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ABSTRACT: Sensing biomarkers in exhaled breath offers a potentially portable, cost-effective,
and noninvasive strategy for disease diagnosis screening and monitoring, while high sensitivity,
wide sensing range, and target specificity are critical challenges. We demonstrate a deep
learning-assisted plasmonic sensing platform that can detect and quantify gas-phase biomarkers
in breath-related backgrounds of varying complexity. The sensing interface consisted of Au/
SiO2 nanopillars covered with a 15 nm metal−organic framework. A small camera was utilized
to capture the plasmonic sensing responses as images, which were subjected to deep learning
signal processing. The approach has been demonstrated at a classification accuracy of 95 to 98%
for the diabetic ketosis marker acetone within a concentration range of 0.5−80 μmol/mol. The
reported work provides a thorough exploration of single-sensor capabilities and sets the basis for
more advanced utilization of artificial intelligence in sensing applications.
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■ INTRODUCTION
Nanoplasmonics is a research area of growing importance that
has increasingly contributed to enabling capabilities for
developing cost-effective biomedical diagnostics. Much of the
success has been in solution-phase detection, where lock-and-
key binding creates readily detectable changes in interfacial
optical properties.1−7 Gas-phase plasmonic studies are much
less common.8−10 However, the advantages of plasmonic
devices1,3−5,11−16 such as rapid response speed, high sensitivity,
miniature size, and the capability for remote measurement by
using an optical spectrometer/camera/photodetector outside
the sampling chamber offer enormous possibilities for a
broader range of gas-phase applications, one of which is the
expanding need for noninvasive medical breath analysis and
monitoring.10,17−20

In recent years, the interest in breath analysis for screening
and diagnosing certain diseases has progressed due to
advanced detection methods and new analytical technolo-
gies.17,19,21−28 By studying biomarkers, for example, various
volatile organic compounds (VOCs) and other volatile small
molecules, researchers are identifying targets for noninvasive
disease diagnostics in exhaled human breath. The volatile small
molecules in exhaled breath, although at combined concen-
trations of less than 1%, comprise over 1000 compounds that
include biomarkers for potential pathologies, such as diabetes,
lung cancer, asthma, chronic obstructive pulmonary disease,
and others.17,21−23,29 Mass spectrometry-based studies for
VOC biomarkers have been reported,21−23,30 but there remains
a significant need for research directed toward the develop-
ment of smaller, easy-to-use, and cost-effective breath analysis

devices. Salient examples of prior efforts include studies of
chemiresistor devices,31,32 metal−oxide−semiconductor
(MOS)-based sensors,19,24 arrays of nanoparticle and nano-
tube-sensing elements,25 polymer-based sensors,26,33 quartz
crystal microbalances acoustic sensors,34 and so forth.35 While
all have demonstrated utility in detecting and quantifying
biomarkers in human breath, an ongoing challenge for the field
is to develop methods that permit both adequate analyte
sensitivity and discrimination in rather complex mixtures at the
same time. Because gas-phase sensing does not typically offer
the lock-and-key target monitoring methodology that solution-
phase biosensing employs, the challenge is especially difficult.
Our approach involves gas-phase sensing enabled by an

optimized metal−organic framework (MOF)/plasmonic inter-
face, camera-based image acquisition, and deep learning signal
processing. We demonstrate how enhanced levels of analyte
sensitivity and selectivity are realized in complex breath-related
backgrounds by combining these technical components.
Specifically, the plasmonic platform consists of nanopillar
structures (SiO2 pillars with Au coating) designed to have an
enlarged interconnection area between the metal and dielectric
materials in order to generate stronger localized surface
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plasmon resonance (LSPR) signals when interacting with
incident light, and hence higher sensitivity. We exploited a
nanoimprint lithography (NIL)-based fabrication process with
a reusable mold to transfer the nanostructured patterns onto
the substrate, providing a universal method to save time, lower
cost, and also yield high-quality fabrication outcomes. A
conformal MOF film served to separate, transport, and locate
gas-phase molecules at Au plasmonic “hot spots” of the
nanopillar array. The optical responses of the plasmonic
platform during testing were monitored by a complementary
MOS (CMOS) camera, which eliminates the need to use a
high-cost measurement device�for example, a spectrometer�
in recording responses to the test environments. The camera-
acquired responses can be represented as digital images and
provide high-dimensional signals [in red, green, and blue
(RGB) channels] to help discriminate the target analyte from a
complex background. A deep learning neural network model,

named SensingNet, was specially developed to intelligently
analyze the image responses of the plasmonic sensing platform
without using any other information. It is worth noting that
this work was carried out using a single, unmodulated
plasmonic sensor, which shows the power of using deep
learning analysis approaches to extend the capabilities of a
single sensor as compared to utilizing the data richness
generated from sensor arrays or modulated sensors.
To investigate the performance capabilities of the developed

platform/approach relevant to an existing clinical need, we
examined breath acetone sensing as a noninvasive diabetic
ketosis monitor. Breath acetone, one of the three ketone
bodies [acetoacetate, beta-hydroxybutyrate (BHB), and
acetone], has statistically significant correlations with the
other two ketone bodies and is linked with metabolic
derangements seen in diabetes and other ketosis-related
situations.36−40 Ketone measurement can provide warnings

Figure 1. | Design and fabrication of NPPs for gas sensing. (a) 3-D schematic illustration of a portion of a NPP array. Each SiO2 nanopillar has a
diameter of 100 nm and is coated with (5 nm Cr + 20 nm Au). (b,c) Sensing mechanism: LSPR is excited when light interacts with the nanopillars,
which can be observed by measuring the optical spectrum (top inset in (c)) or the color (bottom inset in (c)) of the sensing platform. When
analytes are adsorbed by the sensing platform, the local refractive index changes slightly and cause a spectrum shift, as well as a color change. (d)
Fabrication flowchart of NPPs with gold coating. (e) Schematic of MOF synthesis flow. SEM images showing top views of (f) Au-coated
nanopillars with a diameter of 150 nm and a period of 300 nm (center-to-center distance), and (g) nanopillars with 15 nm-thick MOF coating. (h)
SEM image showing a 45° view of nanopillars with MOF coating.
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of diabetic ketosis or ketoacidosis, a life-threatening metabolic
disorder that occurs with insulin deficiency or during stress,
such as intercurrent illness or surgery. The concentration of
acetone in exhaled breath is less than 2 μmol/mol (ppm), and
the blood BHB is less than 0.6 mmol/L for nondiabetic
ketoacidosis conditions. In diabetic ketoacidosis, the concen-
tration of breath acetone is higher than 40 μmol/mol (ppm),
and the blood BHB is higher than 3.0 mmol/L.37

In this work, we conformally coated the Au nanopillar
plasmonic surface with a Cu-1,3,5-benzenetricarboxylate (Cu-
BTC) MOF to effectively adsorb and detect the marker
acetone under varying concentrations (from 0.5 to 160 μmol/
mol). The target acetone was presented within either dry air or
simulated human breath background (air with 80% relative
humidity at 23 °C balanced with 2.8% CO2). A classification

accuracy of 98.8 ± 0.1% was achieved for all of the different
cases we investigated. In addition, more complex breath
specimens were simulated by varying both CO2 concentrations
and relative humidity, and a classification accuracy of 95.1 ±
0.2% was achieved in these more dynamic conditions for the
developed AI-assisted plasmonic sensing system. We also
illustrate how a unique cost function can be applied to transfer
the mispredictions to their nearby classes to achieve those
high-risk classification accuracies, which is essential for the
development of practical medical devices.
The reported results demonstrate the operation of a

plasmonic image sensor and associated deep learning signal
processing to address challenges in identifying and quantifying
a low-concentration analyte in a complex gas-phase back-
ground. We believe that this work will provide valuable

Figure 2. Experimental results for plasmonic acetone sensor tested with a target analyte (acetone). (a) Schematic diagram of gas sensing
measurement and analysis procedures. (b) Spectra of an NPP sensor coated with 15 layers of the Cu-BTC MOF, acquired under exposures to
varying acetone concentrations [from 0.5 to 160 μmol/mol (ppm)] combined with dry air. (c) Comparison of responses from the new NPP sensor
and a previously reported NHA sensor.9 (d) Examples of sensor responses acquired by a CMOS camera under different acetone concentrations in
dry air. The color variation can be recognized by the eye. (e) Clearer view of the camera-based sensor response plotted as RGB values in a time
series. (f) Stability verification with six cycles of continuous testing for each acetone concentration. Note that nominal acetone concentrations were
used in this figure. (See also concentration values reported in Table 1 of the Materials and Methods section.)
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guidance for future studies toward next-generation AI-
enhanced sensing/plasmonic-based research. While the testing
results on acetone in simulated breath are presented as an
example to prove the feasibility of the technology, we believe
that the methodology can also be applied for a broader range
of applications, such as analyzing other breath bio-
markers,21−23,29 improving the operation of condensed-phase
plasmonic biosensors,1,5,41 and expanding to other applications
such as plasmonic nanoreactors,12 high-resolution hyper-
spectral imaging,3 and forth.

■ RESULTS AND DISCUSSION
Design of NPPs and the Associated Sensing

Mechanism. In this work, we developed a unique nanopillar
structure to form the plasmonic surface. As shown in Figure 1a,
each nanopillar has a SiO2 pillar coated with gold. The
diameter and height of the SiO2 pillars are both 100 nm and
the thickness of the gold coating film is 20 nm (with a 5 nm Cr
adhesion layer). The distance between each pillar is 300 nm
(center-to-center). This plasmonic surface is fabricated on a
SiO2-on-silicon substrate. The design offers a very high
interconnection area between the metal layer and the dielectric
region, thus generating more substantive LSPR signals when
interacting with incident light.
As indicated above, the incident photons within certain

resonant frequencies (or wavelengths) are absorbed/scattered
and reflected by the plasmonic surface. Consequently, an
intensity dip can be observed in the waveform recorded by a
spectrometer when measuring the reflected light. Next, when
there are any analytes such as gas molecules or biological
molecules that attach close to or otherwise interact with the
plasmonic surface, the local refractive index and the resonant
frequency will slightly change and lead to a spectrum shift in
the waveform of the reflected light detected by the
spectrometer (as demonstrated in Figure 1c). The conven-
tional plasmonic sensing mechanism is based on this frequency
characteristic.
In this work, we also exploited another sensing approach

based on the measurement and analysis of the color change of
the plasmonic surface. Similar to the frequency shift character-
istic, the surface color change is also due to the change of local
refractive index and shift of resonant frequency when analytes
are attached to the plasmonic surface10,18 (as illustrated in
Figure 1b,c). A low-cost, small-size camera module can be used
to acquire images of the plasmonic sensor surface as an
alternative to spectrometer-based measurements. The sensor
surface images (RGB values) are then analyzed with signal
processing methods. In this work, a deep learning neural
network model is developed to intelligently predict the sensing
results in a complex background, that is, simulated human
breath. To optimize the prediction accuracy, the neural
network model is specifically designed for use with the
reported plasmonic sensor.

Fabrication and Characterization of Nanoplasmonic
Pillars. Figure 1d schematically illustrates the fabrication
process used in this work for the Au-coated nanoplasmonic
pillars (NPPs). Figure 1e shows the synthesis flow used to
generate the MOF coating on the NPP surface. Note that
nanostructured surfaces are normally patterned by using
electron beam (e-beam) lithography. However, e-beam
lithography is slow, costly, low in area coverage, and only
compatible with limited substrate materials. To develop a cost-
effective and universal nanosensor fabrication technique (over

a large surface area, on different and even flexible substrate
materials), we exploited the NIL technique42,43 in this study. A
detailed description of the fabrication process and MOF
synthesis are included in the Materials and Methods section.
Figure 1f,g shows SEM images of the top views of part of the

fabricated NPPs without and with a MOF coating. As
indicated, the Au-coated nanopillars are accurately fabricated
into a circular shape with a diameter of 150 nm and a period of
300 nm (center-to-center distance). After MOF coating, the
diameter of nanopillars increased to 180 nm (and the 300 nm
period remained the same). Figure 1h shows a SEM image
taken to show the 45° view of the fabricated nanopillars with
MOF coating, which have a height of 140 nm.

Experimental Testing of the NPP Sensing Platform.
Figure 2a shows components of the gas sensing measurement
system used in this work for the testing of the NPP sensing
platform. A detailed description of the testing system is
included in the Materials and Methods section.
The experimental testing protocol consists of three parts.

Part I is testing an NPP sensor coated with 15 layers of Cu-
BTC MOFs under acetone balanced with dry air. Figure 2b,c,f
demonstrate the testing results with acetone concentrations
varied from 0.5 to 160 μmol/mol (ppm). Figure 2b plots the
responses of the NPP sensor, showing that the spectral change
of the reflected light varies with different wavelengths and
under different acetone concentrations.
Figure 2f provides a more explicit analysis in the time

domain to demonstrate the peak intensity (around 630 nm)
changes as the acetone concentrations are varied over time
[i.e., increased from 2.1 to 7.6% with acetone concentration
increased from 0.5 to 160 μmol/mol (ppm)]. Figure 2c shows
the performance comparison between the new NPP sensor in
this work with a previously reported nanohole array (NHA)
sensor.9 Improved performance is obtained with the NPP
sensor throughout a wide range of acetone concentrations,
especially with a larger improvement (4 to 5 times) in the low
concentration range [<10 μmol/mol (ppm)]. Figure 2d,e
demonstrates the sensor responses captured by a comple-
mentary MOS (CMOS) camera. Figure 2d shows some of the
acquired images (sensor responses) when testing with different
concentrations of acetone. The color variation between the
images can be recognized by visual inspection (i.e., color depth
of the sensor surface increased with acetone concentration),
which recalls the wavelength shift in the visible range as shown
in Figure 2b. Figure 2e plots the color change in the time
domain and shows the color variation as the acetone
concentrations changed more clearly. It is also noticed that
the color variation in the red channel is larger than those in the
green and blue channels. This is because the developed NPP
sensing platform has a resonance wavelength at around 630 nm
(Figure 2b), which shows red color. Figure 2f also presents
results for stability testing of the NPP sensor, which were
conducted with six successive cycles for each acetone
concentration. This testing result confirms the stable and
consistent performance of the NPP sensor from a low
concentration of 0.5 μmol/mol (ppm) to a relatively high
concentration of 160 μmol/mol (ppm). This verifies the NPP
sensor’s sensitivity and detection range could meet the
requirement for breath acetone detection applications. All
tests were carried out using a single NPP sensor coated with
the Cu-BTC MOF.
Next, in Part II, we tested the influence of the two major

chemical constituents in human breath, that is, CO2 and H2O.
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Figure 3a shows the testing results of the NPP sensor under
varying CO2 concentrations combined with dry air. In this test,
the concentration of CO2 varies from 0.7 to 4.2%, which
approximates the common range of CO2 in human breath.

44,45

According to the results, the intensity change (NPP sensor’s
response to CO2) varies from 0.2 to 0.4%, which is 10 to 15
times lower than the changes under acetone shown in Figure
2c,f. The potential interference of CO2 concentration variation
is relatively low when testing acetone samples ≤20 ppm but
may affect the testing accuracy when testing acetone samples
>20 ppm as the sensor response varies less in this range. To

examine the interference of relative humidity, the NPP sensor
was tested at varying concentrations of acetone [0.5 to 80
μmol/mol (ppm)], balanced with an air of different relative
humidities [80, 85, and 90% at laboratory ambient temperature
(≈23 °C)]. Testing results under the three different relative
humidities are presented in Figure 3b,c. According to the
results, the NPP sensor’s response to the varying concen-
trations of acetone is from 1.2 to 4.5% with slight variance,
which is similar under the three different humidity levels. Note
that these responses of the sensor to acetone are lower in
humid conditions by ≈40% as compared with the sensing

Figure 3. | Experimental results for plasmonic acetone sensor tested with interfering backgrounds. (a) Testing results for the NPP sensor under
exposures to varying CO2 concentrations combined with dry air. (b) Spectra for testing NPPs at various concentrations of acetone with 80%
relative humidity at 23 °C. (c) Sensor response at various concentrations of acetone when testing under dry air and with 80/85/90% relative
humidity at 23 °C, respectively. The error bar shows the standard deviation of five different experiments. Note that nominal acetone concentrations
were used in this figure (see also concentration values reported in Table 1 of the Materials and Methods section).

Figure 4. Experimental results for the plasmonic acetone sensor tested with the target analyte in a complex background. (a) Camera-captured
images showing the change of NPP surface color under different acetone concentrations combined with a simulated breath background (air with
80% relative humidity at 23 °C balanced with 2.8% CO2 by volume). (b) Normalized RGB value changes of the NPP images under varying acetone
concentrations (from 0.5 to 80 μmol/mol (ppm)) combined with a simulated breath background. (c) Normalized confusion matrix of the cross-
validation result from SensingNet. The overall accuracy is 98.8 ± 0.1%. (d) Architecture of SensingNet. The number of output parameters of each
layer is represented as k@n × n, where k is the number of filters/layers and n × n is the dimension of each output matrix. Note that nominal
acetone concentrations were used in this figure. (See also concentration values reported in Table 1 of the Materials and Methods section.)

ACS Applied Materials & Interfaces www.acsami.org Research Article

https://doi.org/10.1021/acsami.2c11153
ACS Appl. Mater. Interfaces 2022, 14, 54411−54422

54415

https://pubs.acs.org/doi/10.1021/acsami.2c11153?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.2c11153?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.2c11153?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.2c11153?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.2c11153?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.2c11153?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.2c11153?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.2c11153?fig=fig4&ref=pdf
www.acsami.org?ref=pdf
https://doi.org/10.1021/acsami.2c11153?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


responses in dry air. Prior reports have indicated that the Cu-
MOF can adsorb acetone and humidity.46,47 When sensing
biomarkers in human breath, the concentration of relative
humidity is 10,000 times higher than the concentration of the
biomarkers, acetone in this work. The MOF-coated sensor
relies upon adsorption/desorption processes. When sensing
under a background with high relative humidity, most of the
available sites are occupied by water molecules, and thus, less
acetone, which must compete with the water molecules, can be
adsorbed by the MOF. Therefore, the sensor response to
acetone in a background with humidity is much lower than the
response observed in dry air. We will discuss approaches to
analyze the response data with interference from humidity in
order to monitor low-concentration acetone in later sections.
In Part III, we tested the sensor responses with various

concentrations of acetone in a more complex background, that
is, “simulated human breath”, by mixing acetone with a
background of air and 2.8% CO2 at an 80% relative humidity at
laboratory ambient temperature (≈23 °C). The initial testing
results in Part I and II have already shown that both CO2 and
H2O would have some effect on the sensing responses when
detecting acetone in a simulated human breath. For more
complex and dynamic backgrounds, they will have a bigger
negative impact and make it more difficult to predict the actual
concentration level of acetone when the signal variations are
more subtle. It is difficult to accurately predict the acetone
concentration in this case by simply observing the change of
the spectral peak intensity. Therefore, in this part, we analyzed
the sensor responses by studying the variation of RGB values
monitored by a CMOS camera. The RGB value is an
alternative representation of the intensities in a range of
different wavelengths. Thus, it can provide sensing responses in
three different channels, that is, RGB, and holds the potential
to enable a low-cost and portable device for breath acetone
analysis. Figure 4a shows nine pictures of an NPP sensor taken
under different acetone concentrations (from 0 to 80 μmol/
mol) combined with simulated breath (air with 80% relative
humidity at 23 °C balanced with 2.8% CO2). Note that the
color depth of the sensor surface increased very slightly with
the acetone concentration, which is different from the obvious
depth variation shown in Figure 2d. This is also evidence that
detection in a complex background is more challenging than in
dry air and thus needs more advanced analytical techniques.
Next, Figure 4b presents a much clearer representation of the
color-change characteristic by plotting averages of the RGB
values extracted from the NPP surface images under varying
acetone concentrations (from 0 to 80 μmol/mol) in our
synthesized breath. According to the results, the higher
concentration of acetone leads to a more significant change
for each color. It is noticed that the red color has the most
significant response to acetone and the blue color has the least
because the response peak (about 630 nm) of the sensing
platform is located in the red channel range (see Figure 2e).

Deep Learning-Assisted Signal Processing. To thor-
oughly study the correlations between the sensor responses
(RGB values) with various concentrations of acetone and other
interfering analytes, a deep learning neural network model
named SensingNet was developed in this work to intelligently
analyze the change of RGB values in each sensor image and
accurately predict the NPP sensing results. Deep learning
neural networks have been developed and applied to address
challenges in many areas.48−51

We employed the Part III testing data on the simulated
human breath (e.g., Figure 4b) in an effort to demonstrate the
feasibility of the deep learning-assisted signal processing
method. Over 100,000 data were collected from 9 different
concentrations of acetone balanced with simulated human
breath. The data were labeled into several different classes
based on the concentration of acetone: background (0 μmol/
mol), safe (≤5 μmol/mol), low risk (≤40 μmol/mol), and
high risk (>40 μmol/mol).36−40 80% of the data were used for
training, 10% were used for testing, and 10% were used for
cross-validation.
Before developing SensingNet, we first trained the dataset

with some classic models, including LeNet,52 ResNet,53

VGG,54 and so forth,55,56 using the built-in API from
TensorFlow57 (Supporting Information, Table S1). These
models were either overfitted or did not converge for the
training because they were designed for classic image
recognition, such as recognition of writings from images,
classification of cats and dogs, and so forth. These models look
for specific edges/features in the images to classify images.
However, for the imaged responses of plasmonic sensors, no
such features can be used because the pattern/feature of the
plasmonic sensor does not change during the measurement;
instead, the color variation (RGB values) contains the
information that can be used effectively. During the training
process, these state-of-art models look for “features” arising at
some residuals or uneven spots and use them to classify each
case. As a result, it leads to overfitting or nonconvergence
because these “features” are not consistent information that
correlates with the sensing responses. Based on these findings,
we developed a neural network model, SensingNet, which can
be specifically used for plasmonic sensors. We also note that it
might be possible to use an approach based simply upon the
changes in the average intensities of the RGB channels using
dimensionality reduction (e.g., PCA and LDA) in conjunction
with a classifier like k-nearest neighbors. However, the accuracy
was relatively low (test accuracy around 90%). The tests using
dimensionality reduction are described in more detail in the
Supporting Information.
Figure 4c demonstrates the architecture of SensingNet. A

detailed description of SensingNet’s design, functions, and
training is included in the Materials and Methods section. As
shown in Figure 4d, the cross-validation accuracy of
SensingNet on the sensing data in simulated human breath
(air with 80% relative humidity at 23 °C balanced with 2.8%
CO2) is 98.8 ± 0.1%, which meets its design purpose as a very
compelling signal processing method for the next-generation
plasmonic sensing. Note that the RGB values in the sensing
data for simulated human breath are clustered based on the
concentration of acetone (as shown in Figure 4b), which
makes it relatively simple for SensingNet to analyze and predict
accurately. To further improve and test SensingNet, we put our
NPP sensor into a more complicated testing background with
higher complexity than the original synthesized breath.

Optimization of SensingNet with Higher Levels of
Background Complexity. Next, we collected more data on
new simulated human breath samples with finer acetone
concentration increments and slight variations of CO2 and
relative humidity, which more closely approximates conditions
for monitoring in real human breath applications. Specifically,
acetone concentrations varied at finer increments such as 0,
0.5, 1, 2, 2.25, 2.5, ... 10, 11, ... 80 μmol/mol. In the meantime,
CO2 was varied from 2.1 to 3.5% (which covers the largest
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response to CO2 shown in Figure 3a), and the relative
humidity was varied from 78 to 82% for the new simulated
human breath.
Figure 5a shows an RGB plot for the new data set where we

have a total of 200,000 data points collected from NPP sensor
testing under different acetone concentrations combined with
a new type of simulated human breath with concentration
variations. Comparison with Figure 4b makes it clear that the
sensing data in the more complicated simulated breath are no
longer spatially well separated and thus become much more
difficult to process and analyze. We retrained the system with
the whole dataset (300,000 data points) including simulated
human breath with both fixed and changing interferences. As
shown in Figure 5b, the overall cross-validation accuracy of
SensingNet, after training with new data, is 95.1 ± 0.2%.
Although slightly decreased from 98.8 ± 0.1%, this result
verifies SensingNet’s solid capability for analyzing and
predicting the NPP-based acetone detection in a much more
complex background.
The confusion matrix shown in Figure 5b also indicates

where the mispredictions occur. It is noticed that there is a
small amount of misprediction (about 1%) between high risk
and background, which could cause some issues in real
applications. In order to minimize the misprediction between
the unwanted classes, that is, high risk and background in this
work, while keeping the overall accuracy of the model, we
invoked a customized cost function to add additional penalties
to the misprediction of specific classes.

J
m

y y y y

y y

1
( log( ) ( log(1 )

log(1 )))

m

1
k L

L k

= +

+ (1)

In eq 1, J stands for the cost function, m is the number of
data in a minibatch. y y( log( ))m

1 is the standard form of
cross-entropy, where y is the real label and ŷ is the predicted
label. In the second part, yk and yL stand for the two classes
where additional penalties for misprediction will be added.
Finally, β is the factor to control the number of penalties added
to the model. In this work, we obtained the optimized
performance by setting the β to 0.006. The overall accuracy
remains 95.1 ± 0.2%, and the model eliminates the
misprediction between background and high risk (Figure 5c).
If we keep adding penalties between safe and low risk, then the
mispredictions are controlled between low risk and high risk,

and the overall accuracy is 94.4 ± 0.2% (Figure 5d), which
could be a relatively safe model for practical medical
applications. One can choose whether, and where, to apply
eq 1 based on the application and dataset. Note that eq 1 is a
classification transfer approach rather than a false-positive/
false-negative optimizer. For preferentially biasing against
either false positives or false negatives, other approaches
would need to be applied.

■ CONCLUSIONS
We have described a nanopillar-based plasmonic sensing
platform as well as a deep learning algorithm (SensingNet)
and have shown the feasibility of predicting risk levels relevant
to diabetic ketosis or ketoacidosis by training the system with
simulated human breath. Increasingly complicated testing
conditions were utilized to expand the selectivity and
sensitivity of the deep learning-assisted plasmonic sensing
system. The system, which employs only one NPP sensor, can
reach 95 to 98% accuracy when predicting the risk levels of
diabetic ketosis or ketoacidosis based on acetone concen-
trations in simulated human breath with different complexities.
The signal processing methods described in this work can be
generalized for use with other types of sensing platforms and to
improve performance for different applications, including a
range of chemical/biochemical applications.
Specifically, in this work, numerical studies were applied to

develop a Au-coated SiO2 NPP sensing platform to provide
LSPR measurements sensitive enough to be used in breath
acetone detection. The optimal dimension of the NPP
structures was studied by sweeping the dimensional parameters
in multiphysics simulations. A nanoimprinting-based fabrica-
tion process was developed to fabricate the sensing platforms
in a reproducible and cost-effective way. The sensing platform
was coated with 15 layers of a Cu-BTC MOF and tested first
for its response to acetone from 0.5 to 160 μmol/mol in dry
air. We demonstrated that sensing responses can be acquired
by using a spectrometer or a CMOS camera, the latter
providing the feasibility to make a portable and low-cost
device. The sensing platform was also tested in a variety of
simulated human breath conditions, that is, a mixture of 0.5 to
80 μmol/mol acetone, in air with 2.1 to 3.5% CO2, and 78 to
82% relative humidity at 23 °C. By applying a deep learning
model (SensingNet) specifically designed for plasmonic
sensors and camera-acquired sensor responses, we were able
to predict the risk levels of diabetic ketosis or ketoacidosis at

Figure 5. Deep learning analysis on more complex simulated human breath including varied concentrations of both acetone and background
interferents. (a) RGB plots of the sensing data collected from testing with the more complex simulated human breath. (b−d) Confusion matrices of
different loss functions: (b) without additional penalty; (c) additional penalties added between background and high risk (eq 1); (d) additional
penalties added between background and high risk, and between safe and low risk.
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95% accuracy, without knowing other information, using just
the single-sensor data. A customized loss function was also
developed to minimize the false-positive/negative predictions
by adding additional training penalties to the mispredictions
between some specific output classes, which is critical for the
future development of any practical medical devices.

■ MATERIALS AND METHODS
Localized Surface Plasmon Resonance. LSPR is a phenomen-

on in which incident light is trapped within metallic nanoparticles or
nanostructures with smaller dimensions than the wavelength of the
input light. An oscillating electric field is generated near the
nanoparticles’ surface, which causes conduction electrons to oscillate
coherently at a certain resonant frequency, and this leads to a
maximum optical absorption at that resonant frequency. The LSPR
and the resonant frequency are determined by a number of factors
such as the density of electrons, the effective electron mass, the shape
and material of the interfacial nanostructure, the size and volume of
the charge distribution, and so forth. These factors can be designed
for specific applications, such as chemical/biochemical sensing.

Finite-Difference Time-Domain Simulation of Nanoplas-
monic Pillars. Figure 1a schematically shows the 3-dimensional (3-
D) model structure examined using the finite-difference time-domain
(FDTD) simulation tool. In addition to the Au-coated SiO2
nanopillar structure, we also modeled and simulated a conventional
Au nanopillar structure for comparison. The two structures have the
same dimensions (150 nm diameter, where the diameter of SiO2 was
set to 100 nm) and the same incident light source. The only
difference is the nanopillar’s material. According to the simulation
results shown in Figure 6a, the Au-coated SiO2 nanopillar generates a
larger amount of oscillating electric fields around the gold coating
film, which is consistent with the expectations and justifies the
plasmonic design used in this work. In contrast, the conventional Au
pillar only has oscillating electric fields near the top corners and
bottom interface, although the intensities of the oscillating electric
fields are close in the two designs.
In another comparison, we swept the local refractive indices of both

plasmonic surfaces (Au-coated SiO2 nanopillar vs conventional Au
nanopillar) to simulate and compare the shift of peak wavelengths. In
this simulation, sweeping refractive indices is done to simulate
different analytes being attached to the plasmonic surface, and the
amount of peak wavelength shift is an indication of the adsorbate
sensitivity of the plasmonic sensor. According to the simulation results
shown in Figure 6b, the Au-coated SiO2 nanopillar design has a 3
times stronger sensitivity than the conventional Au nanopillar
structure.
We also swept the height and diameter of the Au-coated SiO2

nanopillar separately in another simulation and plotted the
corresponding electric field intensities under the varied dimensions
in a contour map in Figure 6c. According to the simulation result, we

found one of the optimal dimensions is 100 nm in height and 100 nm
in diameter for the SiO2 pillar with the thickness of the Au layer kept
at 25 nm. These dimensions were adapted as the parameters selected
for our fabrication work. (Note that in the fabrication, we deposited 5
nm of Cr between the SiO2 layer and the Au layer for better adhesion,
and the Au layer was then set to 20 nm.)

Fabrication of Nanoplasmonic Pillars. As shown in Figure 1d,
the first step is to fabricate a mold with nanoholes (inverse of the
nanopillars) with a diameter of 100 nm and thickness of 150 nm. The
mold is produced via the following process steps: pattern 100 nm
circles on a SiO2 substrate using e-beam lithography; deposit and lift-
off 10 nm-thick Cr for protection; etch 150 nm into the SiO2 layer for
the holes using reactive ion etching (RIE). The mold is formed for
NIL and can be used multiple times to save time and lower the
fabrication cost. Note: the depth of nanoholes in the mold is
determined by the thickness of the NIL resist and the height of the
designed nanopillars. One can adjust the SiO2 RIE etching time to get
different depths of the holes in the mold for other applications and
processes.
After fabricating the mold, the nanopillar patterns are printed to

another Si/SiO2 substrate using the NIL technique (step ii in Figure
1d). The next step is to clean the remaining photoresist and etch the
SiO2 pillars using RIE. Then, a 5 nm-thick Cr layer and a 20 nm-thick
Au coating are deposited around the SiO2 nanopillars using DC
sputtering to finalize the NPPs.
Detailed recipes for each step are as follows. We used thermal oxide

wafers with 300 nm SiO2 on a 500 μm Si wafer purchased from
Graphene Supermarket.57 The substrate was spin-coated with NXR-
1025 photoresist57 at 5000 rpm and baked for 5 min at 105 °C. Then,
the mold was positioned on top of the substrate and imprinted at 120
°C and 1379 kPa (200 psi)200 psi using an NX-2000 nanoim-
printer.57 After that, the residual photoresist on the imprinted
substrate was cleaned using an Unaxis 790 RIE machine with O2
plasma etching.57 Note that the thickness of the residual layer
depends on the thickness of the photoresist and the dimension of the
features on the mold. We recommend analyzing the cross-section of a
nanoimprinted sample using SEM to measure the thickness of the
residual layer and estimate the O2 etching time required. It is essential
to clean the residual layer while maintaining the imprinted features.
Then, we applied RIE (Unaxis 790)57 with CHF3 to etch the
nanopillars. Finally, 5 nm Cr and 20 nm Au were coated on the etched
platforms using DC sputtering (Denton Vacuum Discovery 550).57

The fabricated sensing platforms were coated with the Cu-BTC MOF
using the methods described below for the porous membrane used for
breath acetone detection in this work. (Other thin-layer functional
materials can be used for different purposes.) LSPR usually extends 10
to 30 nm9,58 from the surface of the nanofeatures. Therefore, we
recommend controlling the thickness of the coating material in that
range for the best performance of LSPR-based plasmonic sensors.

Synthesis and Function of MOFs. MOFs have emerged as
promising materials for selective gas adsorption and separation due to

Figure 6. FDTD simulation of NPPs. (a) Comparison of the simulated E-field enhancement between a Au-coated SiO2 nanopillar (this work) and
a solid Au nanopillar. The Au-coated SiO2 nanopillar has more interconnections between metal and dielectric materials so that larger LSPR signals
can be generated to improve the sensing performance. (b) Simulated wavelength shift when the local refractive index changes from 1 to 1.05. The
Au-coated SiO2 nanopillar configuration shows a 3× stronger sensitivity than the solid Au pillar structure. (c) Contour map of the E-field
enhancement at various diameters and heights of the nanopillars.
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their distinct advantages over other traditional porous materials (e.g.,
activated carbon and zeolite), including high surface area, adjustable
pore size, uniformly distributed metal centers, and tunable
functionalities.58,59 Our previous study has shown that Cu-1,3,5-
benzenetricarboxylate (Cu-BTC) MOF-coated plasmonic sensing
platforms can assist in the detection of acetone at various
concentrations from 500 nmol/mol to 320 μmol/mol.9 In this
work, we functionalized the fabricated NPP platform with 15 layers of
Cu-BTC MOFs to effectively adsorb and detect the target analytes.
Figure 1e demonstrates the synthesis flow (modified from previous
works9,59) used to generate the MOF coating on our NPP surface. As
shown in the Figure 1e schematics, the Au-coated sensors were
submerged in a self-assembling monolayer solution (100 μmol/L 4-
mercaptobenzoic acid/ethanolic solution) for 1 h. Then, we repeated
the following process 15 times to coat the Cu-BTC MOF: dip the
sensor in a 1 mmol/L copper(II) acetate monohydrate/ethanol
solution for 5 min and rinse in ethanol for 1 min; then dip into a 1
mmol/L 1,3,5-benzenetricarboxylic acid/ethanol solution for 5 min
with 1 min ethanol rinse. Note: 15 layers of MOF coating is the
optimized thickness for the LSPR platforms based on our previous
study9 because LSPR enhancement extends to a certain distance
(usually <30 nm) from the surface of the nanoscale features. Figure
1g,h illustrates part of the MOF-coated NPPs. The diameter of the
NPPs was expanded to 180 nm due to the MOF coating and the
height was expanded to 140 nm accordingly. Figure S2 (Supporting
Information) shows the X-ray photoelectron spectroscopy (XPS)
results, which characterize material aspects of the growth of a Cu-
BTC MOF on a plasmonic platform specifically used for XPS analysis
that was prepared to be equivalent to the plasmonic platform used in
the optical sensing measurements.9,60,61

Setup of the Gas Sensing Measurement System. As indicated
in the schematic diagram in Figure 2a, the experiment system
consisted of gas cylinders, a gas-mixing manifold and control system,
mass flow controllers, an optical microscope, and a sealed gas
chamber with the NPP sensor held inside. Specifically, the sealed gas
chamber was placed on the microscope and the NPP sensor inside the
chamber was focused using a 5× objective lens (numerical aperture:
0.10) through a glass window on top of the chamber. The incident
light (12 V, 100 W, tungsten halogen bulb) focused on the sensing
platform is reflected back to the objective lens. We used two different
types of equipment to capture the sensing signals, that is, a
spectrometer and a CMOS camera, corresponding to the two sensing
approaches that have been discussed in the previous sections.
Specifically, the spectrometer was connected to the microscope by a
fiber optical cable to collect spectra of the reflected light. The CMOS
camera was mounted at one of the eyepiece positions of the
microscope to capture the images of the sensing platform. In both
modes, the data (spectroscopic or imaging) were saved for analysis.
In this work, a custom gas manifold system was used to produce

different testing conditions. As shown in Figure 2a, compressed gases
were mixed with dry zero-air and humidified zero-air (through a dew-
point generator) at specific ratios to generate different testing cases.
Two acetone cylinders were used, that is, 500 μmol/mol acetone/dry
air and 2000 μmol/mol acetone/dry air. The total combined flow rate
for all gases to the sensor chamber was targeted to be 2000 standard
cm3/min (sccm) or less (depending upon desired analyte
concentrations), and the maximum flow rate for acetone/air was
controlled at 50 sccm. We report and use acetone concentration
values at nominal levels in Figures 2−4, but a subsequent review
indicated that there are minor deviations in the delivered acetone
concentrations owing to bias from the certified values of the
commercial gas cylinder contents and corrections in flow rates for
CO2. Table 1 summarizes the delivered acetone concentrations and
associated uncertainty estimates.
In simulated breath backgrounds, acetone samples ≤10 μmol/mol

were generated using the 500 μmol/mol acetone/air cylinder, while
acetone concentrations >10 μmol/mol were generated using the other
acetone cylinder. Tests in the dry air background exclusively used the
500 μmol/mol acetone/air cylinder. Various concentrations of CO2 in
the test cases were generated by mixing pure CO2 with the test flow.

While the gas flow from a cylinder was turned off, the same volume of
dry air was added to the system to keep the overall testing
environment stable, including the total flow rate, CO2, and relative
humidity concentrations. We set the temperature at the dew-point
generator at 22 °C and balanced it with dry air to generate the desired
humidity level. In the Part II testing described in the Results and
Discussion section, we tested acetone at various concentrations at 80,
85, and 90% relative humidity at laboratory ambient temperature
(≈23 °C) to study the impact of moisture in the testing. Note that
relative humidity levels presented in this work are for the laboratory
ambient temperature. In the Part III testing, simulated human breath
samples were created by mixing various concentrations of acetone
with 2.8% CO2 by volume in air at 80% relative humidity. Note that
the relative humidity in exhaled human breath is usually saturated due
to the temperature difference between the human body and the
environment. In this initial work, we used 80% relative humidity to
ensure better control of testing cases; transfer learning technologies
can be applied to study breath samples with saturated humidity in real
applications. Note that other methodologies may also need to be
applied to achieve the desired outcome.
Later, we generated more complex testing cases to explore the limit

of the plasmonic sensing system and the deep learning-based signal
processing algorithm. Specifically, various concentrations of acetone
with finer concentration increments were mixed with additional
randomly varied CO2 (2.1 to 3.5% by volume) and relative humidity
(78 to 82%). The range of fluctuations for CO2 and relative humidity
was chosen based on the sensor response and human breath analysis
reports in the literature.9,44,45,63,64

Design, Training, and Testing of SensingNet. Figure 4d shows
the architecture of SensingNet. The model consists of three main
blocks. The first block applies blurring filters to remove any unusual
pixels by averaging the pixel values with their neighbors. The second
block picks the most sensitive areas from each image, and the third
block predicts the final results. The first block has two convolution
layers, a residual bridge, an upsampling layer, and an average pooling
layer. The purpose of the first block is to eliminate any uneven pixels.
An ideal sensing image should have uniform RGB values for each pixel
on the same sensor. However, during the measurement, due to the
distributed nature of the light source, the presence of fabrication-
related contamination, and some adhered small particles, there can be
an uneven distribution of the colors (RGB of the pixels). Depending
on the level of unevenness, the sensing analysis may need to apply
different levels of blur filters. Therefore, we used two convolution
layers with a residual block to let the system pick the optimal blur-
filtering process for each case. The upsampling layer doubled the
pixels by adding a new pixel between every two pixels (the new pixel
value is the average number of its neighbors). Then, the image size is
reduced back by an average pooling layer. The up-sampling and

Table 1. Bias-Corrected Acetone Concentrations during
Testing under Varied Backgrounds, Including Dry Air and
Simulated Breatha

nominal (μmol/mol) delivered (μmol/mol)
0.5 0.5 ± 0.1
1 1.0 ± 0.1
2 2.0 ± 0.1
5 5.1 ± 0.1
10 10.2 ± 0.2
20 20.9 ± 0.7
40 41.9 ± 1.4
80 83.7 ± 3.1
160 162 ± 12

aEstimated uncertainties (±x, k = 1) include those associated with
flow rates and commercial cylinder concentration uncertainties, as
well as variations from flow rate settings for the different background
conditions.62 Note that the nominal 160 μmol/mol concentration was
tested only in a dry air background.
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average pooling further helps to remove any uneven pixels of the input
images. The second block consists of two groups of convolution layers
and max-pooling layers; the number of filters is doubled as the size of
outputs is reduced. The difference in color for each class is further
enhanced, and the most sensitive pixels are automatically selected for
better classification. For this work, we determined that two groups of
convolution layers and max-pooling layers give the highest accuracy.
In the case of a more extensive dataset or for different applications, it
may be necessary to reduce or increase the layers to reach optimized
performance. Finally, in the third block, the flattened data were sent
to a few dense layers to make the final decision. We reach our best
performance with three dense layers (with 64 filters/layer); it may
again be necessary to adjust the number of layers and filters here to
reach the optimized results for other applications.
In this work, we used a cost-effective CMOS camera (AmScope

MD50057) to monitor the sensor response through platform image
capture. A more portable camera module such as a smartphone
camera can also be used to measure the sensor response, based on our
testing. This indicates that the system can be designed with small,
cost-effective electronic modules as a portable device for daily usage.
The acquired data (images) were first preprocessed by cropping the
sensing area from the whole images, calculating the averaged RGB
values, saving the cropped images, and storing the averaged RGB
values, image paths, and the corresponding labels, including acetone
concentration, relative humidity level, and so forth in a CSV file.
These steps were processed by using Python57 and open-source
packages such as OpenCV,65 pandas,66 NumPy,67 and so forth. While
training the deep learning models, some information, such as
interfering analytes’ concentrations, CO2 levels, relative humidity
levels, etc., were kept unknown for the system to set up a testing
environment close to real-world applications. Over 200,000 new data
were captured and labeled. The images were labeled with the
corrected acetone concentrations (see Table 1). 80% of the total data
(including the 100,000 from the previous section and the 200,000
newly collected data) were used for training, while 10% were for
testing and 10% were for cross-validation. TensorFlow57 was used to
build, train, and test the model (SensingNet) in this work. All the data
were normalized before training/testing. The dimension of the input
layers was resized to 3 × 32 × 32 in order to reduce the number of
parameters and speed up the training process. For each convolutional
layer, the size of the filters was set as 3 × 3, strides were set as 1,
padding was set as True. The number of filters was set as 8 in the first
convolutional layer and then doubled as the output size reduced
(max-pooling) each time. For each dense layer, the dropout rate was
set as 0.5 to prevent overfitting. The other hyperparameters were set
as follows: the activation function was “relu” for all hidden layers and
“softmax” for the output layer; the mini-batch size was set as 256; the
optimizer was set as “adam”; the loss function was set as
“CategoricalCrossentropy”/eq 1; “Accuracy” was used as the
evaluating metrics during training since the data were evenly split
for each class (i.e., background, safe, low risk, and high risk). Other
hyperparameters were kept as default values in TensorFlow. The
training process converged in 50 to 100 epochs depending on the size
of the data In this work. A confusion matrix was plotted after each
cross-validation to verify the performance of the model such as
accuracy for each class, number of mispredictions, false positive/
negative rates, and so forth. The process was repeated until the
optimal performance was reached. The output of the deep learning-
based algorithm is described in the Results and Discussion section.
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