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Abstract—In industrial applications, the mechanical wear 

on ball screw components can lead to a loss of positioning 
accuracy that reduces the operational reliability and 
reproducibility of production systems. Existing monitoring 
solutions are impractical for real industrial settings or are 
unable to provide quantifiable estimates of the magnitude 
of degradation. To address this, the proposed method 
strategically applies a two-phase data collection with 
inertial sensors to perform both health monitoring and fault 
magnitude estimation. The first, online phase offers a 
practical, non-intrusive means of monitoring the ball screw 
degradation during normal production operations. As 
deemed necessary by the first phase, the second, offline 
phase is implemented outside the production routine to 
physically quantify the detected fault. The combined 
methods offer a balanced approach that provides detailed 
information while still considering the requirements of a 
production environment. To validate the performance of 
this proposed strategy, a run-to-failure experiment was 
performed on a linear axis testbed. Validation results 
indicate that the method is a pragmatic and promising 
approach for incipient fault detection and absolute 
backlash error measurement in a linear axis. 
 

Index Terms—Backlash Estimation, Ball Screw, 
Correlation Analysis, Health Monitoring, Inertial 
Measurement Unit 

I. INTRODUCTION 

ball screw, used within a linear positioning system, is a 
complex, high-precision component used to convert rotary 

motion into linear motion. Ball screws have wide industry 
applications, especially as feed drive systems in computer 
numerical controlled (CNC) machines and industrial robots. In 
many high-precision manufacturing systems, the functioning of 
a ball screw can profoundly affect the operation accuracy and 
reproducibility of the entire system. Up to 19% of machine tool 
failures can be related to degradation of the ball screw [1, 2]. In 
semiconductor manufacturing processes, imprecision in a 
robotic arm operation due to a degraded ball screw can cause 
expensive damage to wafer products. Therefore, it is critical to 
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develop a system that can detect the ball screw degradation at 
an early stage and predict its future degradation trajectory with 
actionable intelligence. 
 The linear positioning system, also known as a linear axis, 
could have multiple failure modes [3]. Mechanically, the entire 
system undergoes cyclic loading as the loaded carriage is 
moved back and forth. One of the most common but critical 
failure modes is the loss of rigidity of the system due to usage, 
also known as preload loss, occurring mainly between the ball 
screw and the ball nut [4-8]. When assembling a linear axis 
system, oversized balls are typically used in the ball nut and the 
trucks to eliminate internal clearances and increase rigidity and 
motion precision. This act creates an initial preload between the 
ball screw and the ball nut or between the trucks and the rails. 
However, mechanical wear will typically cause the oversized 
balls to progressively become small enough that preload is lost, 
causing mechanical backlash and resulting in a reversal error at 
a position [9]. Such changes in the linear axis can eventually 
lead to the loss of positioning accuracy, resulting in non-
conforming behavior. 
 Multiple methods have been developed to monitor preload 
loss and backlash. However, the methods either need offline 
data collection, require extensive geometrical parameters of the 
linear axis that may be difficult to procure in industrial 
applications, or cannot estimate the magnitude of backlash, 
which is important to evaluate the performance accuracy 
against the acceptable tolerances to ensure operation quality. 

 
 
 
 
 
 
 
 

Ball Screw Health Monitoring with Inertial 
Sensors 

Vibhor Pandhare, Marcella Miller, Gregory William Vogl, and Jay Lee 

A

 
Fig. 1. Overview of the proposed two-phase methodology for 
practical monitoring of ball screws. 
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Furthermore, offline instrumentation or cutting tests that 
estimate backlash are often utilized too late, after ball screw 
errors have already impacted the production of components. 

Thus, a practical two-phase approach, as presented in Fig. 1, 
is proposed to monitor ball screw health using inertial sensors 
and forms the core novelty of the work. The first phase is a 
method for fault detection in the ball screw using vibration 
sensors and controller signals. This phase of the methodology 
is used to monitor ball screws from the beginning of use until 
an incipient fault is detected. Once a fault is detected, the 
second phase of the methodology is used to quantify the fault 
by estimating the absolute backlash error using an inertial 
measurement unit (IMU). The estimation of the backlash 
directly tracks the impact of the fault on the operation, allowing 
the user to schedule maintenance or replacement as needed. The 
proposed methodology is validated on an experimental test bed 
in which a linear axis is run until a backlash failure mode is 
reached.  

The remainder of the article is organized as follows. Section 
II presents the literature review. Section III describes the 
experimental test bed and data acquisition procedure. Sections 
IV and V describe the Phase I and Phase II methods and discuss 
corresponding results for the experiment. Section VI concludes 
the article. 

II. LITERATURE REVIEW 

In a linear positioning system, preload loss results in gradual 
degradation of performance and can lead to excessive vibration 
and the loss of operation accuracy in the form of backlash or 
reversal error [6]. Since this fault mode compromises the 
carefully selected initial rigidity of the system which enables 
precise, repeatable motion to occur, close monitoring of the 
degradation trend has been an increasingly popular topic in the 
literature. 
 Tsai, et al. [5] proposed a method to determine the onset of 
preload loss in a ball screw feed drive system by monitoring the 
change of ball pass frequency. Other studies also suggest 
monitoring shifts in the frequency spectrum to estimate preload 
loss or backlash. [7, 10] use vibration, position, and current 
information to quantify the continuous relationship between 
axial natural frequency and preload for real-time reporting. Xi, 
et al. [11] estimate both the preload loss and backlash increase 
by tracking the shift in the resonance frequency. Feng and Pan 
[12] exploits the relationship between peak rotational frequency 
and changes in the preload, and Benker, et al. [13] investigate 
the influence of preload level on the behavior of the transfer 
function. While these methods show promising relationships 
between the degradation and the frequency spectrum, some of 
the research endeavors do not investigate the development of 
preload loss over long-term operation. Moreover, they only 
detect the onset of preload loss while neglecting to quantify the 
extent of degradation and to track the loss severity that can be 
leveraged for prognostics. 

Developing dynamic, physics-based models is also a 
common approach for monitoring. The work in Ref. [7, 10] 
relies on a complex model representation of ball screw 
dynamics to implement preload tracking. Wang, et al. [14] use 
a preload degradation model to explore the effects of feed rate, 
external load, and machining errors on the rate of preload loss. 

In Ref. [15], the Hertz contact theory and Archard wear model 
are used to build load distribution and velocity variation models 
to predict the preload values. Although these approaches 
typically produce accurate results, the use of such dynamic 
equations requires prior knowledge of the ball screw’s 
mechanical parameters, such as various stiffness coefficients 
and Young’s modulus, and geometric properties [7]. In practice, 
these parameters are difficult to determine beforehand and may 
vary over different systems due to manufacturing and assembly 
variations and errors. 

Outside of these popular categories, many other approaches 
have been documented. The method proposed by Feng and Pan 
[16] uses support vector machine (SVM) learning to classify the 
severity of preload degradation based on vibration and 
temperature data. Huang, et al. [17] similarly use an SVM on 
features extracted from vibration, current, speed, and encoder 
signals. Denkena, et al. [18] investigated the capability of 
sensor fusion based on principal component analysis to monitor 
preload loss of single nut ball screws. Pandhare, et al. [19] 
studied cross-sensor domain adaptation for diagnosing discrete 
variations in preload level and backlash. More experiments 
have traced preload loss through the measure of frictional 
torque [20] or through a finite element method-based procedure 
[21, 22]. Benker and Zaeh [23] employ a convolutional neural 
network (CNN) to identify different fault conditions and 
preload levels. These methods are useful for analyzing the 
preload level and backlash, but often attempt to treat the 
degradation as a discrete rather than continuous condition; the 
issue is framed as a classification rather than a health 
monitoring problem.  

Expanding the investigation to encompass other intelligent 
machine learning methods, deep learning is often applied for 
the health monitoring of industrial assets, and many 
improvements have been made to boost model performance. 
The maximum mean discrepancy metric is embedded in a CNN, 
and cross-domain classification for discrete ball screw health 
conditions is performed by Azamfar, et al. [24]. Li, et al. [25] 
also investigated the cross-domain performance of deep neural 
networks and proposes that class-level domain adaptation be 
used in conjunction with domain-level adaptation for improved 
results. Shao, et al. [26] use a modified CNN to perform fault 
diagnosis under the assumption of limited training data. Zhao, 
et al. [27] and Zhao, et al. [28] sought to improve the 
generalization capabilities of the trained model by introducing 
additional constraints and loss functions into the network. 
Similarly, Zhao, et al. [29] add an adaptive focal loss function 
to their variational auto-encoder to address the problem of an 
imbalanced class distribution condition in the training data, and 
Zhao, et al. [30] focus on achieving fault diagnosis with only 
limited labeled data. While all the proposed methods 
outperform other state of the art algorithms for the fault 
diagnosis tasks, the deep learning solutions require proper 
hyperparameter selections in order to produce good results, and 
hyperparameter optimization can be difficult to achieve. These 
advancements in the deep learning-based methods offer 
extremely high accuracy for fault diagnosis tasks, but they are 
less used for prognosis. 

Rather, to quantify the fault severity, direct methods of fault 
measurement were established [31]. However, these are 
typically manual, time-consuming processes that interrupt 
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production and increase machine downtime. Manufacturers 
need automated and efficient procedures to estimate the 
degradation with minimal disruptions to production. Towards 
this end, the hybrid data- and physics-driven models in 
Refs. [32] and [33] successfully employ a particle filter-based 
approach to estimate the system backlash and use the resulting 
values for further remaining useful life prediction. Considering 
data-driven approaches, Vogl, et al. [34] developed a method to 
use data from an IMU for identification of changes in the 
translational and angular errors due to axis degradation. While 
the developed method was evaluated for estimation of wear on 
the rails of the ball screw guideways [35], backlash remains 
largely unaddressed by the purely data-driven methods.  

Therefore, to overcome the identified gaps in the literature 
and motivated by the challenges of preload loss and backlash 
tracking, this paper presents a practical two-phase approach to 
monitor ball screw health using inertial sensors and offers the 
following contributions: 
1) A preselected set of features for monitoring the continuous 
preload loss degradation trend via PCA-T2 is provided. It is 
proposed that the features can be used to assess the health of 
new systems. 
2) New data-driven methods for quantifying the system 
backlash using IMU data are described. These methods require 
minimal knowledge of nominal ball screw parameters. 
3) The proposed methods are combined to provide a practical, 
non-intrusive approach to linear axis monitoring that can be 
deployed in a real industrial setting. These methods are then 
applied to an experimental run-to-failure dataset. 

III. EXPERIMENTAL TEST BED AND DATA ACQUISITION 

SETUP 

Fig. 2 shows the linear axis experimental testbed used for this 
study. The linear axis was screwed on top of a concrete slab 
weighing approximately 1700 kg (3800 lbs.). A ball screw 
rotates via a motor to move the carriage nominally parallel with 
the X-axis. Four trucks with ball bearings contact two rails to 
constrain the carriage to move in a nominally linear manner 

along the guideway for a total possible travel of 450 mm. The 
carriage will run back and forth continuously for months to 
undergo degradation, and to speed up this process, the carriage 
is loaded with steel weights totaling 100 kg (220 lbs.). Two 
triaxial accelerometers with a nominal sensitivity of 100 mV/g 
are attached to the ball nut, and an IMU, composed of a triaxial 
accelerometer and a triaxial rate gyroscope, is attached on top 
of the steel weights. The analog accelerometer in the IMU has 
a bandwidth from 0 Hz to 300 Hz (corresponding to the half-
power point), a nominal sensitivity of 2000 mV/g, and a noise 
output of 7 µg rms/√Hz, while the digital rate gyroscope in the 
IMU has a half-power bandwidth from 0 Hz to 200 Hz and a 
noise output of 35 (µrad/s)/√Hz. In addition to controller data, 
data from these twelve inertial sensors is captured during axis 
degradation. 

The new linear axis was run to failure (RTF) with a data 
collection strategy resembling real-life operation and 
monitoring. As proposed, data collection for monitoring ball 
screw health was performed in two phases. The details of the 
Phase I and Phase II data collection procedures are explained 
below in detail in Section A and Section B, respectively. A 
summary of the information in these two sections is shown in 
TABLE I.  

 

A. Phase-I Data Collection Routine 

 The linear axis was moved back and forth continuously, day 
and night, with a centered 220-mm-long stroke (movement 
between 110 mm and 330 mm relative to the zero position), 
which is about half of the total possible travel. The axis moves 
in a positive and negative direction at 400 mm/s. There was a 
one second pause after each direction of movement. This 
continuous movement represented the regular operation of a 
linear axis in industry. Data collection begins after an initial 
warmup operation period of nominally 2 h to avoid undesirable 
transient behavior. In this first phase, 10 s of data was collected 
every 30 minutes with a sampling rate of 10 kHz. This 
collection mode represents data collection for online incipient 
fault detection. Eight signals were collected in total: controller 
speed, controller torque, and X-axis, Y-axis, and Z-axis outputs 
from the two triaxial accelerometers on the ball nut.  

B. Phase-II Data Collection Routine 

Every three or four days, the first phase is temporarily 
interrupted by the second phase of data collection. In this 
second phase, the axis is moved back and forth with a full stroke 
of 450 mm. Each run consists of the axis moving back and forth 
at a slow speed (20 mm/s), then at a moderate speed 

TABLE I 
DATA ACQUISITION SUMMARY 

 Phase I (RTF Data) Phase II (IMU Data) 

speed(s) 400 mm/s 20, 100, 500 mm/s 
acceleration 4,087.44 mm/s2 19,600 mm/s2 

xstart 110 mm 0 mm 

xend 330 mm 450 mm 

dwell time 1 s 10 s 
acquisition method 24/7 (except during 

IMU runs) 
90 runs twice a week 

acquisition frequency 10 s every 30 min. continuous 

 
 
Fig. 2. (a) Linear axis with an IMU on the steel mass and (b) detail 
of sensor location of two triaxial accelerometers on the ball nut. 
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(100 mm/s), and then at a fast speed (500 mm/s). Ninety runs 
are performed in this second phase. Due in part to the 10s dwell 
time in between each of these motions, data collection occurs 
over a period of 3 h. IMU data is acquired for each run at a 
sampling rate of about 1613 Hz for the triaxial accelerometer 
and a sampling rate of about 1000 Hz for the triaxial rate 
gyroscope. This represents the offline monitoring procedure for 
estimating the magnitude of backlash in the ball screw motion. 
It is important to note that, for industrial applications, Phase II 
is proposed to be performed after a fault has been detected using 
the Phase I method, but for validation purposes, Phase II is 
performed right from the beginning of the experiments.  

C. Overall Data Collection Routine 

This two-phase experimental data collection was repeated 
until the ball screw reached an ultimate failure point of greater 
than 10 µm, per manufacturer guidance. Throughout the 
experiment, no lubrication was applied to the ball screw. A 
timeline of key events that occurred during the experiment is 
shown in TABLE II. The experiment was active for days 0 
through 38, 116 through 255, and 377 through 574. During this 
time, the ball screw accumulated 8693 operation hours. For 
days 38 through 116 and days 255 through 377, the experiment 
was paused due to extenuating circumstances. These pauses did 
generate minimal short-term thermal effects on the data 
immediately after the experiment was resumed. To account for 
a fully cooled system, the nominal 2h system warmup time for 
Phase I data collection was adjusted; however, since the 
proposed method is developed to track the long-term, 
irreversible effects of physical damage, these thermal 
influences did not have any effect on the overall results.  
 

 Periodically when switching from the first to the second 
phase, an additional step is taken to acquire backlash 
measurements that track the degradation of the axis over time. 
A dial indicator with a gradation of 12.7 µm is used, and sub-
gradation measurements were estimated by eye. The lever of 
the dial indicator is set to rotate in the XY plane and is 
positioned so that its tip is almost touching the steel weights on 
the ball screw carriage. Once the dial indicator is in position, it 
is fixed via a magnetic base to the testbed base. The ball screw 
is then commanded to move successive fixed distances with an 
interval of 1 µm while dial indications are measured, from 
which the position of first contact by the lever of the dial 
indicator is determined by human inspection. This procedure is 
then repeated multiple times in both positive and negative 
directions, except that for the negative direction, the position of 
last contact is determined. The difference of the two positions 
(the first contact for the positive-direction motion, and the last 
contact for the negative-direction motion) for the repeated 

measurements is used to obtain an average reversal error or 
backlash value.  

IV. PHASE I - ONLINE INCIPIENT FAULT DETECTION AND 

FAULT MAGNITUDE TRACKING 

Vibration spectrum analysis and motor torque information are 
used to detect deviations from the healthy behavior of the ball 
screw under fixed operating conditions. A round of data 
collection in Phase I consists of multiple instances of the eight 
signals collected in a 10 s interval as described in the previous 
section. For each round, ten instances are selected, and each 
undergoes data preprocessing and segmentation, as presented in  
Fig. 3, to extract signal profiles at specific moments from the 
continuous back-and-forth motion. The speed signal is used as 
the reference to extract a steady-state segment of the 
accelerometer and torque signals as well as a transient segment 
of the torque signal. For every steady-state segment in a sample, 
a Hanning window is applied and the power spectral density 
(PSD) is calculated. Finally, the PSDs of all ten segments are 
averaged to create one representative PSD for each of the data 
collection rounds. Sample torque and accelerometer PSD 
values at ta = 858.5 h and tb = 8693 h of operation are shown in  

Fig. 4. The figure also shows three frequencies of interest 
(dotted lines) as well as the amplitudes of each PSD 
corresponding to the rotational frequency of 40 Hz (dashed 
lines). X1(X2), Y1(Y2), and Z1(Z2) are the X-, Y-, and Z-axis 
accelerations for the first(second) triaxial accelerometer on the 
ball nut. 

 
From the PSD of each of the seven signals, three features are 

extracted: the amplitudes of the PSD at the rotational frequency 
and the first two harmonics (80 Hz and 120 Hz). The energy of 
each PSD between 0 Hz and the 10th harmonic (400 Hz) is 
calculated for the six accelerometer signals. Time domain 
features (skewness and kurtosis) are extracted from the ten 
instances for steady-state segments of all accelerometer signals, 
and for both steady-state and transient segments of the torque 
signal. The ten resulting values for each feature type are 
averaged to generate the final feature values for the sample. 
Similarly, from the transient segments for the torque signal 

TABLE II 
EXPERIMENT TIMELINE 

Day Ball Screw Operation Hours Event 

0 0 start 
38 855.5 pause 
116 855.5 resume 
255 4033 pause 
377 4033 resume 
574 8693 end 

 

 
 

Fig. 3. An overview of Signal Preprocessing and Feature Extraction 
for Monitoring Methodology Phase I. 

Phase I Data 
Collection

ROUND 1

ROUND 2

…

ROUND N

Save avg. M transient segments 
from ROUND 1 for correlation

Select First M
Valid Instances 

from ROUND
DATA SEGMENT 1
DATA SEGMENT 2

…
DATA SEGMENT M

Feature Vector
1 X F

Extract Frequency 
Domain Features

1X, 2X, 3X HARMONICS,
ENERGY IN [0 10X] HZ

Segment Data
STEADY STATE 1
STEADY STATE 2

…
STEADY STATE M

Segment Data
TRANSIENT 1
TRANSIENT 2

…
TRANSIENT M

Only Torque

Extract Transient 
Features

Avg. M feature values
KURTOSIS, SKEWNESS, 

CORRELATION

All Signals

Compute Power 
Spectrum

Avg. M power spectrums
STEADY STATE * HANN.

Extract Steady 
State Features

Avg. M feature values
KURTOSIS, SKEWNESS

All Signals

Extract Steady 
State Features

Avg. M feature values
MEAN, STANDARD

DEVIATION

Only Torque

M

M

Feature Pool 
N x F

FEATURE VECTOR 1

FEATURE VECTOR 2

…

FEATURE VECTOR N

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TII.2022.3210999

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on March 24,2023 at 17:37:09 UTC from IEEE Xplore.  Restrictions apply. 



  Pandhare et al.: Ball Screw Health Monitoring with Inertial Sensors 

 

 

 

5

only, the correlation with the average transient torque segment 
from the first round of data collection is extracted. In total, 46 
features are extracted and normalized to a mean of zero and a 
standard deviation of one.  
 

 
 

To select appropriate features for fault detection out of the 
extracted 46 features, the Fisher criteria [36] is used. A 
reference experimental dataset [6] with known discrete ball 
screw conditions, including a backlash fault, is used to learn 
useful features for fault detection. The same process is followed 
for this dataset to extract the same set of 46 features. Features 
corresponding to the healthy samples and faulty samples with 
backlash error are assigned binary labels of healthy and faulty, 
respectively. The Fisher score for each feature is then calculated 
as 

 
where 𝜇ு and 𝜇ி indicate the mean of the feature for the healthy 
and faulty samples, respectively, while 𝜎ு

ଶ and 𝜎ி
ଶ indicate 

variances for the same [36]. Fig. 5 shows the Fisher scores and 

their corresponding normalized cumulative sum. A threshold of 
90% of the cumulative sum is used to select the features for 
fault detection. It can be observed that the highlighted ten 
features constitute 90% of the total discriminating power of the 
total feature set and are thus selected. 

Principal component analysis with Hotelling’s T2 statistic 
(PCA-T2) [37, 38] is used to detect signs of an incipient fault in 
the system. The first fifteen samples (corresponding to 
approximately the first 1250 h of ball screw operation) are then 
used as baseline data while the remaining samples are used for 
testing. The principal components (PCs) of the normalized fault 
detection feature matrix were calculated. The number of 
principal components corresponding to at least 95% of the 
variance of the original features were retained. The statistical 
limit is calculated using 

 
where 𝑁 is the number of samples in the training dataset, 𝑟 is 
the number of principal components retained, 𝛼 ൌ 0.01 
represents the confidence interval, and 𝐹 is the value from the 
F-distribution with the specified degrees of freedom [39]. 
Finally, the testing data is normalized by the mean and standard 
deviation of the training dataset, and T2 values for the testing 
samples are calculated using the eigenvalue matrix generated 
from the training samples. 

Fig. 6a shows the resulting trajectory for T2 values for the 
entire run-to-failure experiment. The first point at which the T2 
values crosses the T2 statistical limit is around 2972 operation 
hours, in which operation hours are the total hours that the linear 
positioning system has been operated from its healthy initial 
state. It is expected that the continuous operation of the 
experimental ball screw without lubrication will decrease the 
manufacturer-set preload as the system loses its rigidity. Fig. 6a 
shows that throughout the initial degradation of the ball screw, 
the preload loss trend is increasing. Eventually, preload is 
expected to be essentially nonexistent in the system, at which 
point the preload loss remains nearly constant. This appears to 
occur around 6000 h. 

 
Fig. 4. Example PSD for the ball screw near the beginning and end 
of the RTF experiment. 
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𝐹௥,ேି௥,ఈ   (2)

 

 
Fig. 5. Feature Selection using Fisher Scores and Cumulative Summation of Fisher Scores with 90% Threshold. 
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To compare the performance of the proposed methodology, 
five other state-of-the-art techniques [40] are implemented and 
explained below: 

(i) Gaussian Mixture Model – Mahalanobis Distance (GMM-
MD) [41]: Mixture models, especially the Gaussian Mixture 
Model (GMM), are widely used statistical methods. GMM is an 
effective universal approximator and finds use in several 
applications such as density estimation, clustering, association 
rules, outlier detection, etc. The Expectation-Maximization 
algorithm is used to maximize the log likelihood and estimate 
the mean and covariance matrix of the distribution. The 
principal components extracted in the PCA-T2 approach are 
used in this method to reduce the dimensionality of the data and 
ensure successful training. The PCs of the first 15 samples are 
used for estimating the parameters of the model assuming the 
number of clusters as 1, and the PCs of the remaining samples 
are used for testing. Mahalanobis Distance (MD) is used as the 
deviation metric to identify novelty for each test point. Since 
MD obtained from one Gaussian component follows a 𝛽 
distribution [42], a 𝛽 statistical limit at 𝛼 ൌ 0.01 is used as a 
threshold. A moving window average with a sample width of 4 
is implemented for robustness. MD values below the threshold 
are considered normal, while those above the threshold indicate 
an anomaly. 

(ii) Self-Organizing Maps (SOMs) [40]: The SOM is a grid-
like neural network that is largely used as an unsupervised 

approach for discovering clusters in a dataset and, in effect, 
adjusts the location of nodes in the feature space to reflect these 
detected clusters. The same set of baseline and test features are 
used in this method as the PCA-T2 approach. The baseline 
features are used to train the SOM to create a kernel-based 
representation of normalcy. The test features are then utilized 
to identify novelty. The Euclidean distance between a test point 
and the SOM nodes, called the Minimum Quantization Error 
(MQE), is measured and used to determine uniqueness. A three-
sigma limit on the baseline MQE values is used as a threshold 
for fault detection. 

(iii) Isolation Forest (IF): An Isolation Forest [43] detects 
novelties by isolating them from normal points using an 
ensemble of isolation trees. Each isolation tree is trained for a 
subset of training observations, which are the baseline features 
here, by randomly selecting a split variable and split location 
until each observation in the subset falls in its own leaf node. 
Because anomalies are rare and unique, they settle at a distinct 
leaf node closer to the root node and have a shorter route length. 
The anomaly score of a test feature is calculated by normalizing 
its average path length over all isolation trees. A threshold of 
0.5 [43] is used to detect novelty, where scores below 0.5 are 
considered normal, and above 0.5 indicate an anomaly.  

(iv) One-class Support Vector Machines (SVMs): An 
unsupervised SVM [40] tries to separate novel data from 
normal data in the transformed high-dimensional predictor 
space. The SVM model with a linear kernel is trained using the 
baseline features and a class label of one. The anomaly scores 
are calculated for the test features with a detection threshold of 
zero; a positive score for a class indicates that the observation 
is predicted to be in the training class, and a negative score 
indicates otherwise. A moving window average with a sample 
width of 4 is implemented for robustness.  

(v) Auto-encoder [44]: An autoencoder (AE) is a form of an 
artificial neural network that uses dimensionality reduction to 
learn efficient features of unlabeled inputs. By attempting to 
recreate the input from the encoding, the features are validated 
and enhanced. Unlike all methods implemented before, which 
use the same set of extracted features for performance 
comparison, the auto-encoder is implemented to compare the 
performance of the entire Phase I methodology and does its own 
automated feature extraction. To build the model, preprocessed 
torque signals of equal length that include both steady-state and 
transient portions are used. The number of baseline samples is 
kept the same as for other methods, and the number of hidden 
units is set to ten. The mean squared error between the input 
signal and the reconstructed signal, also called the 
reconstruction loss, is used as the novelty indicator. A three-
sigma limit on the reconstruction loss for the baseline samples 
is used as a threshold for fault detection. 

Fig. 6. Fault Detection using (a) PCA-T2, (b) GMM-MD, (c) SOM-
MQE, (d) Isolation Forest, (e) One-class SVM, and (f) Auto-
Encoder. 

TABLE III 
SUMMARY OF FAULT DETECTION APPROACHES & RESULTS 

Method Input Fault Detection Metric Detection Pt. 

PCA Selected Features T2 2972 hr. 
GMM PCs from PCA MD 2972 hr. 
SOM Selected Features MQE 2972 hr. 
IF Selected Features Anomaly Score 1678* hr. 
OCSVM Selected Features Anomaly Score 3069 hr. 
AE Torque. Data Reconstruction Loss 2972 hr. 
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Fig. 6(b-f) shows that GMM-MD, SOM-MQE, and AE result 
in a fault detection point at 2972 hours, which is the same as the 
proposed PCA-T2, while Isolation Forest detects a fault at 1678 
hours and OCSVM detects a fault at 3069 hours. While the 
algorithm that detects the fault the earliest should be chosen, the 
unstable behavior of the baseline IF scores around the threshold 
in Fig. 6d show the untrustworthiness in the detection point. All 
other methods show effective training by having stable baseline 
scores and amplitudes showing a significant deviation towards 
the end of the operating life of the ball screw. A summary of the 
results of the fault detection approaches is presented in Table 
III. The similarity of the resulting detection points from these 
methods with the proposed PCA-T2 indicate the validity of the 
selected features and the point of fault occurrence. In 
comparison to the implemented methods, PCA-T2 is preferred 
for simplicity and practicality of use. In applications, once an 
occurrence of an incipient fault is indicated by the proposed 
method, an IMU can be used to measure the absolute errors in 
the ball screw as described in the next section. The error values 
can aid in evaluating the performance accuracy against the 
acceptable tolerances to plan for maintenance or replacement. 

V. PHASE II – ABSOLUTE ERROR ESTIMATION 

Signals from the IMU can be used to verify the presence of 
backlash and measure its magnitude. Backlash in the linear axis 
would create a positional shift between the positive- and 
negative-direction IMU signals. The proposed method will 
estimate the absolute error caused by backlash. 

The proposed method is based on signal correlations to 
determine positional shifts of the six-degree-of-freedom error 
motions. During a reversal motion of the carriage, backlash 
between the ball nut and the ball screw will cause the ball screw 
to rotate slightly without the carriage moving. Once the carriage 
begins to move, the trucks will move along the same path on 
the rails as with no backlash, but the actual rotational position 
of the ball screw will now be slightly changed by a constant 
offset from the backlash. This slight offset causes the sensed 
error motions at each position to be slightly shifted at a 
micrometer-level. Each of the six error motion signals can be 
tested with correlation analysis for this slight shift. In theory, 
the same backlash could be estimated from any of the six 
signals, but in practice, due in part to different mechanical 
sensitivities of the errors to the ball nut and ball screw assembly, 
each error motion will yield a different backlash value. The 
backlash corresponding to the highest correlation value 
approximates the backlash for that dataset. 
 This new method can be explained in various steps. Since 
each error motion will be analyzed for signal shifts, any of the 
six error motions can be used for illustration. Fig. 7 shows the 
average slow-speed component, slow(), of the positioning error 
motion for positive-direction motion, 𝐸XX ↑, for two different 
operation times, 924 h and 3723 h. The individual error motions 
from 90 runs of data collection were averaged to produce the 
data seen in Fig. 7. The operational difference of about 2000 h 
of near-constant back-and-forth motion of the axis may result 
in backlash. The slow-speed component is utilized because it 
yields the high-spatial-frequency component of the error 
motion [34] which should increase the sensitivity of backlash 
detection. A low spatial-frequency component is visible in Fig. 

7a, which decreases the correlation of the signals. However, to 
focus on the highest-frequency components for correlation 
purposes, the slow-speed signals are high-pass-filtered and then 
windowed with a custom function called winfilt(). Fig. 8 shows 
the resulting signals from “winfilt” after (1) application of a 
high-pass filter based on a first-order Savitzky-Golay filter [45] 
with a spatial cutoff wavelength of 0.5 mm, (2) the removal of 
the means, and (3) application of a symmetric Hann window. 
Fig. 8b shows a greater correlation compared to Fig. 7b, as well 
as a visible, but slight, horizontal shift of one signal relative to 
the other. This shift is related to the backlash to be measured. 

 

 
Next, the correlation between the two signals is calculated as 

a function of a horizontal shift to estimate the overall position 
shift of the second signal relative to the first signal. Fig. 9a 
shows the correlation, corr(), of the signals in Fig. 8 as a 
function of axis position lag. The general shape of the 

 
Fig. 7. (a) Slow-speed component of the positioning error motion for 
positive-direction motion (𝐸XX ↑) for two different operation times, 
and (b) zoomed-in view of the error motion component. 

 
Fig. 8. (a) Windowed and filtered positioning error motion for 
positive-direction motion, winfilt(𝐸XX ↑), for two different operation 
times, and (b) zoomed-in view of winfilt(𝐸XX ↑). 
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correlation is similar to the symmetric Hann window, but peaks 
occur when the signals are better correlated. The peaks are 
spaced apart by the ball screw pitch observed by the IMU, as 
shown in Fig. 9a. The peaks that are high enough, crossing a 
75% threshold, are then fitted in a least-squares manner with 
polynomials for the data points with positive correlations, as 
seen in Fig. 9b, to determine the local position shifts. All shifts 
are then fitted with a least-squares line, as shown in Fig. 9c, to 
yield the overall position shift between the two original signals 
as well as the IMU-observed ball screw pitch, in this case, 
1.00013 cm, which is 1.3 µm greater than the nominal ball 
screw pitch of 1 cm. 
 

 
This correlation process to estimate the overall position shift 

can also be applied to negative-direction motion (e.g., 𝐸XX ↓) 
and for any system state. The correlation value, 𝛾௜௝௞, for any 
correlation process is defined as 
 

𝛾௜௝௞ ൌ max ቀcorr ቂwinfilt ቀ𝐸௜௝௞ሺ𝑥ሻቁቃቁ (3)

 
where 𝐸௜௝௞ሺ𝑥ሻ is the error motion as a function of position 𝑥 for 
the ith system condition, the jth error motion degree of freedom 
(DOF) (𝑗 ൌ 1, 2, … 6 for 𝐸XX, 𝐸YX, 𝐸ZX, 𝐸AX, 𝐸BX, and 𝐸CX, 
respectively), and the kth axis motion direction (𝑘 ൌ 1 for 
positive and 𝑘 ൌ 2 for negative). Also, an observed ball screw 

pitch, 𝑝௜௝௞, is associated with 𝛾௜௝௞, as seen in Fig. 9c for the 
nominal ball screw pitch of 1 cm. 
 Fig. 10 shows the position shift between the positioning error 
motion (𝐸XX) at any operation time and the error motion for the 
initial operation time (924 h), based on the described 
correlation analysis. The position shifts for both positive and 
negative directions are typically within ±150 µm and may be as 
large as 2 mm, due in part to the changing origin of motion for 
each test. A wooden block is used as a reference to set the origin 
for each test, and the variability of this process causes a 
significant portion of the position shifts observed in Fig. 10. 
However, because the same origin is used for both positive and 
negative motion, the position shift caused by the origin-setting 
process is a common-mode contributor, and hence, the positive- 
and negative-direction curves in Fig. 10 are very similar. The 
recirculation of the bearing balls in the ball nut is also a 
contributor to the position shifts and is not inherently a 
common-mode contributor like the origin-setting process. 
Nonetheless, the positive and negative shifts are relatively close 
to each other, as seen in Fig. 10b. The small differences between 
the positive and negative position shifts will be used to 
determine the change in backlash. 
 

 
The backlash is determined via use of the position shifts and 

the corresponding correlation values. First, PositionShift௜௝௞ is 
defined as the position shift for the ith system condition (related 
to operation time), jth error motion DOF, and kth axis motion 
direction. The change in position shift, ∆PositionShift௜௝, is then 
defined as the position shift for positive-direction motion minus 
the position shift for negative-direction motion; that is, 
 

∆PositionShift௜௝ ൌ PositionShift௜௝ଵ
െ PositionShift௜௝ଶ 

(4)

 
Fig. 11 shows ΔPositionShift for all system conditions, due 

to varying operation times, and all six error motions. Most of 
the curves in Fig. 11 are highly correlated because all sensor 

 
Fig. 9. (a) Correlation between windowed and filtered positioning 
error motion for positive-direction motion, winfilt(𝐸XX ↑), for two 
different operation times (924 hours and 3723 hours), (b) fit of one 
peak used to determine a local position shift between the signals, 
and (c) fitted line to all local position shifts, one for each fitted peak, 
to determine the overall position shift between the signals. 

 
Fig. 10. (a) Position shift between the positioning error motion (𝐸XX) 
at any operation time and the error motion for the initial operation 
time (924 hours), and (b) zoomed-in view of the position shift for 
both motion directions. 

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TII.2022.3210999

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on March 24,2023 at 17:37:09 UTC from IEEE Xplore.  Restrictions apply. 



  Pandhare et al.: Ball Screw Health Monitoring with Inertial Sensors 

 

 

 

9

data, and hence all error motions, are correlated in time and thus 
position. In fact, almost all the error motions trend upwards to 
have changes in position of about 50 μm around 8000 operation 
hours. Any small trends in position could account for this trend 
in ΔPositionShift, e.g., due to the controller, preload, or even 
the accelerometer sensitivity used for 𝐸XX. However, one 
physical difference between ΔPositionShift for 𝐸XX and 
ΔPositionShift for any other error motion is that backlash 
affects ΔPositionShift for 𝐸XX but not for the other error 
motions. Therefore, the change in backlash, ∆Backlash௜௝, for 
the ith system condition and jth error motion is defined as the 
difference between ΔPositionShift for 𝐸XX and ΔPositionShift 
for the jth error motion; that is, 
 
∆Backlash௜௝ ൌ ∆PositionShift௜ଵ െ ∆PositionShift௜௝ (5)

 

 
For the ith system condition, there are five values for 

∆Backlash௜௝, one for each of the five non-positioning error 
motions. The estimated change in backlash for the ith system 
condition, ∆Backlash௜, is defined as a weighted sum of the 
individual backlash changes; that is, 
 

∆Backlash௜ ൌ ෍𝛾௜௝ఙ
଺

௝ୀଶ

∆Backlash௜௝ ෍𝛾௜௝ఙ
଺

௝ୀଶ

൙  

 

(6)

where 𝜎 is a non-negative integer for weighting, and 
 

𝛾௜௝ ൌ min൫𝛾௜௝ଵ, 𝛾௜௝ଶ൯ (7)
 
Henceforth, 𝜎 is set to equal 4, so that backlash changes 
associated with low correlation values are penalized in Eq. (6). 
Also, because ∆Backlash௜௝ comes from the subtraction of two 
position shifts, one correlation value (𝛾௜௝ଵ) is associated with 
positive motion and the other correlation value (𝛾௜௝ଶ) is 
associated with negative motion, so Eq. (7) defines 𝛾௜௝ 
conservatively as the minimum of the two associated 
correlations used to create that backlash. 
 Fig. 12 shows application of Eqs. (5)-(7). For every operation 
time, the horizontal straightness error motion, 𝐸YX, yields the 
maximum correlation used for ∆Backlash௜, as seen in Fig. 12a-
b. Thus, the change in backlash is determined, as seen in Fig. 
12c, mainly by use of 𝐸XX and 𝐸YX in which ∆Backlash௜ is most 
similar to ∆Backlash௜ଶ (for 𝐸YX, as seen in Fig. 12b). Fig. 12 
reveals that the main sensors for backlash detection are two 
accelerometers: the X-axis accelerometer, associated with the 

positioning error motion, 𝐸XX, and the Y-axis accelerometer, 
associated with the horizontal straightness error motion, 𝐸YX. 
The four other sensors are also utilized for backlash detection, 
and while they are not as significant for the given system, are 
still potentially very useful for other linear positioning systems. 
 

 
Fig. 13a shows the estimated change in backlash, according 

to Eq. (6), as a function of operation time. Experimental values 
and a filtered version of the estimated change in backlash, based 
on a Savitzky-Golay filter, are also shown. Fig. 13a reveals that 
the change in backlash is essentially nonexistent (0 µm) until 
around 2500 h of operation. As seen in Fig. 13a, a fault may 
have occurred around 2500 hours of operation, perhaps related 
to the relatively low correlation values at those times (see Fig. 
12a). The backlash appears to trend upward with time 
thereafter. 

Another approach to estimate the change in backlash is to use 
the change in the IMU-observed ball screw pitch (see “pitch 
line” in Fig. 9c). An estimated ball screw pitch, 𝑝௜௝௞, and 
correlation value, 𝛾௜௝௞, exists for the ith system condition, jth 
error motion DOF, and kth axis motion direction. The perceived 
ball screw pitch, 𝑝௜, for the ith system condition is then defined 
as a weighted sum of the individual IMU-observed ball screw 
pitches; that is, 
 

 𝑝௜ ൌ෍ሺ𝛾௜௝௞
ఙሻ𝑝௜௝௞

௝,௞

෍ሺ𝛾௜௝௞
ఙሻ

௝,௞

൘   (8)

 
Fig. 11. Difference between the positive- and negative-direction 
position shifts. 

 
Fig. 12. (a) Correlation for each DOF, (b) the DOF corresponding to 
the maximum correlation, excluding the positioning error motion 
(𝐸XX), and (c) the individual changes in backlash and their weighted 
sum, the estimated change in backlash. 
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where 𝜎 is the same non-negative integer for weighting as in 
Eq. (6). Finally, the change in backlash for the ith system 
condition is approximately defined as 
 

 ∆Backlash௜ ൎ
𝐿
𝑝
ሺ𝑝௜ െ 𝑝଴ሻ (9)

 
where 𝐿 is the total travel length (𝐿 ൌ 0.45 m), 𝑝 is the nominal 
ball screw pitch (𝑝 ൌ 1 cm), and 𝑝଴ is the initial operational ball 
screw pitch. The presence of backlash decreases the nominal 
travel distance from 𝐿 to 𝐿 minus the backlash, while the ball 
screw pitch remains nominally unchanged. However, because 
the IMU-based analysis outputs a total travel distance of 𝐿 even 
in the presence of backlash, this process yields a perceived 
increase in the ball screw pitch (e.g., see Fig. 9c). Equation (9) 
uses the perceived ball screw pitch to essentially adjust the 
IMU-based travel distance to account for backlash. 

Fig. 13b shows the estimated change in backlash, according 
to Eq. (9), as a function of operation time. The estimated change 
in backlash based on ball screw pitch (see Fig. 13b) is similar 
to the estimated change in backlash based on signal position 
shifts (see Fig. 13a). The filtered estimates in Fig. 13a and Fig. 
13b are nominally monotonic with a significant change in 
backlash around 4000 h of operation and a backlash change of 
about 10 µm at 8000 operation hours. The backlash estimates 
are not identical, and both have significant high-frequency 
variations, yet the filtered estimates are similar in magnitude 
and trends. The backlash estimates based on ball screw pitch 
(see Fig. 13b) are generally closer to the experimental values 
but have significant high-frequency variations with unrealistic 
negative backlash changes. Hence, the backlash estimates based 
on signal shifts (see Fig. 13a) are more plausible with generally 
positive values. 
 

 

VI. CONCLUSION 

The proposed two-phase approach offers a practical method 
for incipient fault detection and backlash quantification. In the 
first phase, online data streams are used to monitor for an initial 
fault. While the PCA-T2 method is recommended for its 
simplicity, multiple health monitoring algorithms give 
consistent results, confirming the strength of the underlying 
feature extraction and selection methods. 

The method developed for the second phase shows that 
changes in backlash may be detectable with IMU data. The 
high-spatial-frequency components of error motions are 
processed to yield a change of backlash by correlating the 
positioning error motion, 𝐸XX, with itself, a straightness error 
motion (𝐸YX or 𝐸ZX), or an angular error motion (𝐸AX, 𝐸BX, or 
𝐸CX). Correlation-based estimates for the change of backlash 
show significant backlash changes of about 10 µm at 8000 
operation hours. Thus, the IMU-based error motions are useful 
for estimating backlash. 
 Future work includes repeating the run-to-failure 
experiments to verify the results presented in this paper, 
including the general applicability of the selected fault 
detection and backlash monitoring feature sets. In addition, a 
more robust physical backlash measurement should be 
collected throughout the duration of the test to validate the 
values produced in the second phase of health monitoring. 
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