Erratum: Elastic rate coefficients for Li+H₂ collisions in the calibration of a cold-atom vacuum standard [Phys. Rev. A 99, 042704 (2019)]

Constantinos Makrides D, Daniel S. Barker, James A. Fedchak, Julia Scherschligt, Stephen Eckel, and Eite Tiesinga

(Received 10 March 2022; published 24 March 2022)

DOI: 10.1103/PhysRevA.105.039903

We found an error in our computation of the thermally averaged total rate coefficients for the collision of a room-temperature hydrogen dimer H₂ with an ultracold lithium sensor atom. We incorrectly accounted for the nuclear spin degeneracy and omitted the factor $1/\sqrt{\pi}$ in the normalization over the Boltzmann distribution. Our corrected predictions for the thermally averaged rate coefficient for a 300-K H₂ gas and a 1- μ K Li gas are 3.13(6) × 10⁻⁹ cm³/s and 3.18(6) × 10⁻⁹ cm³/s for H₂+⁶Li and H₂+⁷Li, respectively, where the number in parentheses is the one-standard-deviation uncertainty in the last significant digit. Moreover, the temperature dependence of the corrected rate coefficients near 300 K is significantly smaller than in our original article.

Figure 1(a) shows corrected thermalized rate coefficients $\sum_{v'j'} L_{v'j',vj}(T_{\text{Li}}, T_{\text{H}_2})$ as functions of H₂ temperature T_{H_2} with $T_{\text{Li}} = 1 \ \mu\text{K}$ for the ⁶Li isotope computed with coupled-channels calculations using our best ground-state potential-energy surface (PES) of the LiH₂ trimer. Here, H₂ is prepared in one of the rotational states $j = 0, 1, \ldots, 4$ of the v = 0 vibrational level of its $X^{1}\Sigma_{g}^{+}$ electronic state. For H₂ temperatures less than 450 K only these five rotational states have significant population. Also shown in Fig. 1(a) is the corrected thermalized total rate coefficient $K^{\text{CAVS}}(T_{\text{Li}}, T_{\text{H}_2})$, which is a weighted sum of $L_{v'j',vj}(T_{\text{Li}}, T_{\text{H}_2})$. The state-to-state rate coefficients $L_{v'j',vj}(T_{\text{Li}}, T_{\text{H}_2})$ and thermalized total rate coefficient $K^{\text{CAVS}}(T_{\text{Li}}, T_{\text{H}_2})$ are defined in Appendix B of our original article.

Figure 1(b) shows corrected thermalized rate coefficients $K^{\text{CAVS}}(T_{\text{Li}}, T_{\text{H}_2})$ as functions of H₂ temperature based on four determinations of the LiH₂ electronic potential-energy surface. These electronic potentials are labeled by TZ, QZ, 5Z, and ∞Z and correspond to increasing accuracy in the determination of the electronic potential-energy surface. Our most accurate potential has label ∞Z .

From Fig. 1(b) we observe that $K^{CAVS}(T_{Li}, T_{H_2})$ is close to linear near room-temperature H₂ and is well represented by Taylor expansion,

$$K^{\text{CAVS}}(T_{\text{Li}}, T_{\text{H}_2}) = \mathcal{K}_0 + \mathcal{K}_1 \left(T_{\text{H}_2} - T_{\text{ref}} \right), \tag{1}$$

FIG. 1. (a) Rate coefficients $\sum_{v'j'} L_{v'j',vj}(T_{\text{Li}}, T_{\text{H}_2})$ for rovibrational states v = 0, j = 0, 1, ..., 4 of H₂ and $K^{\text{CAVS}}(T_{\text{Li}}, T_{\text{H}_2})$ as functions of the H₂ temperature with ⁶Li cold sensor atoms at $T_{\text{Li}} = 1 \ \mu \text{K}$ using our most-accurate ∞Z PES. (b) Thermalized $K^{\text{CAVS}}(T_{\text{Li}}, T_{\text{H}_2})$ as a function of T_{H_2} around room temperature. The dashed-dot, dashed, dotted, and solid lines correspond to rate coefficients based on the TZ, QZ, 5Z, and ∞Z PES.

TABLE I. Expansion coefficients \mathcal{K}_0 and \mathcal{K}_1 of the thermalized total rate coefficient $K^{CAVS}(T_{Li}, T_{H_2})$ for near room-temperature hydrog	gen
tolecules and 1 μ K ^{6,7} Li sensor atoms with $T_{ref} = 300$ K. The uncertainty $\sigma(K^{CAVS})$ is found by error propagation with correlation coefficients	ent
$(\mathcal{K}_0, \mathcal{K}_1) = 1.$	

Sensor atom	$\mathcal{K}_0 \ (\mathrm{cm}^3/\mathrm{s})$	$\mathcal{K}_1 \ (\mathrm{cm}^3/\mathrm{s}/\mathrm{K})$
⁶ Li ⁷ Li	$3.13(6) \times 10^{-9}$ $3.18(6) \times 10^{-9}$	$\begin{array}{c} 1.24(8)\times 10^{-12}\\ 1.21(8)\times 10^{-12} \end{array}$

with expansion coefficients \mathcal{K}_i and $T_{\text{ref}} \equiv 300$ K. The corrected values and one-standard-deviation uncertainties for the \mathcal{K}_i can be found in Table I for both H₂+⁶Li and H₂+⁷Li. Uncertainties of $K^{\text{CAVS}}(T_{\text{Li}}, T_{\text{H}_2})$ are based on differences from calculations with the QZ and ∞Z PESs (see also our original article). The Taylor expansion reproduces the coupled-channels result to about 0.1% for a ±50-K region around $T_{\text{H}_2} = T_{\text{ref}}$ for each of the potentials. The dependence on the Li temperature up to 100 μ K is negligible.

We acknowledge help from Dr. J. Kłos in resolving this error.