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ABSTRACT 
Cooling rate is a decisive index to characterize melt pool 

solidification and determine local microstructure formation in 

metal powder bed fusion processes. Traditional methods to 

estimate the cooling rate include in-situ temperature 

measurement and thermal simulation. However, these methods 

may not be accurate or efficient enough under complex 

conditions in real-time. This paper proposes a method to 

approximate the melt pool cooling rate using temperature profile 

acquired via thermally-calibrated melt pool camera, and based 

on continuous pixel tracking result. The proposed method can 

estimate the temperature and associated cooling rate for every 

pixel immediately, which is potentially applicable for real-time 

process monitoring. This paper focuses on investigating image 

data processing, method development, and cooling condition 

analysis. This work presents the preliminary result of the cooling 

rate estimation under different conditions such as position, layer 

number, and overhanging.  

  

Keywords: Cooling rate, additive manufacturing, powder 

bed fusion, in-situ monitoring, coaxial melt pool monitoring 

 

1. INTRODUCTION 
Metal Additive Manufacturing (AM) enables the fabrication 

of parts with complex geometry and functional gradient material 

properties [1]. In contrast to traditional subtractive 

manufacturing methods, AM creates parts layer by layer that 

expands the options and space for design freedom [2]. During 

this process, for example, a laser powder bed fusion (LPBF) AM 

machine repeatedly uses a focused laser beam to melt and remelt 

powder material. Metal material on the build platform could 

undergo multiple times of melting and solidification cycles. The 

thermal condition history is a key to the fabricated part quality; 

and controlling material thermal dynamics is an ongoing area of 

research and development. Ideally, thermal sensors, such as 

thermal imagers or pyrometers, could provide direct temperature 

measurement. However, these sensors may not always available, 

or may not be able to resolve the spatial and temporal dynamic 

characteristics of LPBF. This paper presents an alternative 

cooling rate estimation approach based on melt pool monitoring 

(MPM) images that are captured by a high-speed coaxial camera. 

Temperature profiles are created from the time series images for 

individual pixels and fit with a cooling rate model. 

A core goal of AM process monitoring research is to attempt 

to build a correlation between in-process signatures to final AM 

part qualities, so that the quality may be predicted a-priori during 

the build. Spatial and temporal thermal conditions during the 

build compose a set of critical signatures that can be used to 

detect the anomaly initiation such as residual heat and lack of 

fusion [3,4]. Keyholing, which is another potentially harmful 

phenomena, can create porosity in the part. This observation is 

believed to associate with the overheating and can be identified 

from melt pool temperature [5].  

Keyholing or overheating may be predicted using monitored 

machine values such as galvo position and laser power, which 

determines the input energy density [6]. However, previous 

findings indicate the same energy input does not always result in 

the same size or temperature of the melt pool [7]. Different 

boundary conditions from the part geometry, scan history, 

material, or environment can affect the transient thermal 

dynamics. For example, the thermal conductivity of raw powder 

and solidified material can be very different [8,9].  

Cooling rate may be a key signature to investigate the 

solidification process, which directly relate to final part 

structure. For example, when laser re-scans a previously melted 

region, the instantaneous solid or liquid phase of that region 

determines whether this region is remelted, or the molten melt 

pool fuses with itself to effectively form a larger melt pool [10].  

It is hard to verify the abovementioned conditions without 

knowing the temperature of the melt pool. It is necessary to 
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develop a method which can accurately calculate the melt pool 

temperature. If applied to real-time control, the method cannot 

be computational costly.  

Coaxial monitoring utilizes optical beam splitters in the path 

of the laser to separate the laser wavelength from optical 

emissions from the melt pool [11]. This enables the melt pool to 

continually remain in the field of view of the monitoring sensor 

or camera throughout the build process. Various examples exist 

of coaxial melt pool imaging and in-situ temperature 

measurement methods [12-14].  Only a few examples of them 

are about thermally-calibrated coaxial melt pool imaging, where 

each pixel in the image can be ascribed a related temperature 

value [15].  However, doing so provides the advantages of 

coaxial imaging (e.g., continuous monitoring that covers the 

entirety of the build plane resolved at micrometer scale [16]), and 

of course, temperature-related signatures to characterize with 

key phenomena such as material solidification. 

Current methods that provide the surface temperature of the 

melt pool includes simulation and direct measurement. Finite 

element analysis (FEA) and computational fluid dynamic (CFD) 

methods can estimate the temperature based on scan path and 

thermal input [17,18]. These physics-based approaches usually 

request long computational time that can be difficulty applied in 

real-time [19]. Thermal imaging is another way to measure the 

surface temperature. However, the dynamic range of the camera 

may not observe all the wide range of temperatures [20]. All 

these situations push the research to deliver an affordable method 

to provide the surface temperature of the melt pool.  

This paper aims to develop a cooling rate model that enables 

estimating the temperature profile of the melt pool using coaxial 

melt pool imaging. Section 2 introduces the general workflow of 

tracking melt pool changes from series MPM frames and fitting 

cooling rate model from optical signals. Section 3 details the 

experimental design and data statistics. Section 4 presents the 

results of modeling and application. Section 5 has a brief 

summary and demonstrates how this method is used to analyze 

cooling rate under different build conditions. 

 
2. MOTIVATION AND METHOD DEVELOPMENT 
2.1 Motivation 

The authors’ previous work made a lot of effort in analyzing 

the optical melt pool images for anomaly detection, quality 

control, predictive modeling, and process optimization [21-24]. 

The raw images provide value to process monitoring by 

capturing optical signal of the melt pool in micro-meter/second 

scale [25]. However, the raw images have intrinsic limitation in 

that the pixel values do not directly represent a temperature 

measurement. A recent study from the co-authors breaks this 

barrier by calibrating the camera raw signal to radiance 

temperature using a custom light-emitting diode (LED) based 

thermal calibration source within the same LPBF testbed the 

laser-scanning experiments are conducted [26]. The progress 

encourages the authors to attempt a method to estimate the melt 

pool temperature against the time from optical MPM images. 

The 8 µm image resolution and 10,000 Hz frame rate meet the 

requirement for real-time monitoring. 

2.2 Fundamental Approach 
The fundamental idea of the proposed method is to track the 

temperature at the same location on the build plate from multiple 

continuous MPM frames. The first step is to build the correlation 

between individual MPM frame, without position and temporal 

information, to the machine coordinate system. Melt pool 

superimposition is a technique to accurately assign every pixel 

of the MPM image to the machine coordinate system based on 

data alignment and signal synchronization [Yeung et al, 2021]. 

Other terms such as AM data registration or data fusion utilize 

the same technique to extend the usage of superimposed melt 

pool data [27]. Details of related techniques can be found in the 

authors’ previous publications. The following content will limit 

the topics on cooling rate approximation and compare the 

differences under various conditions. 

Fitting the cooling rate using real MPM images requires two 

main steps. The first step is to build a complete pixel tracking 

history from continuous MPM frames. The tracking history 

denotes to record the value changes over the time of the pixels. 

This step relies on the truth that a position on the build plate can 

be covered by several continuous frames. Increasing the frame 

size and sampling rate or decreasing the scan speed can yield 

longer or more frequent tracking history. The second step is to 

fit the cooling rate model based on temperature-time tracking 

data of each overlapping or superimposed position. According to 

the thermal theory, this model will be monotonically decreasing, 

though noise may add some variance to the timeline. 

  
Figure 1. Graphical representation of the pixel tracking method 

Figure 1 shows the graphical representation of the pixel 

tracking history from 3 consecutive MPM frames. The frame on 

the top row superimposes a melt pool at the initial state. In this 

example, the selected pixel locates at (𝑥0, 𝑦0)  on the frame 

coordinate system. The labels f0 and t0 represent Frame 0 at Time 

0. The initial temperature 𝑇0  is calculated based on initial 

optical signal 𝐼0 . This study utilizes the Sakuma-Hattori 

equation as a regression model f to relate camera signal I to the 

temperature T based on the thermal calibration results [28]. The 

middle and bottom frames are the second and last times that 

captured the value of the same position. The laser scan direction 

is from left to right. While deploying constant scan speed and 

fixed frame rate, the distance between the two frames is fixed to 

∆𝑑. The dashed line indicates the three different pixels on those 
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frames actually point to the same position to the machine 

coordinate system. 

 

2.3 Build Pixel Tracking History 
The pseudocode of building the tracking history of all pixels 

in one melt pool is shown below: 

 

1. Represent the raw 120×120 MPM frame at 𝑡 = 𝑡0 in 

linear indices (All pixels 𝐴𝑡0 = {𝑝𝑡0
1 ,  𝑝𝑡0

2 …𝑝𝑡0
14400}) 

2. Select saturated pixels 𝑆𝑡0
= {𝑝𝑡0

𝑗 ,  𝑝𝑡0

𝑗+1 …𝑝𝑡0
𝑛 } (8-bit 

grayscale level 255) and create a mask 

3. Calculate the pixel temperature from grayscale using 

calibrated Sakuma-Hattori equation, excluding pixels 

under the threshold (to eliminate low intensity and noisy 

pixels) 

4. Save temperature of each pixel to profile {𝑇𝑡0

𝑗
} 

5. Find the position of same pixel 𝑆𝑡0  in next MPM frame, 

where 𝑡 = 𝑡0 + ∆𝑡 

6. If any 𝑆𝑡0 can be located on the new frame: 

5.1 Add 𝑇𝑡
𝑗
 to the temperature profile 

5.2 Repeat Step 4 

Else: 

    5.3 Stop 

 

2.4 Approximate the Cooling Rate 
After investigating all interested MPM frames, the tracking 

history can create a dataset with a complete temperature-time 

profile. However, conditions such as pixel position can affect the 

pixel tracking length. Usually, a longer time window, higher 

frequency, and larger frame size can include more melt pool 

thermal historical information. Higher data quality can thus 

reduce the model uncertainty. The longest tracking time depends 

on the maximum number of frames covering the same position 

without reducing the scan speed. One way to improve this 

condition is to increase the sampling rate and enlarge the field 

view of the camera. However, simply elevating these numbers 

may result in poor exposure and low resolution. A suitable model 

should balance these features other than simply adding more 

low-quality training data. Section 4 will investigate the modeling 

difference under different conditions in both data and physical 

perspectives.  

The following matrix shows the data structure of the 

temperature-time history of the pixels for cooling rate modeling. 

In this matrix, the rows are the pixel number, and the columns 

are the time. The element represents the temperature at timepoint 

i for pixel j. According to pixel position and frame size, the 

trackable time can differ from pixel to pixel. For pixels that 

cannot be tracked at a certain moment, the element has no value 

in the matrix and will not be included in the model fitting. 

 

 

 

 

 

 

 

 

 

 

The cooling rate model deploys two-term exponential 

regression model to fit the temperature and time based on 

Newton’s law of cooling.  

 

𝑇 = (𝑇0 − 𝑎)𝑒𝑏∆𝑡 + 𝑎              (1) 

 

Where T is the estimated temperature, 𝑇0  is the initial 

temperature, ∆𝑡  is time difference, and a and b are the two 

coefficients.  

 

2.5 Pixel Selection 
Generally, any trackable pixel on the MPM frame can be 

used to build the temperature profile. This section discusses the 

different pixel selection methods and the potential impact on the 

estimated cooling rate. The main idea is to select only those 

pixels with the same initial temperature and the most extended 

tracking history. The tracking begins with the pixels with the 

highest initial temperature to achieve the first goal. The saturated 

pixels would be the ideal starting point for building the 

temperature profile when referring to the original grayscale 

value. In that case, grayscale level 255 for 8-bit unsigned integer 

(uint8) would be a uniform start point for data points. The second 

goal can guarantee enough samples to fit the cooling rate model 

over time. For example, a pixel near the image edge will soon 

move out of the tracking window. It is too short to fit a cooling 

rate model for less than 3 data points. Combining with the two 

goals, the center of the melt pool, whose grayscale value is 

saturated at 255 (uint8), seems to be the ideal solution. 

 
Figure 2. Grayscale distribution of the melt pool. 

However, the saturated region of the melt pool is also the 

active region of the laser beam. Thus, the heat source directly 

working on that region can exceed the camera limitation. On the 

other hand, it indicates that pixels with the same grayscale value 

may have different temperatures obscured by the saturation. The 
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unsaturated pixels closer to the laser spot likely have higher 

thermal gradients and MPM pixel values. This condition can 

produce false initial temperature values that further impact the 

cooling rate estimation. This research proposes three selection 

methods to investigate the differences in tracking options and 

deliveries. 

Figure 2 demonstrates the conceptual melt pool captured by 

the MPM image. 255 is the highest grayscale value derived from 

the optical signal. However, temperature over this threshold 

would not provide a higher grayscale value. Thus, the melt pool 

can be divided into four regions. The laser spot has the highest 

energy density. Though the entire saturated region (yellow) has 

the same grayscale value of 255, the orange region is more likely 

to be oversaturated since it is closer to the laser spot. The longer 

the distance from the laser spot, the lower the chance of 

oversaturated measurement. The grayscale value of the blue 

region is less than 255, which may accurately reflect the pixel 

temperature. The solid line is the melt pool outline, which is 

determined by the melting temperature. The dashed line marks 

the margin of saturated and non-saturated regions. The pixels on 

the margin are least likely to be oversaturated.   

To identify the potential oversaturation impact, the research 

selects the pixels on three regions: 1) all saturated pixels in the 

melt pool; 2) saturated pixels on the front of the melt pool nearest 

the laser spot; 3) saturated pixels nearer the rear of the melt pool. 

 
Figure 3. Comparison of different pixel selection method. (a) is 

the original MPM image. (b) shows all saturated pixels. (c) is (b) 

after remove the pixels close to the laser spot. (d) shows the 

saturated pixels on the melt pool edge near the tail. 

Figure 3 shows the raw MPM image (a) and the pixels 

selected by different methods. (b) selects all the pixels whose 

grayscale value is equal to 255. (c) filters out the pixels close to 

the laser spot, where those pixels are likely to be oversaturated. 

(d) further removes more pixels and only maintains those on the 

outline near the melt pool tail. Those pixels are assumed to be 

the marginal pixels that would effectively have values slightly 

above 255 if they were not saturated. Note that the last method 

automatically removes the pixels on the front edge since they 

may be entering the heating process during the laser scanning.   

Figure 4 shows the tracking history for a set of pixels in one 

melt pool. For the demonstrative purpose, this figure plots the 

initial grayscale of the tracking pixel from Frame 1 to Frame 7. 

The process tracks 96 saturated pixels starting at 255. There are 

28 pixels out of tracking after 6 frames. Original Frame 1 to 3 

are shown on the top. The red spot marks one tracking pixel 

captured at different time. 

 
Figure 4. Tracking history (grayscale-frame) for a set of pixels 

of one melt pool. Colored lines represent the grayscale value of 

individual pixel on each frame. This example selects one pixel to 

show its track in three frames. 

3. EXPERIMENT AND DATA 
3.1 AMMT 

The Additive Manufacturing Metrology Testbed (AMMT) 

at the National Institute of Standards and Technology (NIST) is 

the primary platform developed to study powder bed fusion 

processes. AMMT is a fully customized metrology instrument 

that enables flexible control and measurement of the L-PBF 

process [16]. It is equipped with the capability of precise laser 

beam control and high-rate in-situ monitoring, including a 

coaxial camera for melt pool imaging. Using custom-developed 

scan strategy design software, the digital commands that AMMT 

uses set precise laser beam position and laser beam power at 

100 KHz, and synchronously triggers the MPM camera every 

100 µs (or 10 KHz) [29]. This provide a way to superimpose the 

MPM to the position, so it is easy to track the pixels. 

 

3.2 Experiment  
For this study, an experiment is designed to create parts with 

multiple features such as scan direction, overhang, and varying 

laser power. This experiment creates four nominally identical 

parts within the same build on a wrought nickel alloy 625 

(IN625) substrate cut to 100 mm x 100 mm x 12.5 mm. All four 

parts have the same geometry: a bounding box 5 mm x 9 mm x 
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5 mm, a 45 overhang feature and a cylinder cavity. Later result 

of overhang cooling rate is based on the MPM frames on cylinder 

cavity. The powder material is mixture of recycled and virgin 

IN625 powder. The build consists of 250 layers at 20 µm per 

layer. The build employs a constant speed (800 mm/s) constant 

power (195 W) stripe scan pattern with skywriting for infilling 

area. Pre-contour scan uses laser power 100 W. The MPM frames 

of pre-contour are used to fit the cooling rate of low laser input. 

Detailed experiment descriptions can be found in Ly et al, 2017 

[30]. The general scan direction is designed to rotate 90 every 

layer. Next session also fits cooling for opposite directions. 

 

3.3 Data  
Each layer, according to the scan patten and infilling area, 

collects 5000 to 6000 MPM frames using constant camera 

settings for frequency and exposure time. The frame rate for this 

experiment is set to 10,000 kHz (100 µs/frame). MPM is 

120 pixels × 120 pixels where each pixel is 8 μm × 8 µm. That 

gives each frame a 0.96 mm × 0.96 mm rectangular monitoring 

region. The 800 mm/s scan speed is equal to 10 pixels per 100 

µs. Combining everything together, one pixel location can have 

up to 7 frames covering. On the other hand, the tracking history 

is constructed by 7 data points for each pixel, spanning 700 µs. 

 
4 RESULTS  

This section presents the preliminary result for the fitted 

cooling rate under different circumstances. Each circumstance 

has identical tracking history since the MPM frames are 

different. Section 4.1 compares the cooling rate models of the 

three tracking methods fitted by the same dataset. Section 4.2 

presents a more detailed comparison of 11 tracking groups under 

different conditions. 

The Sakuma-Hattori equation for calculating the 

temperature is adopted from the calibration result on the same 

testbed [28]. 

𝑇𝑎𝑝𝑝(𝐼)  =  
𝑐2

𝑎 𝑙𝑛(
𝑐1
𝐼
−1)

−
𝑏

𝑎
− 273.15         (2) 

Where the fitted coefficients a = 0.2971, b = 464.2328, 

c1=5.1201e+07, and the second radiation constant c2=14338 

µm/K.  

 

4.1 Fitting Cooling Rate by Different Tracking Method 

This section builds the tracking history from one continuous 

scan with 112 MPM frames. 1300 saturated pixels construct the 

initial status. To avoid repeated pixels, 16 frames were selected 

as the starting points. The initial temperature T0 is 2117 °C 

calculated from Equation (1). Figure 5 shows the measured data 

and fitted cooling rate model. The fitted cooling rate model is 

shown in Equation (3). The final tracking history is built from 

1301 pixels. 

 
Figure 5. Cooling rate curve fitted by all saturated pixels. Data 

points are the temperature of all tracking pixels for each 

timestep. 

𝑇 = (𝑇0 − 845.8421)𝑒−0.0203∆𝑡 + 845.8421     (3) 

Data without the pixels close to the laser spot fit a different 

cooling rate. Figure 6 shows the cooling rate fitted by only the 

pixels far from the laser spot. The model is shown in Equation 

(4). It involves fewer pixels to fit the model. Finally, the model 

investigates a total of 727 pixels. 

 
Figure 6. Cooling rate curve fitted by saturated pixels far from 

the laser spot. 

𝑇 = (𝑇0 − 974.6053)𝑒−0.0263∆𝑡 + 974.6053    (4) 

The last cooling rate model uses the least amount of pixel 

tracking history. Only 252 pixels were survived. 80% of the 

pixels not on the melt pool edge were eliminated. Equation (5) is 
the result, where the plot is shown in Figure 7. 
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Figure 7. Cooling rate curve fitted by the pixels on the melt pool 

edge. 

𝑇 = (𝑇0 − 1010.1550)𝑒−0.0330∆𝑡 + 1010.1550  (5) 

Figure 8 plots the three cooling rate curves. The comparison 

shows that the cooling rate is steeper after removing more 

potential oversaturated pixels. Saturated pixels display lower 

temperatures than what is real. This can be the reason that makes 

the curve moderate. 

 
Figure 8. Comparison of the cooling rate models fitted from 

different tracking methods.  

4.2 Cooling Rate Comparison under Multiple Conditions 

Ideally, the cooling rate should be consistent for the same 

material under similar conditions. This section compares 14 

tracking groups with unique characteristics. Each group tracks 

only corresponding MPM frames. Unless explicitly stated, most 

groups scan horizontally from left to right using 195W laser 

power (Table 1). Group 1 to 3 are three tracks from the same 

layer at early, middle, and late time to investigate the cooling rate 

changes within one layer. Groups 4 to 6 divide MPM frames 

from the same melting track into three sub-groups: beginning, 

middle, and end. It aims to compare the cooling rate changes in 

one continuous melting track. Group 7 to 9 have different scan 

directions. Group 10 to 12 are the tracks at the same location but 

different layers. Group 13 is the MPM frames on the pre-contour 

that laser power equal to 100W. Group 14 tracks the frames 

located on the overhang region. The previous study shows that 

overhang can significantly affect the melt pool formation without 

solid support underneath [31]. 

Table 1. Tracking groups with unique characteristics. 

 Characteristic Layer Sample size 

1 Early-track 2 112 

2 Mid-track 2 112 

3 Late-track 2 112 

4 Beginning of one track 2 30 

5 Middle of one track 2 30 

6 End of one track 2 30 

7 Horizontal right to left 2 112 

8 Vertical bottom to top 3 61 

9 Vertical top to bottom 3 61 

10 Layer 50 50 105 

11 Layer 150 150 105 

12 Layer 250 250 105 

13 Pre-contour (100W) 2 100 

14 Overhang 226 30 

Figure 9 annotates the groups on Layer 2. Arrows represent 

the beam moving direction. The scan starts from the top and uses 

horizontal skywriting to the bottom after the pre-contour. This 

layer collects a total of 5969 MPM frames. 

 
Figure 9. Scan pattern and frame tracking positions of Layer 2. 

Arrow represents the laser scan direction. Yellow and red blocks 

mark the MPM frames positions.  

Figure 10 shows the result of the 14 groups listed in Table 

1. In general, the cooling rate for most groups does not exhibit 

significant differences. Black curves of Groups 4 to 6 are close 

to each other. However, the cooling rate is gradually decreased 

from Group 1 to Group 3. Similarly, scan direction also affects 

the cooling rate where Group 9 is clearly lower than Group 7. 

Group 10 to Group 12 shows that the layer number can change 
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the cooling rate. This may be correlated to geometry and building 

time. It is no surprise that the pre-contour group has the fastest 

temperature drop since the laser power is as low as 100W. Group 

14, overhang, has the highest temperature after 600µs. This can 

be caused by the entirely different boundary conditions in heat 

transfer. 

 

 
Figure 10. Cooling rate comparison of the 14 unique groups. Gray region is the melting point of IN625. 

Note, all result presented in this section is based on edge 

tracking method. Additionally, Table 2 lists the coefficients of 

the fitted model for each group. 

Table 2. Coefficients of fitted cooling rate model, Equation (1) 

  a b 

1 988.4643 -0.0313 

2 1177.3986 -0.0307 

3 578.6046 -0.0143 

4 1084.5639 -0.0384 

5 1008.2871 -0.0338 

6 970.0933 -0.0306 

7 1121.0911 -0.0333 

8 1338.6911 -0.0438 

9 1350.4726 -0.0381 

10 1165.3002 -0.0633 

11 1444.9482 -0.0610 

12 1133.9792 -0.0324 

13 1094.8711 -0.0291 

 

5 DISCUSSION 
The proposed method is a new attempt to use the MPM 

image sensor data to approximate the cooling rate on the 

micrometer level. The paper shows the promising result and 

potential application of real-time monitoring and control. 

However, future research needs to collect additional evidence to 

verify the result physically. For example, the method can be more 

convincible if infrared camera data can provide an additional in-

situ temperature measurement during the build. Moreover, future 

research should compare the cooling rate under other conditions 

such as scan direction, powder material, and overhang intensity. 

The authors also noticed the potential applications of this 

method in AM data fusion [31]. The temperature profile of 

individual melt pool from the cooling rate model can extend to 

layer and part level. Estimation of the layerwise temperature 

profile is possible, potentially analyzing the residual heat and 

verifying the thermal simulation models [28]. 

Figure 11 shows the temperature change of the melt pool 

estimated from the cooling rate models. The melting point of 

IN625 is between 1250°C to 1390°C [28]. All models predict 

that 600 -700 µs is enough to solidify the melt pool completely. 

This information helps analyze the part's remelting conditions 

[32]. If laser beam revisits an area while still melting, the newly 

created melt pool is more likely to fuse the liquid metal together, 

resulting in an over-fusion issue. However, the situation would 

be different if the laser revisit occurs while the previous melt 

pool completely cools down. Instead of fusion, remelting 

happens and binds the AM part together. 

 

6 SUMMARY 
This study develops a method to estimate cooling rate by 

tracking pixels in MPM frames. The method requests no 

additional cost for the AM machines equipped with coaxial melt 

pool cameras. The only prerequisite is the calibration from an 

optical signal to temperature. This is important to capture the 

correct temperature-time information for fitting the cooling rate 

coefficients. 
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Figure 11. Temperature profile of the melt pool based on three tracking methods. (a) is the original temperature distribution calculated 

from raw MPM image. The cooling rate models estimate the temperature change over the time. They show the melt pool tend to solidify 

after 600 µs.  

In general, fitting the cooling rate using this method is fast 

and reliable. There is no statistical violation against thermal 

physics. Another advantage of this method is that the fitted 

cooling rate model can estimate the temperature profile with the 

exact resolution as an MPM image. This is important since the 

detailed temperature profile of the melt pool can potentially 

contribute to many in-situ process analyses and real-time 

control utilities. 

The article also presents the investigation of the cooling rate 

under different conditions. Based on the preliminary result, 

pixels on the melt pool edge can remove most oversaturated 

pixels. It also shows the contour scan using lower laser power 

yields the steepest temperature decrease of the pre-contour melt 

pool. On the other hand, the melt pool on the overhang region 

tends to maintain the temperature above the melting point longer 

than any other situation. The findings indicate that the energy 

input and boundary conditions can be critical factors to affect the 

melt pool cooling rate. Future work would focus on developing 

new experiment to verify the fitted cooling model based on the 

same material and process parameters. 
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authors and do not necessarily reflect the views of NIST or any 
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