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Abstract

We present an autonomous scanning droplet cell platform designed
for on-demand alloy electrodeposition and real-time electrochemical
characterization. Automation and machine learning are currently driv-
ing rapid innovation in high throughput and autonomous materials
design and discovery. We present two alloy design vignettes: one focus-
ing on a multi-objective corrosion resistant alloy optimization, and a
study highlighting the complexity of the multimodal characterization
needed to provide insight into the underlying structural and chemi-
cal factors that drive observed material behavior. This motivates a
close coupling between autonomous research platforms and scientific
machine learning methodology that blends mechanistic physical mod-
els and black box machine learning models. Finally, we reflect on our
early efforts in on-demand alloy deposition, highlighting some of the
challenges. This emerging research area presents new opportunities to
accelerate materials synthesis, evaluation, and hence discovery and design.
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1 Introduction

Integrating experiments and theory-based modeling to understand and design
complex multiscale materials is an important [1] and perennial research topic
in materials science and engineering [2–4]. The recent rekindling of interest
in applications of machine learning (ML) to materials science problems [5]
has intensified this focus on integrating computation and experiments. This is
clearly illustrated in the nascent autonomous materials science and discovery
community [6–8], which has a strong focus on orchestrating automated exper-
imental and computational materials science experiments through adaptive
machine learning systems for data evaluation and experimental planning.

The fields of active learning and design of experiments uses ML models
to inform a series of decisions about which valuable data to obtain, either
through experiments in the lab [9, 10] or through on-demand physics based
modeling of alloys [11], condensed-phase materials [12], and molecules [13].
The autonomous materials experimentation community is consistently demon-
strating the power of fully closing the synthesize–characterize–predict loop
across a diverse and growing portfolio of materials technologies [8]. Notable
examples include optimizing the growth rate, and thereby quality, of carbon
nanotubes by tuning chemical vapor deposition conditions [14], optimizing the
strength of three-dimensional geometry of additively manufactured polymer
lattices by varying their superstructure [15], and autonomously mapping out
non-equilibrium processing phase diagrams [16].

In addition to directly optimizing material properties, there is promising
progress in roboticization for learning to fabricate materials and chemicals with
desired structure, and for efficient on-demand acquisition of complex and/or
expensive experimental data. For example, synchrotron X-ray measurements of
nanoparticle density [17], and accelerated structural phase map acquisition [18].

This manuscript explores some of the most challenging aspects of closed
loop materials design: Material properties are linked to process and composition
via complex relationships, mediated by structure and chemistry across multiple
length scales, such as phase distribution, density, microstructure, and surface
quality. Integrating enough materials synthesis and characterization capabilities
into experimental systems to address such complex materials phenomena is a
substantial challenge. A major roadblock to incorporating this complexity into
autonomous materials research platforms is addressing the need for quantitative
data analysis at scale, which with the advent of high throughput material
synthesis and measurement systems is often a primary research bottleneck [19].
This is an opportunity for mutual progress in autonomous materials research
and scientific machine learning [20], which is the subfield of ML concerned with
designing models and algorithms imbued with physics-based bias and model
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structure. Early materials research in this area focused on explicit incorporation
of domain knowledge into model form [21–23] and incorporating automated
reasoning and physical constraints into machine learning algorithms [24, 25]. A
particularly important benefit of incorporating explicit physical insight into
ML models is the potential for substantial efficiency improvements by directly
targeting scientific goals through the acquisition policy of an active learning
system, for example in measuring a magnetic transition temperature via neutron
diffraction [26].

Often, even once desirable composition and structural features are known,
the path to actually fabricating usable material with these properties is unclear,
presenting an opportunity for creative automated systems to have high impact.
For example, the Chemputer project [27–29] aims to fully automate organic
synthetic chemistry with general-purpose hardware, and to algorithmically
discover efficient synthesis routes for any possible target molecule. Focused
on metals, Ref. [30] outlines a diverse set of synthetic approaches spanning
composition and thermomechanical gradient techniques, batch casting and
additive manufacturing methods [31], and roboticized microscopy platforms.
For addressing complex materials systems dominated by multiscale structure,
modular clusters of multiple synthesis and characterization tools [32] may
provide a path forward.

We feel that electrochemistry provides a rich opportunity and testbed for
development of automated tools to collect datasets and demonstrate closed
loop materials development. Electrochemistry provides a unique method that
enables both synthesis (electrodeposition) and characterization (electrochemical
corrosion) using the same experimental apparatus. Further, electrochemical
processes are complex and difficult to model using first principles, and thus are
ideal for modeling using ML methods[33]. A wide variety of high throughput
experiment approaches for electrochemical systems have been explored [34],
including scanning droplet cell (SDC) systems [35–37]. Here we describes our
efforts to demonstrate the value of this type of platform through a series of
vignettes related to our development and demonstration of a highly automated
and closed loop SDC tool. We hope this work serves to demonstrate challenges
and highlight promising directions.

2 Methods

2.1 Automated Scanning Droplet Cell

Our high throughput scanning droplet cell platform, described in detail in Refs
[38] and [39], (illustrated in Figure 1a) integrates a compact electrochemical flow
cell with a fully automated bank of syringe pumps and scanning sample stage.
The flow cell defines a roughly 4.5 mm diameter circular footprint on the active
surface. The cell can be addressed to any point across a planar sample (e.g., a
uniform or composition spread thin film, or a bulk alloy sample) and conduct
an agile automated serial electrodeposition and/or corrosion experiments under
a variety of solution conditions. As such, this tool enables online optimization
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of electrodeposited alloy composition by programatically adjusting solution
chemistry and applied potential or current (as briefly discussed in section 4).
In addition, corrosion assays can be performed as a function of composition
or structure on these electrodeposited samples or (as in Section 3.1) with
composition gradient thin film and bulk samples. Rapid characterization of
potential-pH behavior [38] can also be characterized.

(a) SDC schematic (b) active learning loop

Fig. 1: (a) Schematic design of the automated scanning droplet cell platform.
(b) Schematic joint alloy deposition and property optimization loop.

Figure 1b illustrates the core adaptive alloy electroplating optimization
loop. An initial alloy thin film is deposited with candidate settings for solution
composition and deposition conditions (applied current, flow rate, etc.). Online
process monitoring of variables including measured potential, current, pH, and
temperature can provide early indication of automation failure or infeasibility
of the candidate process settings.

Next, a central challenge of building autonomous materials research plat-
forms: integrating as much online characterization capability as possible. Our
system currently performs routine macroscopic surface image acquisition via
optical camera (Figure 2a) and laser (635 nm wavelength) reflectance line scans
(Figure 2b) to assess the continuity, coloration, uniformity, and qualitative
roughness of electrodeposits. Our platform has a modular design, allowing it
to readily be rebuilt around and incorporated into a synchrotron measure-
ment station, enabling online acquisition of e.g., X-ray fluorescence (Figure 2c),
diffraction, and absorption spectroscopy data.

After any online chemical and structural characterization, a wide variety
of corrosion resistance assays are possible. The corrosion environment can be
tailored along pH and composition axes through flow mixing, and in principle a
dynamically specified series of electrochemical experiments can be performed.

Finally, the experimental loop is closed by linking processing variables
and any measured chemical, structural, and performance quantities through a
probabilistic machine learning system, such as the Gaussian Process, linking
composition to multiple corrosion figures of merit illustrated in Figure 1b. Active
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Fig. 2: a) surface inspection image b) laser reflectance line scan c) XRF linescan
d) Linear Polarization Resistance

learning algorithms use the model predictions and associated uncertainties to
prioritize subsequent candidate experiments so as to maximize the probability
of learning valuable information towards achieving a design or discovery goal.

2.2 Modeling

Throughout our work, we use the Gaussian Process (GP) [40] modeling frame-
work for its flexibility, intrinsic treatment of predictive uncertainty, and facility
for automatic hyperparameter optimization. GPs are Bayesian machine learn-
ing models that are similar in spirit to a kernel version of Bayesian linear
regression; for a comprehensive and accessible introduction, refer to [41]. GP
model specification is often described in terms of building a Bayesian prior over
functions that might possibly describe the data. This is decomposed into two
elements: the mean of the function prior, m(x), where x is the vector of inputs,
and the covariance (or kernel) function k(x,x′), which controls the distribution
of possible functions that the model can represent. A GP regression model for
some target data y ∼ f(x) + ϵ can be written as y ∼ GP(m(x), k(x,x′)) + ϵ,
where ϵ represents the Gaussian error term common to most regression models.
In this work, we default to the commonly used constant mean GP model with
“squared exponential” or “radial basis function” (RBF) covariance function:
k(x,x′) = s2 exp(− 1

2∥x− x′∥2/ℓ2). The resulting GP model has several hyper-
parameters that we tune by gradient-based optimization to maximize the model
evidence p(y | x, θ), where θ represents the collection of model hyperparame-
ters [40]. The principal hyperparameters for an RBF GP are the amplitude
parameter s that controls the overall scale of the model functions, a lengthscale
parameter ℓ that controls the level of fluctuation relative to the input space,
and the observation noise level ϵ.

GP models are commonly used in active learning and optimization settings
because they are well-suited to automatic hyperparameter selection and provide
good predictive uncertainty estimates. There are many active learning strategies
for selecting experiments based on probabilistic model predictions. The relative
performance of these strategies can strongly depend on the characteristics of the
data and the active learning task. In the optimization examples presented here,
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we consistently use the confidence bound strategy [42], which balances candidate
selection between high predicted utility and high predictive uncertainty. At
iteration t, an experiment is selected from the design space that minimizes
the quantity µ(x)− β(t)

√
var(x), where µ(x) represents the mean prediction

from a GP model,
√

var(x) represents the predictive uncertainty, and β(t)
is an iteration-dependent scaling factor that controls the tradeoff between
exploring high-uncertainty regions of parameter space and prioritizing promising
candidates for global minima. We follow [43] in using the tradeoff schedule
β(t) = cd log(2t+1), where c = 0.25 is a fixed hyperparameter of the confidence
bound method, and d is the dimensionality of the input space. We apply the
random scalarization [43] method for weighting competing objectives in a way
that encourages fuller exploration of the Pareto frontier.

3 Results

3.1 Multiobjective corrosion property optimization

Figure 3 shows a multiobjective optimization case study based on a high
throughput benchmark dataset of corrosion experiments in a neutral NaCl
solution on an AlNiTi composition spread. The details of data collection and
analysis, described briefly below, can be found in Ref. [39]. Figure 3a illustrates
a typical linear scan voltammetry (LSV) result from this series of measurements,
showing the measured log current (I, amps) as the potential, V , is increased
linearly in time. Voc is the open circuit potential. We fit a linear model in
log(I) space to the passivation plateau at positive potentials relative to Voc;
the departure from this linear behavior is the transpassive potential Vtp. We
determine an effective passivation potential Vp and passivation current Ip by
locating the median potential within the linear passivation plateau. Finally, we
characterize the ”flatness” of the passivation plateau, defined as the inverse

slope of the linear model, slope = d log(I)
dV .

Figures 3b and 3c show the obtained Ip and d log(I)
dV for this dataset. To sim-

ulate data collection, we interpolate each measured property with a GP model
which we can interrogate: for each simulated Bayesian optimization campaign
we sample ground truth response functions from the GP posterior fitted to the
full dataset, adding observation noise to the simulated measurements to mimic
experimental uncertainty. The multiobjective optimization goal is to identify
alloys with low passivation current Ip and a flat passivation plateau slope (i.e.,

low d log(I)
dV ).

We model the corrosion response with independent GPs over composition

for the two target variables, log(Ip) and
d log(I)

dV . Each GP uses a constant mean
function and an RBF kernel defined over composition variables. Measurements
are selected with a lower confidence bound strategy [42]; we use the random
scalarization [43] to encourage full exploration of the pareto front. At each iter-
ation, the two objective function weights are drawn from Beta(2, 2), providing
a mild preference to avoid compromising on either objective.
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Fig. 3: AlNiTi multiobjective case study. (a) annotated linear scan voltammetry
curve. (b) Passivation current vs AlNiTi composition. (c) Passivation plateau
slope vs AlNiTi composition. (d) multiobjective optimization convergence plot.
Units for each objective are standardized to the range (0, 1), and the partial
Bayes regret RB(T ) quantifies the joint performance.

Figure 3d compares the performance of the active learning system with a
random search strategy. The active learning system shows consistent conver-
gence towards each individual objective in under 10 active learning queries
across a benchmark of ten simulated active learning runs. The random search
strategy achieves similar results in the long run, but takes nearly twice as many
function evaluations to converge and has higher variance, especially in the
first ten iterations. The bottom panel quantifies the joint performance on both
objectives through the data-dependent term of the Bayes regret, as in [43]:
RB(T ) = Eλ∼p(λ) minx∈X sλ(f(x)). This is the best observed value x out of
observed values X, averaging over the random scalarization process sλ, where
λ is the objective function weighting drawn from its distribution p(λ) (here a
Beta(2, 2)).

In this system, Al strongly suppressed Ip, while Ti is associated with flatter
passivation plateau behavior. The passivation slope is a more challenging
function to optimize: the lengthscales of the ground truth GP models for Ip
and the passivation slope are 0.2 and 0.083 (element fraction units). As a
result, the active learning system achieves favorable performance on the Ip
objective, particularly with an experimental budget less than 10, but only
marginal progress directly optimizing the passivation slope. This apparent
difference in optimization difficulty is consistent with a heuristic estimate of
the number of experiments needed to fully specify a GP model, following [44]:
the lengthscale of the RBF kernel used in the GP models can be interpreted as
the standard deviation of a Gaussian distribution. Dividing the volume of the
design space by the volume contained within one standard deviation of this
Gaussian distribution yields an estimated experimental cost of 8 samples for
the Ip objective, and 45 samples for the passivation slope. One limitation of
this heuristic is that the passivation current model has a higher estimated noise
level, which may increase the number of samples needed to reliably estimate
the underlying function. The overall performance measure, the data-dependent
Bayes regret RB(T ), shows that despite the difficulty in finding the optimal
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passivation slope, the random scalarization algorithm focuses on finding good
compromises between both objectives.
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Fig. 4: AlNiTi multiobjective active learning trajectory after (a) three initial
observations and (b) 4, (c) 8, and (d) 16 active learning queries. The black
dashed line indicates the ground truth noise-free Pareto frontier, and the red
dashed line indicates the current predicted Pareto frontier. Error bars on
observed data indicate the standard deviation of the GP predictive uncertainty.

Figure 4 illustrates the progress of a multiobjective optimization trajectory
towards exploring the full set of tradeoffs between median passivation current
and its range over the passivation plateau. These Pareto plots show the observed
values of each objective in a multi-objective optimization problem to succinctly
illustrate the set of possible design tradeoffs. Though the initial observations are
nearly optimal when considering each objective individually, the approximation
of the overall Pareto frontier is poor. However, after four active learning
queries (Figure 4b), the Pareto frontier approximation is within the predictive
uncertainty of the GP models. Subsequent observations concentrate on more
densely along the Pareto frontier, and reduce the predictive uncertainty of the
GP models as they learn better approximations of the target functions.

3.2 Semi-mechanistic modeling

Empirical optimization of material structure and processing is an important
research area, but black box optimization approaches, those without physics
embedded in them, are not well-suited for providing the kind of mechanistic
insight that drives the development of new materials theory and design heuris-
tics. This is perhaps the most important challenge facing scalable automated
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science today: bringing together multiple sources of information to decouple
the underlying chemical and structural factors that give rise to the aggregate
material properties that we observe.

Figure 5 shows (a) the corrosion response (log corrosion current, Icorr)
across a TiNbTa composition spread thin film measured by the SDC alongside
(b) crystallite size and (c) microstrain, defined here as RMS(∆d/d) where d
is the lattice spacing, obtained by Williamson-Hall size-strain analysis [45] of
synchrotron XRD data on the film. The system nominally forms a body centered
cubic (BCC) solid solution, with secondary phase inclusions, determined by
subjective inspection of XRD data for unattributed peaks, appearing on the
Ta-poor side of the solid black curve.

(a) log Icorr (b) crystallite size (c) microstrain

Fig. 5: TiNbTa (a) corrosion response, (b) crystallite size, and (c) microstrain.

Perhaps unexpectedly, the least favorable corrosion rates in Figure 5a
are found in the single phase, near-equiatomic portion of the ternary system.
The composition dependence of the crystallite size and microstrain suggest
that these microstructural features could play a role in modulating corrosion
response. The influence of microstructural features such as grain size [46] and
precipitate size and density [47] is well established.

To address these complex mechanistic materials science questions and
disentangle potentially competing effects, models with finer granularity are
needed. For example, the partial dependence analysis of the artificial neural
network model in [48] provides insight into the contribution of composition and
microstructure variables to corrosion behavior. However, the modeling approach
is not amenable to explicit inclusion of theoretically motivated models.

Our approach is to blend theoretical models, such as the Hall Petch grain
size contribution of [46], with non-parametric models by specifying additive
GPs:

log(Icorr) ∼ GP(µ,Kcomp) + k/
√
d

µ andKcomp are a constant mean and standard RBF kernel over composition
variables, as in earlier sections of this manuscript. The grain size d in nm
isobtained from size-strain analysis, and k is the linear coefficient in the Hall
Petch model, which we optimize along with the other GP hyperparameters.
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Figure 6a shows the nominal log(Icorr), along with the decoupled (b) Hall
Petch contribution and (c) composition contribution with grain size set to
40 nm. The composition contribution spans a larger dynamic range of log(Icorr)
values, and the location of the maximum value has shifted and spans a larger
composition range in comparison to the nominal model.

(a) nominal
(b) Hall Petch size contri-
bution

(c) composition contribu-
tion

Fig. 6: (a) Model log(Icorr) response with decoupled (b) grain size and (c)
composition contributions.

4 Discussion

Composing a complex, semi-mechanistic model as in Section 3.2 allows us
to explore counterfactual predictions like “what if we could independently
increase/decrease the grain size”, as in Figure 6c. Similarly, competing mecha-
nistic model components could automatically be evaluated, for example with
an alternative Hall Petch type model. With the present composition spread
dataset, this model is merely descriptive, and it is difficult to validate these
kinds of mechanistic hypotheses without the ability to independently vary com-
position and microstructure variables. Moreover, when the dataset does not
contain sufficient variation, the model can be underspecified leading to difficulty
obtaining stable parameter estimates. Creating datasets that can fully span
the range of composition and parameter space is in general intractable with
conventional experimental synthesis methods and even high-throughput meth-
ods. Meeting this challenge, therefore, represents a huge growth opportunity
for autonomous materials science platforms. What is needed are agile auto-
mated platforms that 1) use semi-mechanistic models that provide quantitative
insight into underlying material attributes that drive behavior, 2) can automat-
ically and with low latency synthesize material with the desired attributes, 3)
integrate enough online characterization streams to inform all relevant model
components, and 4) use novel planning algorithms that use scientific criteria to
plan experiments to optimally evaluate mechanistic hypotheses.

The nascent field of scientific ML [20] will play a strong role in expanding
the capability of autonomous materials platforms to broader scientific inquiry.



Springer Nature 2021 LATEX template

autoSDC 11

One of the specific challenges to address in materials applications is the some-
times overwhelming complexity of interacting chemical and structural processes
that mediate materials behavior. Consider the simple additive GP model in
the TiNbTa vignette (Section 3.2). The model explicitly attempts to account
for grain size effects, but many other important structural characteristics are
absorbed by the non-parametric GP over composition. The crystal structure
of the primary phase and presence of secondary phases (and their structure,
volume fraction, size distribution, etc.) are expected to play a large role on cor-
rosion resistance and other important material properties. Similarly, additional
microstructural features like crystallographic texture and defect content and
character can heavily influence material properties. Some of the aspects of mate-
rials structure have well-developed theoretical frameworks, while others may
be treated in a largely empirical fashion. A major goal of materials-oriented
scientific ML research should therefore be to integrate many different materials
modeling types and approaches into a flexible ML framework that can bridge
the gaps between mechanistic insight and empiricism.

To actually parameterize such models in an online fashion, continued cre-
ativity and innovation in automated online synthesis capability is needed to
actually make suitable samples. This may constitute an active learning task of
its own. For example, a priori specification of alloy electrodeposition conditions
to obtain a targeted composition is a challenging task. There are competing
thermodynamic and kinetic factors at play, and while there is a rich landscape
of theoretical models, it is difficult to predict which mechanism will dominate,
especially in a previously unexplored system. This is further complicated by a
need to learn how to control microstructural factors like grain size, texture, and
phase distribution independently from alloy composition, to the extent possible.
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Fig. 7: Preliminary alloy electrodeposition studies. (a) and (b) show the
modeled laser reflectance and corrosion current of deposited Cu films after ten
active learning iterations; the dashed line shows a GP classification model for
deposit coverage. (c) shows measured vs expected electrodeposited NiCo alloy
composition as a function of solution composition and applied potential during
deposition.

Figure 7 illustrates these issues using electrodeposition data from (a) and
(b) Cu metal and (c) preliminary alloy electrodeposition studies. The goal
of the copper study is to learn the feasible processing envelope, depositing
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copper metal for 5 minutes at constant potential from 0.25 mol/L CuSO4 onto
a gold thin film. The GP confidence bound method is used to optimize (a)
the laser reflectance of the deposit (as in 2b) as a proxy for roughness, and to
minimize the average dissolution current over a two minute constant potential
hold at 100 mV vs Ag/AgCl reference in 1 mol/L H2SO4. The dashed line
shows the predictions of a GP classification model for deposition coverage
(sufficient/poor); the classification uncertainty is included in the active learning
acquisition policy.

The NiCo alloy deposition study in Figure 7c illustrates some of the
challenges in electrodepositing alloys with targeted composition. Alloy were
deposited at varying constant potential setpoints in solutions of 0.02 mol/L
CoSO4; 0.025 mol/L NiSO4 (blue), 0.02 mol/L CoSO4; 0.1 mol/L NiSO4

(orange), and 0.02 mol/L CoSO4; 0.15 mol/L NiSO4 (green). Alloy composi-
tions were determined offline though energy dispersive spectroscopy (EDS) line
scans across each deposit. The solid curves show expected alloy composition
based on a simple linear deposition current combination model based on single-
component potential-current calibration curves. The EDS data span nearly the
full binary composition range, but show substantial deviation from the naive
expectations, including near insensitivity to deposition potential at the lowest
solution concentrations. With online composition feedback, an active learning
system may be able to quickly learn the nonlinear interactions between solution
composition and deposition driving force to obtain desired alloy compositions.

In addition to developing innovative on demand synthesis technologies, for
maximum impact these platforms need to be tightly integrated with a diverse
array of materials characterization technologies. For example, in the NiCo
study, we not only want to learn to electrodeposit alloys with high quality
surfaces, but we may wish to try to independently control grain size, or target
specific structural phases (either stable or metastable). Conventionally, the
materials synthesis and characterization tools needed to produce all this data
are decoupled from each other, and temporal latency between steps is high.
Modularization and miniaturization are therefore a high priority for expanding
the scope and impact of automated materials science. Wherever modular
integration of critical characterization is not yet feasible (e.g., transmission
electron microscopy), adopting and improving batch active ML algorithms will
be important for integrating this information into research feedback loops[49].
Additionally, quantitative high throughput measurement of many important
materials properties presents yet another category of important scientific ML
sub-problems. For example, automated high throughput phase identification
and phase fraction analysis is still a major challenge, particularly in systems
where minor and trace levels of secondary phases can potentially play a large
role on effective material properties.

Finally, with interpretable scientific ML algorithms and the capability to
make and characterize samples on demand, advances in scientific planning
algorithms are ripe for high impact. An important first step might include
algorithms for planning experiments to identify which latent structural factor is
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driving material performance. This could be coupled with model visualization
and interrogation tools that allow scientists to formulate mechanistic hypotheses
in terms of available modeling components, and to reformulate mechanistic
and semi-mechanistic models throughout the data acquisition process. A more
ambitious task is to jointly learn how to synthesize materials with the necessary
chemical and structural attributes to adaptively perform a series of experiments
driven by a scientific model selection criterion. Similarly, automated planning
systems could use competing semi-mechanistic models to map out composition
and processing ranges where a particular physical mechanism is operative, even
when some model components need to be treated empirically.

5 Conclusion

General autonomous science systems face several challenges: learning to reliably
synthesize materials, mapping material specification and processing to structure
and properties, incorporating offline data streams, and incorporating prior
theoretical and data-driven knowledge. As the materials community surmounts
these challenges, closed-loop automated materials synthesis and characterization
platforms offer much more than a means of engineering materials properties
and performance through black-box optimization algorithms: they offer the
potential to develop and deploy new algorithms for generating and testing
scientific hypotheses.
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