development Environment for Energy
Applications,” 11th Int. Conf. on Energy Sustainability, 2017, DOI:
10.1115/ES2017-3589.

[5] H. Neema, J. Sztipanovits, C. Steinbrink, T. Raub, C. Bastian, and S.
Lehnhoff, ”Simulation integration platforms for cyber-physical systems,”
Proc. of the Workshop on Design Automation for CPS and IoT (DES-
TION ’19), ACM, pp. 10–19. DOI: 10.1145/3313151.3313169.

[6] X. Koutsoukos, G. Karsai, A. Laszka, N. Himanshu, B. Potteiger, P.
Volgyesi, Y. Vorobeychik, and J. Sztipanovits, ”SURE: A Modeling and
Simulation Integration Platform for Evaluation of Secure and Resilient
Cyber–Physical Systems,” in Proc. of the IEEE, vol. 106, no. 1, pp.
93-112, Jan. 2018, DOI: 10.1109/JPROC.2017.2731741.

[7] J. Mirkovic, T. V. Benzel, T. Faber, R. Braden, J. T. Wroclawski
and S. Schwab, ”The DETER project: Advancing the science of cy-
ber security experimentation and test,” IEEE International Conference
on Technologies for Homeland Security (HST),2010, pp. 1-7, DOI:
10.1109/THS.2010.5655108.

[8] K. Arne and P. Bernd., A Hierarchical Simulation Based Software
Architecture for Back-Testing And Automated Trading. Proceedings -
25th European Conference on Modelling and Simulation, ECMS 2011.
pp. 275-282. 10.7148/2011-0275-0282.

[9] D. Cetinkaya, Aa. Verbraeck, and M.Seck, Applying a model driven
approach to component based modeling and simulation pp.546-553.
2010, 10.1109/WSC.2010.5679131.

[10] J. Dingel, and D. Garlan, and C. Damon, ”Bridging the HLA: Problems
and solutions,” Proceedings of sixth IEEE International Workshop on
Distributed Simulation and Real-Time Applications, pp. 33-42, 2002,
IEEE. DOI: 10.1109/DISRTA.2002.1166886.

[11] J. Dingel, D. Garlan, and C. Damon ”A feasibility study
of the HLA bridge. Carnegie Mellon University,” 2018. DOI:
10.1184/R1/6587399.v1.

[12] C. Yoo M-W and K. TG. ”High-Level Architecture service management
for the interoperation of federations,” SIMULATION. 2015;91(6):566-
590. DOI: 10.1177/0037549715584403.

[13] B. Breholée and P. Siron. “Design and implementation of a HLA inter-
federation bridge.” 2003.

[14] X. Wei and M. Xiaodong, ”Research on Multi-Federations Interoperabil-
ity Based on Dynamic Adaptive Bridge Federate,” 2008 International
Conference on Computer Science and Software Engineering, 2008, pp.
1049-1053, DOI: 10.1109/CSSE.2008.547.

[15] T. Roth, M. Burns, and T. Pokorny, ”Extending Portico HLA to Feder-
ations of Federations with Transport Layer Security,”, Fall Simulation
Innovation Workshop, Orlando, FL, US, 2018.

[16] ”Portico: open-source HLA RTI,” https://github.com/openlvc/portico.
[17] W. Cai, S. Turner, and B. Gan ”Hierarchical federations: an architecture

for information hiding,” Proceedings 15th Workshop on Parallel and
Distributed Simulation, pp. 67–74, 2001.

[18] J. H. Ahn, M. G. Seok, C. H. Sung and T. G. Kim, ”Hierarchical
Federation Composition for Information Hiding in HLA-Based Dis-
tributed Simulation,” 2010 IEEE/ACM 14th International Symposium
on Distributed Simulation and Real Time Applications, 2010, pp. 223-
226, DOI: 10.1109/DS-RT.2010.35.

[19] D. Trihinas, G. Pallis and M. D. Dikaiakos, ”AdaM: An adaptive
monitoring framework for sampling and filtering on IoT devices,” IEEE
International Conference on Big Data (Big Data), 2015, pp. 717-726,
DOI: 10.1109/BigData.2015.7363816.

[20] D. Fullford ”Distributed Interactive Simulation: its past, present, and
future,” Proc. of the 28th conference on Winter simulation, pp. 179-
185. 1996.

[21] SISO-STD-001-2015, ”Real-time Platform Reference Federation Object
Model (RPR-FOM),” https://www.sisostds.org.

[22] M. Gütlein, B. Wojciech, C. Renner, and A. Djanatliev, ”Performance
evaluation of HLA RTI implementations,” IEEE/ACM 24th International
Symposium on Distributed Simulation and Real Time Applications (DS-
RT), pp. 1-8. IEEE, 2020.

[23] H. Neema, J. Gohl, Z. Lattmann, J. Sztipanovits, G. Karsai, S. Neema,
T. Bapty, J. Batteh, H.Tummescheit, C. Sureshkumar, Model-Based Inte-
gration Platform for FMI Co-Simulation and Heterogeneous Simulations
of Cyber-Physical Systems. 235-245. 2014, 10.3384/ecp14096235.



APPENDIX A
MAPPING REQUIREMENTS TO MECHANISMS FOR INTEGRATING HLA FEDERATIONS

The table below lists how real-world requirements can be addressed using various mechanisms discussed in the paper.

Requirement Examples Mechanisms
Shared limited resource (a) A shared elevator among multiple organizations on different floors of

a building; (b) A remote server that provides integral services to multiple,
independent federations; (c) QoS module monitoring resource utilization and
performance across federations and balancing load and priorities among them

M1

Services shared among independent en-
tities

(a) Multiple airlines federations using the shared airport infrastructure and
services; (b) Multiple shipping companies utilizing the seaport and its services
for loading, unloading, and parking

M1; M2

Multiple independent and interdepen-
dent large entities

(a) Transmission system, distribution system, and power markets; (b) Power
distribution grid, city transit system, and charging stations network

M3

Large hierarchically organized systems,
workflows, or processes

(a) Large organizations with subdivisions and hierarchically organized processes M4

Federations with extremely large num-
ber of federates

(a) Large SoSs and IoTs involving thousands of federated components M4; M5

Common analysis and tuning of many
independent federation clusters

(a) Large independent military operations/exercises with independent command
and control, but in accordance with high-level mission guidance

M5

Need to hide/filter information among
subsystems or processes

(a) Flow of filtered information from top-level management to supervisors to
individuals; (b) Public office negotiating internal matters but presenting only
public reports

M1; M4

Use of existing federates with fixed
FOMs or different RTI implementations

(a) Federates with legacy interfaces (e.g., federates that previously conformed to
Distributed Interactive Simulation (DIS) [20] supporting RPR-FOM [21]); (b)
Federations built using commercial RTIs (e.g., Mak [22] or Pitch [22]) needing
to work with federates/federations designed for specific research activities using
open-source RTIs (e.g., Portico [16]

M1; M3

Simulating systems that communicate
over the physical networks in accor-
dance with different IT policies

(a) Large systems located at different organizations in different locations and
using different networking topologies, policies, and technologies; (b) Systems
using different third-party services that have different policies for authentication,
authorization, and usage

M2; M3; M4


