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The individual, on the one hand, and the world, on the other, are
simply the abstract limits or terms of a concrete reality which is
“between” them, as the concrete coin is “between” the abstract,
Euclidean surfaces of its two sides. Similarly, the reality of all
“inseparable opposites”—life and death, good and evil, pleasure
and pain, gain and loss—is that “between” for which we have no
words.

— Alan Watts, The Way of Zen [Wat57]

Mathematical models are the lenses by which mathe-
matics reflects the world we live in, and thus they are fun-
damental for progress in scientific applications. And yet,
science is fluid, and a lot of growth happens when funda-
mental assumptions are changed. This kind of growth is
exemplified in the subject of quantum information. Quan-
tum physics alters basic rules of information processing
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and leads to new results in computing and communica-
tion.

The scenario of two-party coin-flipping illustrates how
the answer to a problem can change simply depending on
the nature of the model. Let’s suppose that two parties, Al-
ice and Bob, are connected by a communication channel
and wish to flip a coin together. Alice wants the outcome
of the coin flip to be “0,” and Bob wants the outcome to
be “1.” Alice and Bob are permitted to send messages back
and forth to one another, and at the end of the communi-
cation they will each broadcast bits, denoted 𝑋 and 𝑌 re-
spectively, declaring what they each believe the outcome
of the coin flip to be. Our goal is to prescribe behavior for
Alice and Bob — including, possibly, each making some
independent random choices — such that the following
conditions hold.

1. If both players behave honestly, then 𝑃(𝑋 = 𝑌 = 0) =
𝑃(𝑋 = 𝑌 = 1) = 1/2.

2. If Alice behaves dishonestly and Bob behaves honestly,
then Alice will not be able to skew Bob’s outcome
much in her favor — that is, 𝑃(𝑌 = 0) will always be
less than or equal to

1
2
+ 𝜖 for some small 𝜖 ≥ 0.

3. If Bob behaves dishonestly and Alice behaves honestly,
then 𝑃(𝑋 = 1) will likewise always be less than or
equal to

1
2
+ 𝜖.

1908 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 69, NUMBER 11



Here is an argument that this kind of protocol is, in fact,
impossible. In the case where both Alice and Bob behave
honestly, let 𝑇 be a random variable that represents the
transcript of all communication, and let 𝐴 and 𝐵 be ran-
dom variables representing the information that Alice and
Bob each possess at the end of the protocol. An easy induc-
tion argument shows that any shared randomness between
the two parties at the end of the protocol must be reflected
in the transcript, that is,

𝐼(𝐴 ∶ 𝐵 ∣ 𝑇) = 0,

where 𝐼(𝐴 ∶ 𝐵 ∣ 𝑇) denotes the mutual information be-
tween 𝐴 and 𝐵 conditioned on 𝑇. This implies in particu-
lar that

𝐼(𝑋 ∶ 𝑌 ∣ 𝑇) = 0.

We also know that 𝑋 and 𝑌 must always agree (condition
1). There is only one way both of these assertions can
hold: 𝑋 and 𝑌 must be deterministic functions of 𝑇. This
means that Alice and Bob are effectively playing a competi-
tive two-player game. A referee could look at the transcript
𝑇 and determine who has “won” the exchange: if the an-
ticipated outcome is 0, then Alice won; if the anticipated
outcome is 1, then Bob won. And, von Neumann’s mini-
max theorem [vNM07] guarantees that any such game has
a winning strategy for either Alice or Bob, thus violating
conditions 2–3. QED!

How sound is that impossibility argument? Is there any
way around it? Well, we could question whether Alice and
Bob have the computational ability to find this winning
strategy that we know exists. That angle leads to designing
coin-flipping protocols based on the assumed hardness of
certain computational problems, which is a very interest-
ing avenue itself — see, e.g., [MNS16].

But here’s another, more basic, question: how do we
know that it’s even possible to record the transcript 𝑇? As-
sumptions that may seem like common sense are not al-
ways valid. If Alice and Bob were connected by a quan-
tum channel — for example, if they could exchange pho-
tons across a quantum network — then the proof above
wouldn’t apply because quantum states generally cannot
be copied. And this is much more than a mere technical-
ity: quantum information processing takes its power from
unique properties like no-cloning, superposition, and en-
tanglement. In quantum cryptography (which generally
does not need to rely on computational assumptions, un-
like much of classical cryptography) these properties form
the basis for proofs of security.

Quantum coin-flipping turns out to be a different prob-
lem altogether. It is a research question with a long histor-
ical arc, and as such it provides a good window into the
exotic logic of quantum information.

Figure 1. The Bloch ball.

The Theory of Quantum Information
Quantum information consists of quantum “systems” or
“registers” whose state at any given time is described by a
matrix. The basic data element in quantum information is
the qubit. The state of an isolated qubit is a matrix of the
form

𝜙 = [𝑎 𝑏
𝑏 𝑐] ,

where 𝑎 and 𝑐 are real numbers that sum to 1, and 𝑏 is
a complex number such that 𝑎𝑐 − |𝑏|2 ≥ 0. Expressed in
different terms, 𝜙 can be any 2 × 2 positive semidefinite
matrix of trace 1. When a qubit in this state is measured,
the result is a bit that is equal to 0 with probability 𝑎 and
equal to 1 with probability 𝑐.

Let

𝑋 = [0 1
1 0]

𝑌 = [ 0 𝑖
−𝑖 0]

𝑍 = [1 0
0 −1] .

Then, the set of all qubit states consists of linear operators
of the form (𝕀 + 𝑟𝑋 + 𝑠𝑌 + 𝑡𝑍)/2, where (𝑟, 𝑠, 𝑡) is a real
vector of length at most 1, and 𝕀 denotes the 2 × 2 iden-
tity matrix. (For the matrix 𝜙 from the previous paragraph,
𝑟 = Re(2𝑏), 𝑠 = Im(2𝑏), and 𝑡 = 𝑎− 𝑐.) These states form a
3-dimensional ball, namely, the Bloch ball, shown in Fig-
ure 1. Quantum operations on a qubit are maps of the
form 𝜙 ↦ 𝑈𝜙𝑈−1, where 𝑈 is a 2 × 2 unitary operator,
and they are rotations of the Bloch ball. (An example of a
qubit is the polarization of a photon. A photon traveling
in space can have a polarization that is diagonal, circular,
or rectilinear, corresponding to the principal directions 𝑋 ,
𝑌 , and 𝑍.)

Similar definitions apply in higher dimensions. A
quantum system 𝑄 of dimension 𝑛 is a complex Hilbert
space1 with a fixed isomorphism 𝑄 ≅ ℂ𝑛. The classical

1Some authors make a distinction between a quantum system and its Hilbert
space, and denote them by different letters. For this article, it is convenient to
treat them as one and the same.
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(non-quantum) states of 𝑄 are probability distributions
(𝑝1, 𝑝2, … , 𝑝𝑛) written as diagonal matrices:

𝜓 =
⎡
⎢
⎢
⎢
⎢
⎣

𝑝1 0 0 ⋯ 0
0 𝑝2 0 ⋯ 0
0 0 𝑝3 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝑝𝑛

⎤
⎥
⎥
⎥
⎥
⎦

.

Any such state can also be manipulated via a unitary base
change 𝜓 ↦ 𝑈𝜓𝑈−1, yielding a trace-1 positive semidefi-
nite matrix (“density matrix”) that may have off-diagonal
elements. If another quantum system 𝑅 is present, its joint
state with 𝑄 is described by a density matrix on the tensor
product space, 𝑄 ⊗ 𝑅. (A full treatment of these concepts
can be found in [Wat18].)

From here, we can begin to unfold some uniquely quan-
tum phenomena. One is the concept of inherent random-
ness. Suppose that 𝐷 is a qubit in state

𝛼 = [
1
2

1
2

1
2

1
2

] .

We know that the outcome of measuring 𝐷 will be a uni-
formly random bit. But we can go further. If 𝐸 is an addi-
tional quantum system, then the joint state Φ∶ 𝐷 ⊗ 𝐸 →
𝐷⊗𝐸 of 𝐷 and 𝐸 together must be a positive semidefinite
block matrix

Φ =
⎡⎢⎢⎢
⎣

𝛼11 𝛼12 ⋯ 𝛼1𝑚
𝛼21 𝛼22 ⋯ 𝛼2𝑚
⋮ ⋮ ⋱ ⋮
𝛼𝑚1 𝛼𝑚2 ⋯ 𝛼𝑚𝑚

⎤⎥⎥⎥
⎦

,

where 𝛼𝑖𝑗 are 2×2matrices satisfying 𝛼11+𝛼22+⋯+𝛼𝑚𝑚 =
𝛼. An easy argument shows that the only way that these
conditions can all be satisfied is if Φ = 𝛼 ⊗ 𝛽 for some
positive semidefinitematrix 𝛽. Anymeasurement on𝐸will
be uncorrelated with the measurement of 𝐷. This means
that no outside system can provide any information at all
about the outcome ofmeasuring𝐷—the result is not only
unknown in advance, but unknowable.

Also, we can observe the phenomenon of exponential
complexity. The state of a system of 𝑛 qubits is a linear

operator on the vector space (ℂ2)⊗𝑛, which has dimen-
sion 2𝑛. The problem of simulating even a small number
of qubits thus involves keeping track of an enormous ma-
trix, and it quickly becomes intractable for a classical com-
puter. This intractability becomes particularly significant
when a measurement of the system yields data that we do
not know how to obtain in an efficient classical manner.
This is the basis of quantum algorithms such as Shor’s al-
gorithm [Sho99], and for claims of a “quantum advantage”
in computing.

I have been working in quantum information for about
twelve years, starting from a time when a computer science

professor told me it was a “niche topic,” up to the present
day, whenwe are in themidst of what some people are call-
ing the “second quantum revolution.” (Recent technology
has made the quantum phenomena discussed above quite
tangible — see [SZB+21] and [Aea19].) When studying
this field, it is interesting to observe how various lines of
progress — just like currents in a river — can accelerate or
subside, overlap, or split. The shape that this river takes
can exhibit hidden surprises in the underlying theory.

A Story of Two Problems

This is the very coinage of your brain.
This bodiless creation ecstasy
Is very cunning in.

— Gertrude (Hamlet)

In 1984, Bennett and Brassard [BB84] sketched two
ways to use quantum physics to perform basic crypto-
graphic tasks. Much of quantum cryptography can be seen
as an attempt to harness inherent quantum randomness
for a practical purpose, and [BB84] proposes two (differ-
ent but related) approaches to this goal. In key distribution,
two parties, Alice and Bob, wish to share a secret random
bit string in the presence of an untrusted eavesdropper, Eve.
In coin-flipping, Alice and Bob instead wish to create a sin-
gle shared random bit using a quantum channel, in such
a way that both parties are assured that the bit was fair
and unbiased. The primary difference between the two sce-
narios is that in key distribution, the only adversary is the
eavesdropper (Eve), whereas in coin-flipping, either of the
parties Alice and Bob could be an adversary who will at-
tempt to cheat. See Figure 2.

The paper [BB84], along with Stephen Wiesner’s work
on quantummoney [Wie83], are considered to be the sem-
inal works in quantum cryptography. Quantum key distri-
bution (QKD) is amainstay problem in the field, and since
1984, has been the subject of thousands of experimental
and theoretical papers [XMZ+20] as well as commercializa-
tion. Quantum coin-flipping, meanwhile, has followed a
substantially different track. While [BB84] sketched a pro-
tocol for QKD that has been central to a lot of follow-up
work, they did not give a secure protocol for quantum coin-
flipping, and it was left to future authors to find one.

A standard way to measure the effectiveness of a quan-
tum coin-flipping protocol is via the (weak) bias of the
protocol. Assuming that Bob behaves honestly, let 𝑠 de-
note the supremum, over all possible cheating strategies
for Alice, of the probability that Alice will achieve her de-
sired outcome (0). Likewise, let 𝑡 denote the supremum
of the probability that Bob will achieve outcome 1 if he
cheats and Alice behaves honestly. The bias is the quan-
tity 𝜖 ≔ max {𝑠 − 1

2
, 𝑡 − 1

2
}. The goal is to achieve a bias of

zero.
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Figure 2. Quantum key distribution (top) and quantum
coin-flipping (bottom).

Simple protocols for coin-flipping tend not to be effec-
tive. For example, we could instruct Alice to send a photon
in the state

𝛼 = [
1
2

1
2

1
2

1
2

]

to Bob, and instruct Bob tomeasure the photon and report
the result. But, this allows Alice to cheat (by preparing a
different state) or Bob to cheat (by faking themeasurement
result). The goal in quantum coin-flipping is to use mul-
tiple rounds of interaction to mutually restrain the parties
from gaining any advantage by cheating.

After this problem was fully formalized, a series of sev-
eral works initiated in the 1990s gave protocols with in-
creasingly smaller bias. However, the protocols were also
increasingly complex. The progression reached a climax
in 2007, when the physicist Carlos Mochon proved a re-
markable result showing that the bias could be brought
arbitrarily close to zero [Moc07]. But the number of com-
munication rounds was absurdly large — a later analysis
of Mochon’s work [ACG+16] estimated it at (1/𝜖)𝑂(1/𝜖). In
the years after Mochon’s work, despite continued theoreti-
cal progress on the problem, this figure was not improved.
A basic question was thus left unanswered: can quantum
coin-flipping be performed in a reasonable amount of
time?

We can use the quantum formalism from the previous
section of this article to get an idea of why this problem is
hard. Specifying a protocol for coin-flipping requires spec-
ifying the prescribed “honest” behavior by each player. We

assume that Alice has a quantum system 𝐴 ≅ ℂ𝑚 for some
𝑚 that serves as her local memory during the protocol. Let
us assume that the initial state of 𝐴 is simply given by the
orthogonal projector onto (1, 0, 0, … , 0) ∈ ℂ𝑚. Let 𝐵 (Bob’s
local memory) and 𝑀 (the message register) be quantum
systems with similar initial states. At time 𝑡 = 1, Alice ap-
plies a joint quantum operation to 𝐴 and 𝑀. This oper-
ation has the effect of conjugating the state of 𝐴 ⊗ 𝑀 by
some unitary operator 𝑈1 ∶ 𝐴 ⊗ 𝑀 → 𝐴 ⊗ 𝑀. Alice then
sends the register 𝑀 across the quantum channel to Bob.

At time 𝑡 = 2, Bob performs a joint quantum operation
on𝑀 and 𝐵 which has the effect of conjugating the state of
𝑀⊗𝐵 by a unitary operator 𝑈2 ∶ 𝑀⊗𝐵 → 𝑀⊗𝐵. Now, at
this point, Bob wishes to check whether Alice has cheated,
and so he performs a binary measurement on 𝑀 ⊗ 𝐵 and
agrees to continue the protocol only if the outcome of that
measurement is “0.” Mathematically, this is represented by
Bob applying an operation of the form𝑊 ↦ 𝐸2𝑊𝐸2 to the
state of𝑀⊗𝐵, where 𝐸2 ∶ 𝑀⊗𝐵 → 𝑀⊗𝐵 is a Hermitian
projection operator. Bob then sends 𝑀 back to Alice, and
the process iterates. Finally, after the 𝑛th round, Alice and
Bob each perform binary measurements on their respec-
tive systems 𝐴 and 𝐵 to produce bits 𝑥 and 𝑦 representing
what each party believes that the outcome was. The proto-
col succeeds only if neither party has aborted, and if 𝑥 = 𝑦.

Summing up, a coin-flipping protocol is specified by the
following mathematical information:

1. A positive integer 𝑛 (the number of communication
rounds).

2. Quantum registers 𝐴, 𝐵, and 𝑀.
3. For each odd 𝑖 ∈ {1, 2, … , 𝑛}, a unitary operator𝑈 𝑖 and

Hermitian projection operator 𝐸𝑖 on the space𝐴⊗𝑀.2

4. For each even 𝑖 ∈ {1, 2, … , 𝑛}, a unitary operator𝑈 𝑖 and
Hermitian projection operator 𝐸𝑖 on the space𝑀⊗𝐵.

5. Complementary Hermitian projection op-
erators {𝑃0, 𝑃1} on 𝐴, and {𝑄0, 𝑄1} on 𝐵, representing
the final measurements performed by Alice and Bob.

The assumption is that if Alice and Bob are honest, they
will use these prescribed operations. A dishonest party
may perform arbitrary operations during their rounds of
the protocol. Once the data above are specified, we can
give an explicit expression for the bias of the protocol (see
[ACG+16] for details). Finding a good coin-flipping pro-
tocol is thus equivalent to an optimization problem: com-
pute explicit matrices {𝐸𝑖}, {𝑈 𝑖}, {𝑃𝑗}, {𝑄𝑗} that will make the
bias as small as possible.

This optimization problem is no easy thing. We have no
upper bound on the dimension of the space in which we
are searching, and indeed, Mochon’s work suggests that it
may be necessary to consider spaces 𝐴, 𝐵,𝑀 of arbitrarily

2We include the projection operator 𝐸1 for convenience, even though it is impos-
sible for Bob to have cheated at time 𝑡 = 1.
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large dimension. Moreover, obvious properties that can
make an optimization problem easier — such as convexity
of the search-space, or linearity of the objective function —
are lacking here.

Mochon left academia not long after publicizing his
work on coin-flipping, although fortunately there were am-
ple ideas in [Moc07] to enable further developments. The
path to an answer for the efficient coin-flipping question
turns out to be a surprisingly non-linear one that draws on
a diverse range of tools.

Point Game Solitaire
Pure mathematics is full of seemingly mysterious connec-
tions between mathematical models — i.e., instances in
which there is a dictionary that can broadly translate state-
ments about two fundamentally different mathematical
constructions. The more dissimilar the constructions are,
the more there is to learn, since connections like this can
enable the application of a new kind of mental agility to
a problem (e.g., geometry instead of algebra). It is partic-
ularly a delight to use such a doorway when studying an
application.

One such doorway occurs in the study of quantum
coin-flipping, and its discovery is attributed to Alexei Ki-
taev [Kit02]. The existence of coin-flipping protocols with
small bias has been proved to be equivalent to the exis-
tence of a different class of mathematical objects called
valid point games. The proof of this equivalence is out of
the scope of this article, but an excellent exposition (of
a nonconstructive version of the proof) can be found in
[ACG+16]. Essentially, the concept of a valid point game
strips away some of the information used in the search for
optimal coin-flipping protocols and distills a part of the
problem that is particularly challenging.

Valid point games are not unlike peg solitaire, where
one has to manipulate and remove pegs from a grid of
holes on a board according to a fixed rule, in such a way
that at the end there is only one peg left. Valid point games
are different, though, in particular because they involve
quantities that are continuous rather than discrete. The
following are the rules.

• A function 𝑢∶ ℝ≥0 → ℝ≥0 with finite support that
satisfies ∑𝑥 𝑢(𝑥) ≤ 1 is called a one-dimensional
configuration.

• A pair of one-dimensional configurations (𝑢, 𝑣) is
called a valid move if

∑
𝑥
𝑢(𝑥) = ∑

𝑥
𝑣(𝑥)

and

∑
𝑥
( 𝑥
𝑥 + 𝜆) 𝑢(𝑥) ≤ ∑

𝑥
( 𝑥
𝑥 + 𝜆) 𝑣(𝑥)

for all 𝜆 > 0.3

3This rule arises from the classification of operator monotone functions.

Figure 3. One example of a horizontally valid move. (The
points that lie on the same horizontal line are collapsed to
their center of mass.)

• A function 𝑓∶ ℝ≥0 × ℝ≥0 → ℝ≥0 with finite sup-
port that satisfies ∑𝑥,𝑦 𝑓(𝑥, 𝑦) = 1 is called a two-
dimensional configuration.

• A pair (𝑓, 𝑔) of two-dimensional configurations is
a horizontally valid move if the restriction of 𝑓
and 𝑔 to any horizontal line in ℝ2 is a valid move.

• A pair (𝑓, 𝑔) of two-dimensional configurations is
a vertically valid move if the restriction of 𝑓 and
𝑔 to any vertical line in ℝ2 is a valid move.

• A valid point game is a sequence of two-
dimensional configurations (𝑓0, 𝑓1, … , 𝑓𝑛) such
that (𝑓𝑖, 𝑓𝑖+1) is horizontally valid for all even 𝑖,
and vertically valid for all odd 𝑖.

Valid point games thus consist of manipulations of
weighted points in a quadrant of a Cartesian coordinate
system. Figure 3 gives an example of a move that could
occur in one of these games.

If 𝑥, 𝑦 are nonnegative real numbers, let J𝑥, 𝑦K denote
the function on ℝ≥0 × ℝ≥0 that maps (𝑥, 𝑦) to 1, and all
other points to 0. The following results are known.

Theorem 1. Suppose that 𝑉 is a valid point game consisting
of 𝑛 moves such that the starting configuration is

1
2 (J0, 1K + J1, 0K)

and the final configuration isr1
2 + 𝜖, 12 + 𝜖

z
.

Suppose that 𝛿 > 0. Then, there exists an 𝑛-round coin-flipping
protocol that achieves bias 𝜖 + 𝛿.
Theorem 2. Suppose that 𝑄 is an 𝑛-round coin-flipping proto-
col that achieves bias 𝜖, and suppose that 𝛿 > 0. Then, there
exists a valid point game with 𝑛 moves such that the starting
configuration is

1
2
(J0, 1K + J1, 0K) and the final configuration

is J 1
2
+ 𝜖 + 𝛿, 1

2
+ 𝜖 + 𝛿K.

Thus, we have a way to translate problems about coin-
flipping into simply-stated point game problems (mod-
ulo the term 𝛿, which is practically irrelevant). For ex-
ample: suppose that we wish to prove that it is possible
to achieve coin-flipping with bias 𝜖 with only 𝑂(log(1/𝜖))
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communication rounds. Then, it suffices to construct valid
point games involving 𝑂(log(1/𝜖)) moves that transform
1
2
(J0, 1K + J1, 0K) into J 1

2
+𝜖, 1

2
+𝜖K. But, for better or worse,

this translation is not the end of the story, or anywhere
close. Constructing valid point games is hard, and it is fair
to say that it has not yet been generally mastered in the
research literature. (Only a few examples, including the
family of games used in [Moc07], are known.) Figuring
out what is really going on with coin-flipping will require
penetrating further layers of the problem.

Solving a Toy Model

Then the shimmery sphere around them abruptly contracted, like
a taut rubber band being let go, and the coin pulsed with sudden
heat.

But they were still in his universe.

— Quantum Coin by E. C. Myers [Mye12]

So, why is it difficult to construct valid point games?
One reason is that the rule that defines a validmove is not a
merely local rule. Valid moves can involve simultaneously
manipulating points that are at large distances from one
another on a single row or a single column. A natural first
step towards general constructions of point games is to try
to separate the “local” and “global” parts of the problem.
Suppose that we first limit ourselves to considering valid
point games that are confined to the box formed by the
vertices

{(𝑝, 𝑞), (𝑝 + 𝜈, 𝑞), (𝑝, 𝑞 + 𝜈), (𝑝 + 𝜈, 𝑞 + 𝜈)} ,

where 𝑝, 𝑞 are positive real numbers and 𝜈 > 0 is small.
What kind of manipulations can take place within this re-
gion using valid moves? If we choose to ignore any terms
that are 𝑜(𝜈), then the question is essentially answered by
the following construction.

Let us say that a pair (𝑢, 𝑣) of finite-support functions
from ℝ≥0 to ℝ≥0 is a legal move if

∑
𝑥
𝑢(𝑥) = ∑

𝑥
𝑣(𝑥)

and

∑
𝑥
𝑥 ⋅ 𝑢(𝑥) ≤ ∑

𝑥
𝑥 ⋅ 𝑣(𝑥).

A legal point game is a sequence (𝑓0, … , 𝑓𝑛) of nonnegative
functions on ℝ≥0 × ℝ≥0, defined as before, such that the
pairs (𝑓𝑖, 𝑓𝑖+1) alternate between being horizontally legal
and vertically legal.

Since the family of legal moves is merely defined by two
linear conditions (instead of an infinite number of linear
conditions), legal point games turn out to be much easier
to characterize. The following results can be proved.

Proposition 3. Let (𝑓0, … , 𝑓𝑛) be a legal point game. Then
the following inequalities hold.

∑
𝑥,𝑦

𝑥 ⋅ 𝑓0(𝑥, 𝑦) ≤ ∑
𝑥,𝑦

𝑥 ⋅ 𝑓𝑛(𝑥, 𝑦) (1)

∑
𝑥,𝑦

𝑦 ⋅ 𝑓0(𝑥, 𝑦) ≤ ∑
𝑥,𝑦

𝑦 ⋅ 𝑓𝑛(𝑥, 𝑦) (2)

∑
𝑥,𝑦

𝑥𝑦 ⋅ 𝑓0(𝑥, 𝑦) ≤ ∑
𝑥,𝑦

𝑥𝑦 ⋅ 𝑓𝑛(𝑥, 𝑦). (3)

Proposition 4. Let 𝑓 and 𝑔 be two-dimensional configurations
such that inequalities (1)–(3) above are strictly satisfied (when
𝑓0 is replaced with 𝑓 and 𝑓𝑛 is replaced with 𝑔). Then, there
exists a legal point game with initial configuration 𝑓 and final
configuration 𝑔.

The outcome of a legal point game can thus be com-
pletely characterized (up to arbitrarily small error) by the
inequalities (1)–(3). Moreover, legal point games that
achieve Proposition 4 are not too difficult to construct ex-
plicitly. The question then becomes: Can we translate this
to similar criteria for valid point games?

Profile Functions
The following is a modified version of reasoning in
[Mil20]. Considering the definition of a valid move (and
taking inspiration from condition (3) above) we note
that it is easy to prove that for any valid point game
(𝑓0, 𝑓1, … , 𝑓𝑛), and any positive real numbers 𝜆, 𝛾, the in-
equalities

∑
𝑥,𝑦

𝑓𝑖(𝑥, 𝑦) (
𝑥

𝑥 + 𝜆) (
𝑦

𝑦 + 𝛾)

≤ ∑
𝑥,𝑦

𝑓𝑖+1(𝑥, 𝑦) (
𝑥

𝑥 + 𝜆) (
𝑦

𝑦 + 𝛾)

must hold for any 𝑖 ∈ {0, 1, … , 𝑛 − 1}. In an intuitive sense,
the expression on the left-hand side of the above inequality
is a monotone quantity that allows us to track the progress
in a point game from the initial configuration to the final
one. A profile function draws together these quantities into
a single family. There aremany ways that the profile can be
defined, but, for the purpose of this article, the following
definition will be convenient to use.

Definition 5. For any finitely supported function
𝑓∶ ℝ≥0 × ℝ≥0 → ℝ≥0, the profile of 𝑓 is the function

̃𝑓 ∶ ℝ>1 → ℝ
defined by

̃𝑓(𝛼) = ∑
𝑥,𝑦

𝑓(𝑥, 𝑦) ( 𝑥
𝑥 + 𝛼 − 1) (

𝑦
𝑦 + 𝛼 − 1) .

This definition allows us to make a simply-stated criterion
that must be satisfied in order for a valid point game to
exist between two given configurations.
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Figure 4. The domain of the function 𝑟.

Proposition 6. If (𝑓0, 𝑓1, … , 𝑓𝑛) is a valid point game, then
̃𝑓0 ≤ ̃𝑓𝑛.

What can the profile construction tell us about the coin-
flipping problem? It is not obvious that it can tell us di-
rectly how to construct intermediate steps in a valid point
game, but, fortunately, it is useful for narrowing down the
possibilities.

Let (𝑓0, … , 𝑓𝑛) be a valid point game such that 𝑓0 =
1
2
J1, 0K + 1

2
J0, 1K and 𝑓𝑛 = J 1

2
+ 𝜖, 1

2
+ 𝜖K. Let ℎ denote the

sum of the differences (𝑓𝑖+1 − 𝑓𝑖) over all even 𝑖 (i.e., the
sum of all the horizontally valid moves). Let 𝑣 denote the
sum of the differences (𝑓𝑖+1 − 𝑓𝑖) over all odd 𝑖 (i.e., the
sum of all the vertically valid moves). Then, by linearity,

̃ℎ + ̃𝑣 = ̃𝑓𝑛 − ̃𝑓0.
Note that the function ̃𝑓𝑛 − ̃𝑓0 can be written out explicitly
from its definition.

The observations we have made so far have been pretty
elementary, but, from here, we can start to deduce hidden
structure. Chasing through a series of inequalities, one can
show the following fact. Fix any real interval [𝑐, 𝑑] with
1 < 𝑐 < 𝑑, and let

𝑟 = ℎ∣(ℝ≥0×[𝑐,𝑑]) + 𝑣∣([𝑐,𝑑]×ℝ≥0).

The function 𝑟 is the sum of the horizontal and vertical
moves that occur within certain restricted regions in ℝ≥0×
ℝ≥0 — see Figure 4. Let

𝑍(𝛼) =
⎧
⎨
⎩

̃𝑓𝑛(𝛼) − ̃𝑓0(𝛼) if 𝛼 ∈ [𝑐, 𝑑]

0 if 𝛼 ∉ [𝑐, 𝑑].

Then, for any 𝛼 > 1 that is of distance at least Θ(√𝜖) away
from both of the points 𝑐 and 𝑑, the following inequality
holds:

| ̃𝑟(𝛼) − 𝑍(𝛼)| ≤ 0.001.

Figure 5. A nonnegative function that is concentrated at a
single point (𝛼 = 3).

In other words, the shape of the graph of ̃𝑟 matches that
of 𝑍 very closely, except at neighborhoods of size Θ(√𝜖)
around the points of discontinuity at 𝑐 and 𝑑. (The use of
the constant 0.001 in this assertion is arbitrary – any posi-
tive real number could be used in its place.)

We are thus able to make strong conclusions about the
profiles of themoves in (𝑓0, 𝑓1, … , 𝑓𝑛) based onwhere those
moves occur in the 2-dimensional coordinate system. The
sharpness with which we can make these conclusions de-
pends on the bias parameter 𝜖. At an extreme, if we take
the interval [𝑐, 𝑑] itself to be of width Θ(√𝜖), then the pro-
file of 𝑟 has a pinched shape of width Θ(√𝜖) like the one
shown in Figure 5.

Having now touched down on a concrete assertion, the
question is: can we deduce a result on the efficient coin-
flipping problem? A natural approach would be to take
this new insight and trace it backwards through the series
of simplifying steps that we have made (coin flipping pro-
tocols→ valid point games→ profile functions) to deduce
something about the existence of coin-flipping protocols.
And, indeed, that is the approach that we will ultimately
take. A final, more “complex” detour is needed in order to
enable the last steps.

Highly Concentrated Rational Functions
The conclusion of the previous section can be distilled as
follows: if there exists a valid point game (𝑓0, … , 𝑓𝑛) from
𝑓0 =

1
2
(J0, 1K + J1, 0K) to 𝑓𝑛 = J 1

2
+ 𝜖, 1

2
+ 𝜖K, then we can

construct a finitely supported real function 𝑟 on ℝ≥0×ℝ≥0
such that the function

𝐺(𝛼) = ∑
𝑥,𝑦

𝑟(𝑥, 𝑦) ( 𝑥
𝑥 + 𝛼 − 1) (

𝑦
𝑦 + 𝛼 − 1)

is significantly large at a chosen point (say, 𝛼 = 3) and is
close to zero elsewhere in the domain ℝ>1. And impor-
tantly, since the function 𝑟 is constructed by summing up
valid moves from the original point game (𝑓0, … , 𝑓𝑛), its
weights must be bounded like so:

∑
𝑥,𝑦

|𝑟(𝑥, 𝑦)| ≤ 2𝑛.
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Figure 6. The function 𝑇 on the unit disc in ℂ.

When is such a thing possible? What can be said about a
real rational function in this form — a rational function
that has poles in the interval (− ∞, 1) and that obeys cer-
tain inequalities in the interval (1,∞)? Fortunately, there
are known methods to answer a question of this type, and
they come from complex analysis.

Let us suppose that𝐺(𝛼) ≤ 𝐾 < 𝐺(3) for all values 𝛼 > 1
that are outside of an interval of the form [3−𝛿, 3+𝛿]. Treat
the function 𝐺 as a rational function on the set of complex
numbers ℂ, and let

Γ = max
|𝑧|=1

|𝐺(3 + 𝑧)| .

This value Γ will allow us to interpolate between the vari-
ous properties that we have assumed about the function 𝐺.
The following argument is written out in detail in section 5
of [Mil20].

There exists an explicit continuous map

𝑇 ∶ {𝑧 ∣ |𝑧| ≤ 1} → ℂ

that has the form shown in Figure 6 and is analytic on the
interior disc {𝑧 ∣ |𝑧| < 1}. Under 𝑇, the unit circle around 0
is mapped onto the unit circle around 3 together with the
two line segments [2, 3 − 𝛿] and [3 + 𝛿, 4]. The point 𝜁 in
Figure 6 is within distance 𝑂(𝛿) from the 𝑦-axis.

By the defining properties of analytic functions, the
map 𝐺 ∘ 𝑇 obeys an averaging rule: its value at 0 (which
is 𝐺(3)) must be the same as its average value on the unit
circle {𝑧 ∣ |𝑧| = 1}:

𝐺(3) = 1
2𝜋 ∫

2𝜋

0
𝐺(𝑇(𝑒𝑖𝜃))𝑑𝜃.

As a consequence, since the values that 𝐺 takes on the line
segments [2, 3 − 𝛿] and [3 + 𝛿, 4] are all significantly less
than𝐺(3), theremust exist points on the unit circle around
𝑧 = 3 for which themagnitude of𝐺(𝑧) is significantlymore
than 𝐺(3). Precisely:

Γ ≥ 𝐺(3) + Ω(1/𝛿) ⋅ (𝐺(3) − 𝐾).

This inequality itself is not terribly strong. However, when
we instead consider the logarithm of the absolute value of
𝐺 ∘ 𝑇, the following similar relation holds:

log |𝐺(3)| ≤ 1
2𝜋 ∫

2𝜋

0
log ||𝐺(𝑇(𝑒𝑖𝜃))|| 𝑑𝜃,

and we deduce the much more powerful inequality

log Γ ≥ log |𝐺(3)| + Ω(1/𝛿) log |||
𝐺(3)
𝐾

||| ,

or equivalently,

Γ ≥ 𝐺(3) ⋅ (𝐺(3)𝐾 )
Ω(1/𝛿)

.

At the same time, it is easy to see from the expression for
the function 𝐺 that

Γ ≤ ∑
𝑥,𝑦

|𝑟(𝑥, 𝑦)|

≤ 2𝑛,
where 𝑛 denotes the number of moves in the point game
that we started with. Therefore,

𝑛 ≥ 𝐺(3)
2 ⋅ (𝐺(3)𝐾 )

Ω(1/𝛿)
.

Recalling from the previous section that we can take 𝛿 to
be Θ(√𝜖), where 𝜖 is the defining parameter of the point
game that we started with, we obtain the following strong
result.

Theorem 7. Let (𝑓0, 𝑓1, … , 𝑓𝑛) be a point game with initial con-
figuration

1
2
(J0, 1K + J1, 0K) and final configuration J 1

2
+𝜖, 1

2
+

𝜖K. Then,
𝑛 ≥ exp (Ω( 1

√𝜖
)) .

By Theorem 2, we then obtain the following corollary.

Corollary 8. Any coin-flipping protocol that achieves
bias 𝜖 must involve exp(Ω(1/√𝜖)) rounds of communi-
cation.

Combining this new result with Mochon’s construc-
tion [Moc07], we find that the fastest coin-flipping proto-
cols must have a number of communication rounds that is
between exp(Ω(1/√𝜖)) and exp(𝑂( 1

𝜖
log 1

𝜖
)). Whatever the

optimal number of communication roundsmight actually
be, it cannot be upper bounded by any polynomial or log-
arithmic function of 1/𝜖. Therefore, an efficient family of
coin-flipping protocols does not exist. We thus have a the-
oretical explanation for the 35-year history of the quantum
coin-flipping problem.

Mapping the River

It’s not about what I want. It’s about what’s fair!

— Two-Face (The Dark Knight, 2008)

When one is combining disparate ideas in order to in-
vent something new — for example, when trying to inte-
grate the orderly world of quantum physics with the chaos
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of human trust— there is no prior guarantee as to whether
the problems one will encounter will be easy, hard, or liter-
ally impossible. In the current case, for reasons exhibited
by the shape of the graph in Figure 5, we have found that
quantum coin-flipping belongs to the category of crypto-
graphic tasks that can be performed, but cannot be per-
formed efficiently.4

Yet, this obstruction is by no means a terminal one for
the coin-flipping problem, or for any of its cousin prob-
lems in quantum cryptography. The upside of working
on technological invention is that problems can always
be reinvented. For example, while the quantum-enhanced
communication model given in the third section of this ar-
ticle is a natural model for interaction between two parties,
there is no reason to treat it as an absolute. In the field of
relativistic quantum cryptography, we incorporate the ad-
ditional physical assumption that parties in space cannot
communicate with one another faster than the speed of
light. This, combined with more complex protocols (in-
volving multiple agents cooperating from different spatial
locations), avoids the impossibility result that we just wit-
nessed and enables a whole different stream of discovery
for protocols between mutually mistrustful parties.

Part of the fun of creating new theoretical results in
quantum information science — including both positive
and negative results — is that one never knows initially
what mathematical tools will come into play. We have
seen one example in which previously developed mathe-
matical constructions turn out to be centrally important
in a problem in quantum information science. Here are
just a few among other existing examples:

• The phenomenon of superadditivity of quantum
channel capacity — the fact that quantum entan-
glement can break one of the basic rules of clas-
sical coding theory — has been explained using
Dvoretzky’s theorem [ASW11].

• Schur-Weyl duality, a tool from representation
theory, has had myriad uses in problems that
involve several identical quantum systems (e.g.,
[OW16]).

• Yaoyun Shi and I proved that error-tolerant device-
independent random number generation is pos-
sible by reducing the problem to known results
on the geometry of the Schatten matrix norms
[MS17].

4Since a lot of smart people read this magazine, I wanted to point out that
there are still unanswered questions about the quantum coin-flipping problem
in its original formulation. Corollary 8 rules out the possibility of efficient coin-
flipping in an asymptotic sense, but there could still exist better practical proto-
cols with a constant amount of bias. What is the least number of rounds of com-
munication that would be needed to achieve quantum coin-flipping with bias
𝜖 = 0.01? My colleagues and I have found this problem difficult, but others may
have better luck.

• The study of quantum correlations is deeply con-
nected to the theory of von Neumann algebras.
A recent paper [JNV+20] proved a landmark re-
sult on quantum interactive proof systems, and de-
duced as a consequence that Connes’ embedding
conjecture is false.

What else is out there? The task in the theory of quan-
tum information science, as I see it, is to provide a map of
what is possible and impossible for quantum technology.
The challenges in this enterprise can sometimes be reduced
to simply-stated mathematical problems, and one thinks:
“surely, someone out there has already studied this problem. . . ”
And then a new connection can be discovered. Researchers
have to contend with the varying pace of technological de-
velopment, and the possibility of foundational changes
impelled by discoveries in other fields. But there are al-
ways opportunities, at the right points on the map, to find
new and elegant mathematical structures within the flow.
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