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EDITOR: Mazin Yousif, mazin@computer.org

COLUMN: FROM THE EDITOR

The Edge, the Cloud, and the Continuum
Mazin Yousif, Gainwell Technologies

If we consider the cloud as the compute/data 
backend, and the edge the environment where 
the data sources are, we can imagine a huge 

space between them. That is what we refer to as the 
continuum, which can be single hop or multi-layer 
multi-hop involving very diverse technologies. This is 
true regardless of whether the edge is big or small, is 
computationally-intensive or computationally-limited, 
is physically in close proximity to the cloud, or is really 
far away from a cloud—pick your other favorite char-
acterizations here.

Given the vast varieties of edge deployments, the 
majority requiring some sort of network connectivity 
to a cloud, you can imagine the enormity of the design 
space the edge-cloud continuum encompasses. Also, 
imagine the countless use cases, whether in industry, 
government, education, just plain consumers, and 
so on, that we can bring to bear. Hence, this publica-
tion will explicitly aim to span the full edge-to-cloud 
continuum.

What features of the design space make it so vast 
and complicated? Let’s dive in with more details here. 
Without much effort, we can define at least six major 
considerations.

The first consideration is the edge, and how to 
classify an edge. We also hear about far-edge and 
near-edge conditions. An edge can be as small as a 
little sensor or camera detecting drops of rain or as 
huge as an oil and gas refinery, which can be as big as 
a small city. So, size matters here. 

The second is the specific use case the edge is 
used for. For example, edge requirements for preven-
tive maintenance are different from those for video 
analytics, or those for connected workers or those for 
traffic management systems, as the key drivers from 
latency, bandwidth, availability and reliability are 
different. Additionally, the industry vertical may add 
specific nuances to the above-mentioned example 
use cases.

The third is the architecture of the edge. This archi-
tecture varies depending on the complexity of the use 
case, the size of the edge, the network connectivity, 
the software layers and more. 

The fourth is the network connectivity at the edge 
as well as between the edge and the cloud. Examples 
include wired, cellular, WiFi, LoRA, BLE, Sigfox, and 
many more. 

The fifth is the appropriate and optimal software 
layers to deploy at the edge to support the underlying 
use case. 

The sixth is the most appropriate and optimal ana-
lytics/ML/AI/DL that need to be used at the edge for 
the specific use case.   

I can go on and on, but I think the above made my 
point clear. The many ways that exist to analyze and 
subdivide the design space add to the confusion about 
the terms “edge” and “fog” and how best to navigate 
the space between them.

One way to help bring order to this confusion is 
to consider the effects of scale. Let’s look at a few 
example use cases, starting with small and simple 
ones and proceeding up to large and complex ones. 
Preventive maintenance for a pump in a manufactur-
ing plant or refinery provides an example at the low 
end of this scale. We can expand this to include any set 
of connected devices in a manufacturing plant for a 
medium-scale example in terms of numbers and com-
plexity. At the high-end would-be examples involving 
consumers or automated transportation (for example, 
connected drones). Other complex examples include 
autonomous supply chains, industry 4.0, autonomous 
and connected cars, smart agriculture, smart health-
care systems, and smart city use cases with services 
including transportation, utilities, parking, and energy. 
Through these examples I am trying to convey the 
essential point that although there are tons of use 
cases, they share features that can be addressed 
through design.
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As a result of the impact of these technologies, 
there is high interest from all aspects of the com-
munity including research, professionals, educators, 
government, business, and more. For example, looking 
at the trend for Edge Computing in Google Analytics 
(Figure 1), you see the growth is amazing; not quite a 
hockey stick, but close to it. It is not that difficult to 
check industry market analysts on their Edge comput-
ing market projections.

The above and more are the reasons we launched 
this new edge-cloud continuum publication—Cloud 
Continuum.

THE PUBLICATION’S  
EDITORIAL BOARD

I have asked many of the editors who served on the 
Editorial Board of IEEE Cloud Computing that ran from 
2014–2018 to join me in this new publication. Each will 
oversee one segment or area along the continuum: Joe 
Weinman (Digital Strategy and Economics), Alan Sill 
(Frontiers in Software, Architecture and Standards), 
Rajiv Ranjan (Blue Skies Research), Omer Rana (AI/ML 
for Cloud Continuum), Keith Jeffery and Lutz Schubert 
(International Research Directions), and Beniamino Di 
Martino (Cloud Continuum Interoperability). We will 
add other editors and columns in due time.

INNOVATIONS AND RESEARCH IN 
THE CONTINUUM

One goal for this publication is to further spur innova-
tions and research for the continuum. Although the 
cloud is more than a decade old, it is still in a growing 
stage. I say it is a toddler. Adding topics related to the 
continuum between edge and cloud deployments and 
use cases as spelled out above, we see that the com-
bination is ripe for innovation, invention, and research.

Key areas that this publication will cover include: 
(a) how best to represent an application to the cloud 
continuum; (b) how to optimize deployment of an 
application instance across the cloud continuum; (c) 
how, and to what extent, does the end-user control/
steer the execution of the application across the cloud 
continuum; (d) availability, security, privacy across 
the cloud continuum; (e) application development 
environments for the cloud continuum; (f) data man-
agement across the cloud continuum; (g) economics 
of the cloud continuum; (h) how the cloud continuum 

can support the UN Strategic development goals; (i) 
interoperability across the cloud continuum; (j) the 
role of and the right AI/ML/DL in the cloud continuum; 
(k) how to manage data lifecycle in the cloud con-
tinuum; (l) scenarios to move the data where compute 
is and compute where the data is; and many more. In 
fact, I can enumerate beyond the letter (z).

CURRENT ISSUE
In this issue, which is intended to be an overview of 
the edge-cloud continuum, we have two original col-
umns and one reprint article. Joe looks at the trad-
eoffs along the edge-cloud continuum and Alan intro-
duces the “Frontiers” column with an invited article on 
the IEEE 2302-2021 standard on Intercloud Interopera-
bility and Federation.

As the intention of this publication is to be a one 
stop shop for thought leadership on the edge-cloud 
continuum, we are also including reprints of select 
peer-reviewed articles and thought-provoking pieces 
from the Computer Society Digital Library. Specfi-
cally for this issue, we are including an article from 
the 13th IEEE/ACM International Conference on Utility 
and Cloud Computing that was held in 2020. Its title 
is “Scission: Performance-driven and Context-aware 
Cloud-Edge Distribution of Deep Neural Networks,” 
and looks at the advantages of partitioning and distrib-
uting Deep Neural Networks across end-devices, edge 
resources and the cloud—basically the continuum.

FIGURE 1. Trend for edge computing (https://www 

.researchgate.net/figure/Edge-computing-interest-Google 

-Trends_fig1_341037496).
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EDITOR: Joe Weinman, joeweinman@gmail.com

DEPARTMENT: DIGITAL STRATEGY AND ECONOMICS

Trade-offs Along the  
Cloud–Edge Continuum
Joe Weinman

A range of options exist to implement today’s 
digital architectures. Although an oversimpli-
fication, we can think of these options along 

a spectrum: At one extreme is a single instance “data 
center,” which might be an enterprise data center or a 
colocation facility, or perhaps even a single server or 
rack containing a database or application. Adjacent 
to that option is a set of perhaps dozens of hyperscale 
cloud facilities, with perhaps hundreds of thousands 
of servers, typically geographically distributed. As 
we continue through various layers of “fog,” we hit 
the near edge, which might include facilities in major 
metros, and then the far edge, which might include 
computing nodes located on every street corner, or 
spaced several per mile along a traffic corridor such as 
a superhighway. These then typically tie to endpoint 
elements, such as devices or things—for example, 
smart meters, irrigation sensors, smartphones, smart 
TVs, or connected vehicles. Sometimes individual 
processors will be aggregated into a system, such as 
an autonomous vehicle with a hundred or more micro-
processors, or perhaps its entertainment system, or 
a network of systems, such as a factory including its 
robots, quality inspection systems, materials handling 
systems, and fire/smoke detection sensors.

Along the spectrum from one single instance data 
center to a trillion or more connected endpoints, some 
would argue that on-demand, pay-per-use, consoli-
dated hyperscale facilities (the “cloud”, the “center,” 
or the “core”) are the best choice to solve today’s 
demanding IT challenges; others would say that a 
decentralized edge is the only solution. The truth is 
that there are benefits and disadvantages to each, 
and finding the right weighting of components by 
considering the trade-offs along the cloud-fog-edge 
continuum (Figure 1) will typically be the best choice 
for many business and technology challenges.

We will focus here on the general characteristics 
of cloud vs. edge. Each of the accepted elements of a 
“cloud” can generate benefits. For example, on-demand 
resource provisioning in the presence of variable 
demand generates benefits through right-sized capac-
ity, since too many resources leads to waste and thus 
unnecessary costs, and too few resources drives 
opportunity costs through the missed revenue, profit, 
or other benefits associated with the application that 
is executing on that capacity.1 Finer granularity of that 
capacity for shorter intervals can lead to less waste; 
just as it’s cheaper to buy a glass of wine than the cha-
teau, and less costly to run an appliance for a shorter 
period of time.2 In a computing context, granularity 
gets finer as we move from monolithic systems to 
servers to cores to virtual machines to containers to 
microservices. Pay-per-use can lead to benefits even 
with a unit cost premium, since although one may pay 
more for resources that are employed, one doesn’t 
pay for resources that are not used, unlike with fixed, 
owned capacity.3

However, all of these characteristics—on-demand 
provisioning, fine resource granularity, shorter inter-
vals, and pay-per-use pricing—are feasible at the 
edge, even if they originated with the cloud. Thus, we 
must look to other characteristics to understand the 
trade-offs between cloud and edge. We also must 
consider atypical variations. For example, the center 
may be a single facility, such as a solitary enterprise 
data center serving global demand from customers, 
employees, and partners. However, the edge also may 
be a single location, such as a stand-alone facility that 
does image processing for railroad car maintenance 
deep in a rural area. Typically, though, we think of the 
cloud/core/center as a few, hyperscale, consolidated 
facilities; and the edge as a globally geo-dispersed set 
of smaller locations.
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SERVICE AND DATA PROXIMITY
The edge is in proximity to where sensor data is col-
lected and used. On the other hand, centralized facili-
ties can be in proximity to data and related application 
components or services. Proximity can be unhelpful, 
as in the case of a localized disaster such as a hurri-
cane or flood that destroys, say, an original and its only 
replica, but is generally good, for example, to reduce 
data transport costs, minimize bandwidth require-
ments, and minimize latency.

Edge
The edge is in close proximity or even co-located with 
the user devices and things that include sensors that 
collect data and the actuators that causally interact 
with the real world. This includes smart phones, tablets, 
smart TVs, connected soccer balls, connected auton-
omous and non-autonomous vehicles, drones, robots, 
flexible manufacturing cells, video surveillance sys-
tems, irrigation sensors, connected trash receptacles, 
and so on. As video typically drives the majority of data 
collection, and resolutions and frame rates increase, 
local processing can have numerous advantages.

Cloud
The cloud is in close proximity to—in fact, likely 
co-located with—other applications, services, and/
or single-instance or master replicas of cloud-based 
data lakes or data warehouses (or lakehouses). It is 
also likely to be in close proximity to major backbone 
network transport and interconnection facilities, com-
pared to many edge locations that may be constrained 
by local wireline, wireless, or satellite access network 
capacity and capability. Proximity is not just a function 
of geographic distance, but network latency, which 
can be impacted by routing, congestion, bandwidth 
limitations, and outages. 

LATENCY

Edge
Latency from endpoints to the cloud may be too long 
for many applications. In the worst case, a remote 
cloud may be 150 milliseconds or more round trip from 
a given endpoint. Thus, an application that needs time 
at the endpoint, time at the remote server or serv-
ers, and time to traverse the distance between them 
may take too long to meet user needs or application 
requirements. Especially for applications such as con-
nected autonomous vehicles communicating with 
each other or with pedestrians or roadside infrastruc-
ture, low latency is critically important. A few hun-
dred milliseconds of additional latency to communi-
cate, perhaps via multiple round trips, may literally be 
a life-or-death matter.

Many other applications can also benefit from 
low latency at the edge. These may be stateful and 
perhaps require local data which may be ephemeral or 
long-lived, say, to authenticate user access to certain 
services. Or they may be ephemeral and event-driven, 
say, image processing a license plate for upload to a 
criminal tracking or toll collecting database. Multiple 
image sensors may need to efficiently and rapidly col-
laborate to correctly identify the vehicle. In any event, 
performant interactions between sensors, actuators, 
processors, and data may be critical.

Cloud
However, latency between various application com-
ponents, microservices, or data spanning a distrib-
uted edge may also be an issue. Applications and data 
have different characteristics, and thus the advan-
tages and disadvantages of the cloud can differ. A 
single monolithic application running in a legacy or 
high-performance computing environment can benefit 

Single
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Data
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Hyperscale
Cloud
Data

Centers

Fog Near
Edge

Far
Edge

Networked
Systems
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Device

FIGURE 1. The cloud-fog-edge continuum.
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from tight coupling between modules. For example, 
such an application might exploit a hypercube or fat-tree 
network topology implemented in a high-performance 
backplane in a single physical system.

But even a distributed architecture in a hyperscale 
cloud can have performance optimized via latency 
reduction enabled by proximity. For example, today, 
a typical application will be architected as a set of 
microservices interacting with each other across APIs. 
Having all connected microservices co-located at a 
single cloud location or rack can minimize inter-service 
latency, and thereby maximize performance, through-
put, and response time.

At an even higher level, a typical workflow may 
consist of dozens of these applications or services. For 
example, the workflow to process a customer order 
may involve image capture, data validation against a 
customer, product, and/or geographic database, pay-
ment authorization, entry into a manufacturing plan-
ning system, and so forth. Even a few milliseconds 
extra delay may not seem like much, until one realizes 
that this may be multiplied by hundreds or millions 
of orders.

LOCAL VS. GLOBAL
We live in a diverse world. There are different coun-
tries, on different continents, with different climates 
and geological characteristics. Even within any coun-
try, there are subdivisions such as provinces, states, 
and special administrative regions. Then there are 
urban, suburban, and rural areas. Many localities have 
unique risks, challenges, economies, cost structures, 
environmental priorities, and legal and regulatory 
frameworks.

Edge
Rather than a one-size fits all approach globally, edge 
resources can vary to fit local requirements. For exam-
ple, in a city, edge nodes can be very dense and sup-
port 5G mmWave communications and high data 
volume of multiple Terabits per second per square kilo-
meter. Backhaul can be high-capacity fiber. In a more 
rural area, a trade-off can be made between cost, cov-
erage, and density, perhaps using 4G LTE Advanced 
or 5G mid-band wireless with its better propagation 
characteristics and larger radius of coverage. Instead 
of fiber backhaul, integrated access and backhaul or 

a wireless or microwave mesh can be used for cover-
age. Points of presence can be adapted to local con-
ditions—for example, degree of ruggedness against 
heat or humidity. 

Cloud
Cloud services can take advantage of the unique ben-
efits of a specific region, and “broadcast” those ben-
efits around the world. For example, data centers in 
Iceland can be more green than in other locations, 
because they can be powered by geothermal heat and 
cooled much of the year by the ambient environment, 
leading to a net-zero carbon footprint. These data cen-
ters can run applications and services supporting 
needs around the world, for the limited marginal cost 
of networking. This is advantageous compared, to, 
say, a data center local to its users that is powered by 
coal-generated electricity and also needs to power its 
cooling systems.

DATA SOVEREIGNTY, CONTROL, 
AND PRIVACY

There are a variety of unique, innovative ideas for sit-
ing processing, storage, and/or networking resources. 
For example, Facebook had examined solar-powered 
planes,4 Google had explored hot-air balloons with 
Project Loon,5 and floating or platformed offshore 
data centers are in service.6,7 However, most data 
centers are located on land, within the jurisdiction of 
nation-states with particular societal objectives and 
constraints embodied in laws, statutes, regulations, 
and executive orders. 

Edge
Resources located at the edge can conform to regu-
lations such as those that mandate that no personal 
data can leave a given geographic region, a boon for 
user privacy. In the case of three letter government 
agencies or military groups, the ideal approach is not 
just to have a firewall between the compute and data 
resources, but to air-gap them entirely to preserve 
security. Such control, privacy, and sovereignty are 
thus best maintained via local resources, such as the 
edge and/or endpoints.

Of course, connected edge resources can still be 
attacked. For example, a steel mill in Germany suffered 
severe damage after hackers infiltrated its control 
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systems, thus letting a furnace overheat and causing 
physical destruction.8 Even air-gapped resources can 
be attacked. The vector to carry out an attack on a 
uranium processing facility in Natanz, Iran, was the 
Stuxnet virus, brought in on a USB drive.9

Cloud
Resources located in centralized fashion can be sub-
poenaed and/or forensically analyzed by the appro-
priate legal authority. For example, the U.S. National 
Security Agency has had a program called “Prism” that 
allegedly enabled the NSA to have direct access to 
servers belonging to Google, Facebook, and Apple.10 
This enabled direct government access to many types 
of data such as search queries and the contents of 
email and files. In the case of “keyword warrants,” a 
government can broadly request information on any-
one who has used specific search terms, and for “geo-
fence warrants,” a cloud or network service provider 
may have to share information concerning anyone 
within a given geographic region where a crime was 
committed. Although there may be diverse opinions on 
the benefits or concerns of such actions, from a tech-
nology perspective it is clear that having such data 
within a jurisdiction makes it easier to legally access.11

DATA  
MANAGEMENT PRACTICALITY

Sufficiently large datasets may be too large to store in 
their entirety at the edge, or too large to transport in 
their entirety to the cloud.

Edge
Endpoints are the first location for data capture via 
sensors, and the edge is typically the first stop on data’s 
journey to other destinations, such as peer endpoints 
or to the cloud. We say “typically the first stop,” because 
endpoints may be configured into a peer-to-peer mesh 
that packets traverse before they reach the edge. The 
volume of data that is captured may far exceed the 
capacity of access or edge networks to transport in a 
useful amount of time, requiring compression or selec-
tion of relevant subsets of the data.

Cloud
Consider the size of the index that Google builds as 
it crawls the web to enable search query processing. 

It has been estimated to be “hundreds of billions” 
of web pages amounting to “well over 100,000,000 
gigabytes.”12 It is obviously not possible to store 
this much data in today’s popular endpoints, such 
as smartphones with 128GB of total storage, or 
even today’s edge nodes. As device and edge capac-
ity grow, so will the size of databases such as that 
index, meaning that this constraint is unlikely to ever 
vanish.

DATA REPLICATION COSTS
The larger that a collection of data is, and the more 
times that it is replicated, the higher the costs of stor-
ing and managing that data. On the other hand, if the 
data can successfully be partitioned, total storage 
capacity requirements and costs won’t vary very much 
between a few locations that aggregate the data and a 
multitude of locations with small portions of the data 
and few replicas.

Edge
The degree of replication vs. partitioning determines 
the overhead—if any—associated with edge storage. 
As an example, consider the storage requirements 
for 100GB of personal data such as family movies and 
photos. It requires 100GB whether stored in a smart-
phone, at the edge, or in the cloud, if only one copy is 
stored. On the other hand, replicating the same con-
tent multiple times takes a lot of aggregate storage. 
For example, there are tens of thousands of different 
types of devices running Android, for a total of over 3 
billion devices.13 Depending on the version of the OS, 
it may need 10, 20, or even 30GB on each device , lead-
ing to a total storage of roughly 100,000,000,000GB, 
or 100 exabytes.

Cloud
Suppose that instead of Android, we consider the 
scores of petabytes for Google’s search index. If we 
tried to store it in every one of the 3 billion Android 
endpoints, or the tens of billions of connected devices, 
it would obviously be very costly, if there were even 
that much storage capacity in the world. 

It is thus self-evident that massive data sets are 
unlikely to be replicated unnecessarily—there must 
be a compelling reason such as performance, control, 
or privacy to drive such replication.
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STATISTICAL EFFECTS ON 
RESOURCE UTILIZATION

Demand for processing typically varies over time 
for most applications and services. Workloads as 
diverse as ecommerce and connected vehicles have 
circadian rhythms, since very few people shop online 
or drive in the middle of the night—although these 
patterns may change as, say, underutilized autono-
mous vehicle resources become pressed into ser-
vice to make deliveries. Demand also varies based 
on events, such as the Olympics, or seasonal factors, 
such as tax-filing deadlines, Singles’ Day, or Black 
Friday.  Generally speaking, the coefficient of varia-
tion—a measure of variance relative to a given mean 
level of demand—becomes lower as the number of 
independent aggregate workloads is increased—
indicating that the aggregate demand is smoother, 
that is, has less variability. Such statistical multiplex-
ing effects—such as serving diverse, uncorrelated 
demand from a pool of common resources—display 
well-known behaviors as the number of demands 
increases.14

Edge
Single workloads typically have great variability, 
whether it is playing Wordle once a day for a few min-
utes, or doing a monthly backup for eight hours.

The edge is typically an aggregation point for 
multiple workloads, such as image processing across 
multiple quality control inspection points in a factory 
or video stream processing of license plates or traffic 
congestion, or intermittently connected endpoints, 
such as vehicles connecting to base stations or other 
highly dense edge processing facilities. Interestingly, 
the 1/√−n measure of coefficient of variation of the 
aggregate of n workloads implies that the reduction 
in variablity is steepest when n is smallest.15 In other 
words, not that many independent workloads need 
to be aggregated to achieve substantial capacity 
benefits.

Cloud
Hyperscale facilities that aggregate the most indepen-
dent workloads have the lowest demand variability, 
because peaks in some workloads correspond to val-
leys in others. Of course, not all real-world workloads 
are independent and uncorrelated, due to correlative 

factors such as circadian and seasonal rhythms. How-
ever, there will still clearly be benefits compared to 
the variability of a single workload, and, in the case of 
hyperscale clouds unused capacity can easily be filled 
with deferrable or discretionary work, incented via 
dynamic pricing.

STATISTICAL EFFECTS  
ON PROFITABILITY

There is a direct relationship between resource utili-
zation and profitability, therefore there are trade-offs 
between cloud and edge that depend on their capac-
ity, their cost structure, and the statistics of workloads 
running on their compute and network resources.16 
For example, a facility that only runs at 50% utilization 
must recover not just the cost of a used resource, but 
also the cost of the matching unused resource. In such 
a case, if a server costs, say, $1 to run per day, includ-
ing leasing, depreciation, installation, maintenance, 
power, and so on, it must be billed out at $2 per day 
just to break even, not including sales, general, and 
administrative costs. A facility that runs at 100% uti-
lization can make money, conceptually, only charging 
$1.01 per day. Of course, other factors, such as power-
ing down or otherwise idling unused servers, consoli-
dating workloads on virtualized servers, storage hier-
archies, volume discounts, better PUE (Power Usage 
Effectiveness), etc., impact these calculations, but the 
general principle remains.

The statistics of storage utilization also may make 
a difference. Sometimes storage requirements are 
monotonically nondecreasing, as more and more data 
is collected. Sometimes they vary up and down, as 
with a test/dev workload.

In any event, the greater the workload variability, 
the greater the aggregate variability. The greater the 
number of workloads of a given variance, the smoother 
the aggregate behaves.

Edge
Edge resources can achieve higher utilization lev-
els than most endpoints, but not as high as clouds, 
as described above. However, “profitability” may not 
be a major concern. A factory with a private edge and 
perhaps private 5G may have lower utilization than a 
cloud, but also does not need to spend money to fund 
a cloud provider’s profits. A city may choose to deploy 



www.computer.org� 11

DIGITAL STRATEGY AND ECONOMICS

edge resources to help with public safety, public health, 
emergency services, or to address the digital divide. A 
user deploying a residential gateway in their home is 
probably more concerned with functionality than with 
“making a profit” on family members Internet usage.

Cloud
Clouds and their hyperscale facilities that multiplex 
massive numbers of workloads and then also fill in 
any valleys with deferrable and discretionary work-
loads will achieve the highest possible utilization lev-
els. According to one estimate, cloud servers oper-
ate at 65% utilization, whereas on-premises—such as 
facilities that are likely to combine fewer, less diverse 
workloads—are more likely to operate at 12-18% 
utilization.17

STATISTICAL MULTIPLEXING 
EFFECTS ON  
RESOURCE AVAILABILITY

Automobiles typically have a 25% safety margin on 
tires (the spare tire in the trunk in addition to the four 
pressed into service) and a 5 to 10% safety margin 
on fuel (the reserve capacity after the meter shows 
“empty”). Similarly, data centers and networks are typi-
cally overprovisioned to provide a safety margin above 
and beyond what might be expected during “normal” 
peak demand. This can help ensure service continu-
ity even during unexpected spikes, or during the fail-
ure of some components. The degree of overprovi-
sioning can depend on the variability of demand, the 
criticality of the workload, the supply chain availability 
of resources and other factors.18

Edge
Edge resources disaggregate the overcapacity, or 
safety margin. Each resource must be engineered to 
allow for unplanned capacity issues or component fail-
ures, the same way that every car must carry its own 
spare tire. This is the case even though the vast major-
ity of these tires are never needed at any given time.

On the other hand, if edge resources are config-
ured into a mesh and can share capacity, then their 
geographic proximity can reduce these requirements, 
the same way that a neighborhood can get by with 
only one homeowner owning, say, a chain saw, and 
sharing it with neighbors when needed. 

Cloud
Clouds require much less capacity to meet the same 
safety margins. The reason is that a demand spike 
in a few workloads is likely to be complemented 
by a demand trough in a few other workloads and 
near-average demand in others. (Both the analysis of 
cloud overhead capacity requirements and edge over-
head capacity requirements assumes that the work-
loads are independent and uncorrelated, an assump-
tion which is sometimes violated due to circadian, 
weekly, or seasonal correlations).

Clouds can also share capacity, either by running 
excess workloads in a different location or even a dif-
ferent cloud.19

RESILIENCE AND SECURITY
Clouds or edge nodes from a single given provider or 
using a given stack are subject to systemic outages—
for example, due to a software bug, human error in 
updating configurations,20 or an unexpected clash of 
algorithms. Often, however, clouds and edge nodes 
differ in their resilience in the face of different events 
or failure modes.

Edge
Edge nodes may be located in a server room, a cor-
ner of the factory, a street corner, along a traffic cor-
ridor, or on a remote farm or oil pipeline. This makes 
them difficult to physically secure, because there 
are too many locations to guard, and often, they are 
space-constrained.

On the other hand, loss of one or even several edge 
nodes is likely to be a drop in the bucket in terms of 
total processing capacity for an edge network.

However, services offered may be impacted sub-
stantially within the localized service area of those 
lost nodes. For example, loss of nodes near the corner 
of Elm and Main St. may impact vehicle collision avoid-
ance at that intersection. 

Cloud
Cloud data centers and other centralized facilities can 
and do have excellent physical security. They typically 
have few windows, and have man traps, video surveil-
lance, and even armed guards, sometimes from spe-
cial services.

On the other hand, a large data center is a large 
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target for a flood, hurricane, tornado, lightning strike, 
power outage, or terrorist attack.

In other areas, cloud security can have advan-
tages. For example, the high access bandwidth of 
these facilities can better defend against Distributed 
Denial of Service attacks. The largest such attack as of 
this writing was a 3.47 Terabit per second DDoS attack 
from 10,000 servers, and was successfully stopped by 
a major cloud provider.21

There are numerous other factors that may affect 
the balance of trade-offs, such as provisioning, 

operations, configuration, administration, monitor-
ing, maintenance, and management of architecture 
components. However, the bottom line is that vari-
ous applications and organizations may benefit more 
from centralization or more from decentralization. 
That said, the exponential growth in data capture at 
endpoints is inexorably tilting that balance to the 
edge.
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This standard enables generalized federation, supports cloud-to-cloud 
interoperability, and provides an evolutionary pathway for federation systems.

The need to collaborate is fundamental. Drop-
Box and Google Docs are two simple examples 
of collaboration based on managing access to 

documents in a shared, centralized repository. How-
ever, there are many other collaboration use cases 

that involve inherently distributed environments. Such 
collaboration requirements can be addressed using 
federation. The IEEE 2302-2021 Standard on Intercloud 
Interoperability and Federation1 was developed to 
enable federation for data and service sharing in 
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heterogeneous distributed environments, including 
edge computing, sensor networks, and the Internet of 
Things. Furthermore, general federations can be used 
to federate resources at any level in the system stack, 
whether they are bare-metal or virtualized

The term federation gets used informally to mean 
different things. Sometimes it denotes just a vague 
notion of “sharing” by some undefined means. Other 
times federation is used to denote what is actually 
just the aggregation of data. For this IEEE standard, 
the term federation strictly means the instantiation 
of virtual trust domains. These trust domains consti-
tute purpose-built, federation instances where the 
discovery and access of shared resources are strictly 
controlled by well-defined identities, attributes, 
authorizations, and policies.

The need for this kind of collaboration has been 
long recognized. Earlier work used the term Secure 
Virtual Enclaves2 to denote a collaboration environ-
ment for distributed application objects. During the 
early 2000s, the term Virtual Organization was coined 
to denote shared environments that collaborators 
could join and share resources.3,4 With the advent of 
cloud computing, cloud federation was recognized as 
a high-priority collaboration requirement in the NIST 
Cloud Computing Technology Roadmap.5 Pursuant to 
this need, NIST and the IEEE launched a joint federa-
tion project. NIST extended the NIST Cloud Computing 
Reference Architecture6 to become the NIST Cloud 
Federation Reference Architecture.7 IEEE subse-
quently defined the IEEE 2302-2021 standard based on 
the NIST model.

In the course of this work, it became clear that the 
security enclaves and virtual organizations of previ-
ous work were fundamentally federation instances, 
where a federation instance is a virtual administrative 
domain. It is a domain that can be administered like any 
other domain, except that it is virtual and not part of 
any one organization. A federation instance can also be 
called a distributed trust domain. It is a trust domain 
with a perimeter that is distributed and virtual, that is, 
software-defined. This standard codifies the funda-
mental model and core API for this approach.

To motivate the reader, the next section describes 
a number of end-user application domains that 
fundamentally need federation to provide definite 
societal benefits. This is paired with a short review of 

federation-related systems and how they compare to 
the IEEE 2302-2021 approach. After this, basic federa-
tion terms and concepts are introduced prior to intro-
ducing the Federation Hosting Service (FHS) model 
and its APIs. For true, wide-spread adoption to occur, 
a number of additional supporting capabilities need to 
be incorporated in the overall architectural approach. 
These are described in the subsequent section, prior 
to ending with the Conclusions.

APPLICATION DOMAINS
Many application domains involve inherently distrib-
uted environments but cannot be fully and effectively 
realized because of the lack of standardized federa-
tion tooling. Here are some high-level examples:

›› Cloud Bursting: Occurs in situations where the 
capabilities of a primary cloud are expanded 
by using an external cloud. One motivation for 
cloud bursting is a datacenter with a private 
cloud needs to use additional cloud resources 
from a public cloud when its capacity or capa-
bilities are exceeded. However, in other circum-
stances, access to specialized hardware or 
localized data, alleviating resource constraints, 
and distributing costs to additional resources 
are the driving factors. The motivation for using 
federation is to uniformly manage access and 
authorization at the cloud infrastructure level. A 
concrete use case described below.

›› International Disaster Response: Effective 
large-scale disaster response requires govern-
ments, multi-national organizations, and 
officials in the affected regions to securely 
share information for accurate situational 
awareness. Outside of the disaster region, 
information sharing is critical for the effective 
planning and delivery of relief supplies. Inside 
the region, relief agencies must coordinate with 
the first responders even though the in-region 
infrastructure will be degraded. This secure 
information sharing can be managed as a 
federation instance where data access is based 
on stakeholder authorizations.

›› Virtual Mission Infrastructures: Modern 
organizations must collaborate with each other 
and with external mission partners for their 
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intelligence and business goals. This encom-
passes the acquisition and dissemination of 
data from different data producers and consum-
ers. Federation directly supports the notion of 
virtual mission infrastructure whereby mission 
partners can access the data needed based on 
authorizations regardless of source.

›› National Strategic Computing Reserve: The 
National Strategic Computing Reserve8 is 
an initiative being developed by the National 
Science and Technology Council. The motiva-
tion is to have a connected reserve of compute 
resources that is available during times of 
national emergency. This strategic reserve 
could support efforts such as the COVID-19 
HPC Consortium for work in bioinformatics, 
epidemiology, and molecular modeling. The 
planned NSCR Implementation and Operations 
have specifically identified the need for dynamic 
federation across NSCR stakeholders to manage 
the integration and use of resources.

›› Federated Analytics: The Confidential Comput-
ing Consortium has identified a number of use 
cases for Trusted Execution Environments (TEE) 
and is developing a tool set to support them. The 
Federated Analytics use case9 involves a remote 
user that exports data that is encrypted until 
it enters the hardware-protected TEE memory. 
The analytics are executed and the results are 

encrypted and returned to the remote user. 
The authorizations to discover and use such 
remote TEE analytics can be managed as part of 
a federation.

CLOUD BURSTING USE CASE
A cloud bursting solution for a given cloud is tied to 
that burst cloud’s computation orchestrator, data 
storage, and other cloud-specific components under 
the service provider control. Figure 1 (left) illustrates 
where a client/developer has access to a primary cloud 
with its specific Virtual Machines Orchestration mech-
anism to support Container deployment (Orchestra-
tion + Registry), its own Identity Management and 
Data Store. This primary cloud owner has negotiated 
access to “Burst Cloud A” from a public cloud provider, 
as well as “Burst Cloud B” from another entity.

Currently, a primary cloud owner has to implement 
case-by-case methods for its client-specific require-
ments on Burst Clouds A and B such that they appear 
transparent to the user. A Virtual Private Connection 
(VPC) is created with both clouds. Identity is negoti-
ated by the primary cloud in order to enable access 
and billing of resources, and the containerized applica-
tion is transferred from the primary cloud’s container 
registry to the burst cloud’s own registry. Finally, in 
order to limit cost, only a known subset of data that 
the application would use is copied over to the remote 
cloud. When an application is set to be executed on 
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16	 Cloud Continuum�  Vol. 2, No. 1,  2022

FRONTIERS IN SOFTWARE, ARCHITECTURE, AND STANDARDS

those burst clouds, they need to be run using the 
orchestration mechanism specific to each cloud, 
container orchestration or task workload. Each one of 
these operations is dependent on the burst cloud, and 
requires a specific implementation using that cloud’s 
service level API.

With cloud federation, in Figure 1 (right), a com-
mon set of APIs governs the interactions between the 
primary cloud and each burst cloud, which alleviates 
implementing burst cloud-specific solutions. The 
primary cloud owner can use the Cloud Federation 
API to initiate each burst cloud interaction, such that 
each burst cloud represents it in its own local API. This 
simplifies the implementation and integration to addi-
tional potential burst clouds.

FEDERATION-RELATED SYSTEMS
Given the fundamental need for distributed col-
laboration, a number of federation-based and 
federation-related systems have been built and are 
operational. These are, however, limited point solu-
tions and narrow in purpose. They include

›› R&E Federations: Many Research & Education 
federations exist to serve academic require-
ments. The most prominent examples are 
InCommon10 and eduGAIN.11 InCommon works 
by maintaining the metadata, which is a flat 
file of Identity Providers and Service Providers. 
Academic participants can download the latest 
metadata for Identity and Service Providers 
that can be used. eduGAIN is a global academic 
interfederation service. eduGAIN works by con-
solidating multiple national metadata registries 
into an international metadata registry. Many 
other federation-related systems exist (EGI, 
EOSC, Gaia-X, eduRoam) but cannot be covered 
here for lack of space.

›› Dataverse: Dataverse12 was developed to enable 
institutions and projects to share data through a 
proxy approach. Institutions deploy a Dataverse 
proxy and configure it to peer with other institu-
tion’s proxies. Data owners can register their 
data and make it discoverable. Dataverse has an 
extremely rich API for doing all manner of opera-
tions on data of all types, shapes and sizes. The 
proxy approach that the IEEE 2302-2021 model 

uses has strong parallels to that of Dataverse. 
Hence, 2303-2021 has many of the same flex-
ibility for supporting different deployment and 
governance requirements.

›› OpenStack: The OpenStack Keystone v3 
service13 has basic support for the federation 
of cloud infrastructure services. This was 
developed with the goal of supporting 
hybrid-cloud business models, and allowing 
one OpenStack cloud to cloud-burst into 
another. The approach enables an administra-
tor to configure their Keystone to federate-in 
and federate-out with other specific Open-
Stack installations. Federate-out enables the 
local Keystone to act as an Identity Provider for 
a remote Keystone. Federate-in enables users 
from remote OpenStack installations to invoke 
services on the local OpenStack.

›› Secure Production Identity Framework for Every-
one (SPIFFE): The SPIFFE model,14 developed 
by the Cloud Native Computing Foundation, 
manages cryptographic identities at the service 
mesh level within trust domains. The SPIFFE 
model supports identity federation across 
trust domains by exchanging trust bundles of 
trusted identity information. Of course, manag-
ing general federations will require SPIFFE to 
be augmented to manage resource discovery, 
access, policies, and so on.

A key observation here is that all of the application 
domains mentioned would benefit from purpose-built, 
on-demand, federations. Rather than one “flat” 
federation, purpose-built feds can define their own 
“rules of the road” governing what the members can 
do to achieve common goals. As a distributed trust 
domain, purpose-built federations can have their own 
identity credentials that are meaningful, appropriate, 
and trusted. The ad hoc federation of trust domains 
requires the interoperation of identity silos that were 
not designed or intended to do so. In this case, attri-
bute release becomes a common problem since it may 
not be appropriate to expose some user attributes 
in external environments. Having a standards-based 
approach to general federation wherein membership 
identity, resource discovery and access can be uni-
formly managed is a great advantage.
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The data sharing capabilities 
of Dataverse are a tremendous 
achievement, but the ability to 
manage remote analytics on data, 
such as, services, would benefit 
many application domains. While 
federating cloud infrastructure 
services is a significant use case 
by itself, federation can be done at 
any level in the system stack and 
for arbitrary, application-level ser-
vices. This is even true for service mesh and zero-trust 
architectures where a limited form of federation has 
been implemented. However, service mesh-based sys-
tems will still need egress/ingress points to interact 
with larger, distributed environments.

In all of these cases, a general, standards-based 
approach to managing security boundaries and trust 
domains—federations—wherein the discovery and 
access to services for both data access and analyt-
ics can be managed, offers great benefit. To this end, 
the IEEE 2302-2021 is a modular, proxy approach that 
allows a wide variety of deployment and governance 
models, whereby a broad range of application domains 
can be supported.

BASIC FEDERATION CONCEPTS
Figure 2 illustrates the federation challenge in a nut-
shell. Each trust domain has an Identity Provider (IdP) 
that issues credentials to Users. Those Users pres-
ent their credentials to a Service Provider (SP) when 
requesting service. The SP validates the credentials 
with the IdP before rendering service.

How, then, can a UserA discover and invoke a ser-
vice SPB in a different trust domain? How can SPB man-
age its discoverability in other trust domains? Once 
discovered and invoked, how can SPB validate UserA’s 
credentials and make a proper access decision? These 
are the requirements federation addresses.

Figure 3 illustrates the conceptual federation 

FIGURE 2. Federation in a nutshell.

FIGURE 3. The NIST Cloud Federation Reference Architecture. (Source: NIST SP 500-332.)
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approach defined in the NIST Cloud Federation Refer-
ence Architecture (CFRA) in three planes. In the bot-
tom Trust Federation Plane, two or more trust domains 
exist. To achieve common goals, these domains decide 
to collaborate. To do so, they must establish trust (1). 
The exact criteria of trust depend on the nature of the 
common goals, how the collaboration will be operated, 
and the participant’s risk tolerance. Once this is done, 
each site can deploy a Federation Manager (2) in the 
conceptual Federation Management Plane. Based on 
the trust among the participants, these Federation 
Managers establish Secure Communication (3). This 
communication enables the Federation Managers to 
maintain consistent state for federation instances—
illustrated here as Federation Foo (4). Federation Foo 
can be said to exist in the Federation Usage Plane. Every 
federation instance has at least one member that is 
the Federation Administrator, or Fed Admin (5), who is 
a user from one of the original trust domains. This Fed 
Admin can grant Foo membership and authorizations 
to other users. Members that are ServiceOwners can 
register service endpoints and define the discovery 
and access policies. All of this information is consis-
tently maintained in the Federation Managers (6). 
Finally, Foo members can discover and invoke services, 
based on their authorizations in Foo (7).

From a conceptual perspective, each federation 
instance can be considered a Virtual Administrative 
Domain. It is an administrative domain, much like any 
other. It has an administrator and policies that define 
its “rules of the road”. It is virtual in that it does not 
“belong” to any one physical organization. The term 
Distributed Trust Domain can also be used. It is a trust 
domain where identity credentials are trusted and 
access decisions can be made, but it is distributed 
across the participant’s infrastructures.

All of this is to give the user—a federation mem-
ber—a consistent view and ability to interact with 
federation resources, as illustrated in Figure 4. After 
authentication to a federation, the user can use ser-
vices and access data based on their authorizations, 
regardless of who owns the resource. Resource own-
ers, however, retain unilateral control over the discov-
ery and access policies for their resources.

Managing security perimeters and trust bound-
aries is a fundamental concept and the essence of 
the FHS model. Likewise, Zero Trust Architectures 

(ZTAs)15 are based on a set of design tenets to define 
and to manage trust boundaries. These design tenets 
map neatly to federations such that the notion of Zero 
Trust Federations is a natural extension.16

THE FHS MODEL AND API
As a reference architecture, the NIST CFRA is inher-
ently conceptual. Its purpose was to thoroughly under-
stand and organize the roles and entities in the feder-
ation design space. The IEEE 2302-2021 SIIF casts the 
conceptual Federation Manager model into a concrete 
Federation Hosting Service (FHS) model and its associ-
ated APIs, as illustrated in Figure 5.

Each FHS has three APIs:

›› The FHS Operator API: A FHS has a FHS Opera-
tor, in much the same way a web server has 
an operator. The FHS Operator starts the FHS 
and ensures that it stays up and running The 
FHS Operator configures the FHS for peering 
with other FHSs. As a privileged operation, the 
FHS Operator grants FedAdmin membership to 
specific users.

›› The FHS Member API: All members interact 
with the FHS through the Member API. There 
are three, pre-defined member roles associated 
with three attributes: FedAdmin, ServiceOwner, 
and simply Member. A FedAdmin can create 
new federation instances, grant membership in 
that instance, define additional attributes, grant 
them to members, and connect with external 
monitoring tools. ServiceOwners can register 
service endpoints and define their discovery and 
access policies based on the defined federation 
attributes. While the general Member attribute 
is pre-defined, the FedAdmin can define any 
number of additional attributes whereby the 
roles and authorizations of any member can be 
properly managed. All members can query the 
FHS for the services available in their instance, 
based on the service discovery policies. Once 
discovered, the services can be invoked, based 
on the access policies.

›› The FHS-FHS API: To provide a consistent view 
of a federation instance, the FHSs must com-
municate through this API. When services are 
registered or attributes defined, this information 
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is propagated. While the SIIF defines this API, it 
does not define the topology of this communica-
tion. Monitored data can also be collocated 
on a per-federation basis, which is supported 
through this API.

The FHS design is essentially a set of peering API 
Gateways that provides a distributed trust domain. An 
FHS proxies service calls in much the same way as an 
API Gateway. Likewise, the endpoints made available 
to members are encoded versions of the endpoints 
registered. As discussed in the CFRA, this approach 
allows a wide variety of deployment and governance 
models to be used. Entire federations could be hosted 
on a single FHS that everybody trusts. Alternatively, 

each participating organization could deploy and 
configure their own FHS, which serves as their ingress 
point to larger federated environments. By way of 
analogy, a set of FHSs can be considered the “railroad 
tracks” on which any number of federation instances 
can run.

The API defined in the SIIF only covers the most 
fundamental “core” operations to provide a viable 
federation capability. It relies on many operations 
being manually managed by the FHS Operator or the 
FedAdmins. As federations become more large-scale, 
involve money changing hands, or require regulatory 
compliance, the API will need to be expanded. In the 
SIIF, this was identified as four Federation Capability 
Levels:

FIGURE 4. The user’s perspective.

FIGURE 5. Federation hosting service reference model.
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›› Level 1 (The Core): The core API supports the 
basic operations described above.

›› Level 2: This includes direct support for 
accounting, billing, and auditing. 

›› Level 3: This adds support for legal agreements 
and regulatory compliance.

›› Level 4: Finally, this supports automation across 
the federation lifecycle.

While these levels are used to form a neat hierar-
chy, they actually involve a related set of underlying 
capabilities that need to be built out. This constitutes 
an evolutionary path not only for IEEE 2302 but for 
other federation systems, as well.

BUILDING OUT THE CAPABILITIES
The core API has standardized on a flexible, 
proxy-based design. The next step to FCL 2 is sim-
ply accounting and billing. The core API supports the 
acquisition and collation of basic monitoring data on a 
per-federation basis. However, additional “back-end” 
tools will have to be built that can keep track of who’s 
doing what, resource usage, and so on. Such account-
ing data will have to be evaluated using a cost struc-
ture whereby bills can be periodically presented to 
consumers and timely payments can be made.

All federations are predicated on the establish-
ment of trust. For simple deployments, it is certainly 
possible to establish trust “out of band.” That is to say, 
FHS operators that trust each other can manually con-
figure their servers to establish a secure, communica-
tion channel. However, for larger scale deployments 
at FCL3 and FCL4, trust management will have to be 
more formalized and automated, where possible.

One existing, relevant tool is the OIDC Federa-
tion Specification.17 This standard defines a protocol 
whereby an OIDC installation can traverse a trust 
chain presented by another OIDC installation with the 
goal of identifying a common trust anchor. If a common 
trust anchor is found, trust is said to be established. At 
this point, the OIDC installations exchange JSON Web 
Key Sets after which all communication can be crypto-
graphically signed and encrypted. While this standard 
is very useful, it does not address the issue of what 
criteria defines trust, or what aspects of trust a trust 
anchor may denote.

To define semantically what “trust” means, specific 

sets of trust criteria can be managed in a Trust Frame-
work.18 Here, the satisfaction of any given criteria is 
denoted by a cryptographically signed document, 
called a Trustmark, that is issued by a Trustmark pro-
vider. Trustmark recipients can store these documents 
in a Trust Interop Profile. To establish trust, different 
Trustmark subsets can be presented to a Trustmark 
Relying Party. After the Trustmarks have been vali-
dated, those trust criteria have been established.

Trustmarks could be used to directly support legal 
agreements and regulatory compliance at FCL3. A 
Trustmark could be used to denote the terms of a 
legal contract and that it has been signed. Trustmarks 
could likewise be used to denote regulatory compli-
ance. While well-defined resource discovery and 
access policies are an integral part of the FHS model, 
observing large-scale, real-world policies will require 
that (1) all federation identities and attributes carry 
the necessary semantics, and (2) the policies neces-
sary to enforce regulatory requirements are properly 
implemented and deployed. 

In general, it may be possible that different regula-
tory policies may be conflicting or ambiguous. Such 
situations are, however, outside of the scope of the 
federation infrastructure and must be resolved by the 
regulatory agencies involved.

While things like the OIDC Federation Spec and 
trustmarks help automate trust, further automation 
can be done at FCL 4. From a technical perspective, it 
is entirely possible that a commercial cloud provider 
could operate fleets of on-demand FHSs, in much the 
same way that Content Distribution Networks are pro-
vided on-demand now. Federations could be instanti-
ated on-demand through a set of web menus, or under 
program control. These federations could have a 
global footprint by transparently using the cloud pro-
vider’s backbone network among their data centers.

At any capability level, the federation user experi-
ence cannot be ignored. Widespread adoption will take 
place when end users are presented with an intuitive, 
easy-to-use interface. Several options are possible for 
federations. A user could authenticate to a federated 
environment through a web portal. In this case, a web 
server sits in front of an FHS proxy. The widgets popu-
lated on a web page are determined by a user’s autho-
rizations with a specific federation instance. Another 
possibility is a virtual desktop. Here a remote desktop 
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server sits in front of the proxy. Similarly, when the 
user authenticates, the icons and browsable files that 
are populated on the desktop are determined by the 
user’s authorizations. Yet another possibility is a Jupy-
ter Notebook. Again, when the user authenticates, the 
data sets, analysis tools, documents, and so on, that 
are accessible in the notebook are determined by the 
user’s authorizations.

CONCLUSIONS
The IEEE 2302-2021 model, API, and capability levels 
were derived to standardize key architectural con-
cepts that are the basis for flexibly implementing a 
wide range of federated environments. A number 
of application domains have been identified, along 
with additional capabilities that must be built-out to 
achieve real-world federations, at scale. 

By providing a standardized method for support-
ing inherently distributed collaborations, a strategic 
intent of IEEE 2302-2021 is to jump-start a new tech-
nology market segment around federation tooling 
and provisioning. This will enable vendors to build 
interoperable tools with standardized interfaces. 
Cloud providers will be able to become on-demand 
federation providers. The ultimate goal is to establish 
an economically self-sustaining marketplace for fed-
eration capabilities.
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Partitioning and distributing deep neural networks (DNNs) across end-devices, edge 
resources and the cloud has a potential twofold advantage: preserving privacy of the input 
data, and reducing the ingress bandwidth demand beyond the edge. However, for a given 
DNN, identifying the optimal partition configuration for distributing the DNN that maximizes 
performance is a significant challenge. This is because the combination of potential target 
hardware resources that maximizes performance and the sequence of layers of the DNN that 
should be distributed across the target resources needs to be determined, while accounting 
for user-defined objectives/constraints for partitioning. This paper presents Scission, a 
tool for automated benchmarking of DNNs on a given set of target device, edge and cloud 
resources for determining optimal partitions that maximize DNN performance. The decision-
making approach is context-aware by capitalizing on hardware capabilities of the target 
resources, their locality, the characteristics of DNN layers, and the network condition. 
Experimental studies are carried out on 18 DNNs. The decisions made by Scission cannot be 
manually made by a human given the complexity and the number of dimensions affecting the 
search space. The benchmarking overheads of Scission allow for responding to operational 
changes periodically rather than in real-time. Scission is available for public download*

Keywords- edge computing; deep neural network; DNN partitioning;

I. INTRODUCTION
Deep Neural Networks (DNNs) are integral to image, 
video or speech recognition applications1,2. A DNN is a 
sequence of multiple layer types, such as convolution, 
activation or pooling, that have varying computational 
requirements. The output size of each layer depends 
on the layer type and configuration.

Recently, distributed execution of the DNN across 
the cloud and resources at the edge of the network, 

within the edge computing paradigm3,4,5, has been 
found to be beneficial6,7. The advantages offered 
by using the edge are privacy preservation, reduced 
ingress bandwidth demand, and reduced inference 
times. A distributed execution approach could either 
execute the entire DNN on the edge if there are suffi-
cient compute resources available or act as a pre-filter 
(partially processed) for the input data before it is sent 
in the WAN to the cloud. The edge can* also be an aggre-
gation point in use-cases, for example, a network of 
drones or cameras that are linked to an edge resource. 

*	 https://github.com/qub-blesson/Scission	
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It has also been demonstrated that for data streams, 
the frame drop rate can be reduced at the edge when 
compared to the cloud8. Additionally, resources at the 
edge may be powered by the main lines and may have 
relatively more compute capabilities than the end 
device, thereby providing opportunities for executing 
large DNNs while being sufficiently accurate.

Leveraging the edge provides numerous possibili-
ties for distributing a DNN in addition to those when 
only using the device and the cloud6,7. These possibili-
ties as shown in Figure 1 are: (i) edge-native execution 
of the DNN, (ii) distributed execution across the edge 
and the device, or (iii) distributed execution across 
the cloud, edge and device. In edge-native execution, 
all the layers of the DNN will run on the edge and in 
distributed execution, a specific sequence of layers 
will run on each resource. However, for any given DNN, 
identifying the execution approach that maximizes its 
performance is not a trivial challenge. This is because 
the following three associated questions need to be 
addressed:

Q1.	 Which combination of potential target hardware 
resources maximizes performance? This ques-
tion requires the identification of whether native 
or distributed execution approaches are best 
suited for a given DNN on a set of resources, 
comprising the device, edge, and cloud. Also, if 
there are multiple device, edge or cloud choices, 
which target resource(s) should be selected for 
deploying the DNN.

Q2.	 Which sequence of layers should be distributed 
across the target resource(s) for maximizing 
DNN performance? DNNs can have a large num-
ber of layers with varying computational require-
ments and output sizes. For distributed execu-
tion, the layers at which a DNN is partitioned 
for optimal performance needs to be identified. 
This cannot be done manually because there 
are DNNs that could have a large number of 
layers. For example, DNNs such as NASNetLarge 
has 1041 layers and InceptionResNetv2 has 782 
layers. In addition, DNNs cannot be partitioned 
at all layers (will be discussed in Section II). An 
ad hoc distribution of a DNN that arbitrarily 
selects the sequence of layers would result in 
under-performing DNNs.

Q3.	 How can the performance of DNNs be optimized 
given user-defined objectives or constraints? 
Although addressing Q1 and Q2 will provide 
an ideal partition of a DNN for a given set of 
hardware resources, they may not be optimal 
when user-defined objectives or constraints 
are taken into account. For example, although 
a cloud native execution approach may be ideal 
for maximizing the performance of a DNN, an 
application owner may want to run a specific 
sequence of layers on the edge for enhancing 
data privacy or reducing the volume of output 
data sent to the cloud. If an edge resource has 
to undergo maintenance, then an administrator 
may require the DNN to be redistributed across 

FIGURE 1. Native and distributed DNN execution options on a three-tier resource pipeline (devices may also be called ‘things’).
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the cloud and the device, which would need a 
different partition configuration. 

To address the above challenge and associated 
questions, this paper makes the following research 
contributions:

1.	 Proposes Scission, a tool for automated 
benchmarking of DNNs on a given set of target 
device, edge and cloud resources for determin-
ing the optimal partition for maximizing DNN 
performance.

2.	 Develops the underpinning benchmarking 
approach of Scission that collects benchmark 
data by executing the DNNs on all target 
resources and subsequently identifies whether 
a native or distributed execution approach is 
most suited for the DNN (addresses Q1). For 
distributed execution, it identifies the optimal 
resource pipeline and partitions measured by 
the lowest end-to-end latency (compute time 
on resources and the communication time 
between resources) of the DNN by: (a) pairing 
the most computationally intensive layers 
with capable resources to minimize compute 
latencies, and at the same time (b) selecting 
layers with the least amount of output data as 
potential end layers of a partition to minimize 
communication latencies (addresses Q2). Thus 
the decision-making approach in Scission is 
context-aware by capitalizing on the hardware 
capabilities of the target resources, their 
locality, the characteristics of DNN layers, and 
network condition.

3.	 Provides a querying engine that has less than 
a 50 millisecond overhead to ensure that 
user-define constraints or objectives can be 
taken into account for determining optimal 
partitions that maximize the performance of 
distributed DNNs (addresses Q3).

4.	 An experimental study to demonstrate that 
Scission can facilitate: (a) DNN partitioning 
under different network conditions, (b) DNN 
partitioning under different input data sizes, 
(c) DNN partitioning under user-defined 
constraints, (d) DNN partitioning for comparing 
different target resource pipelines, and (e) the 

identification of the top N DNN partitions that 
maximize performance. It is observed that 
ideal DNN partitioning needs to be context and 
data-driven and it is impossible to determine 
optimal partitions manually. Scission achieves 
these and is a valuable tool for deploying 
context-aware and distributed DNNs in an 
cloud-edge environment. 

The remainder of this paper is organized as follows. 
Section II provides a background to the DNN models 
considered in this paper and presents an overview 
of the underpinning methodology for benchmarking, 
decision-making and querying of Scission. Section III 
presents the results obtained from an experimental 
study on Scission. Section IV presents related work. 
Section V concludes this paper by presenting avenues 
for future research.

II. SCISSION
This section firstly provides a background to DNNs 
and the types of DNNs that are considered in this 
paper, which is followed by observations that led to the 
development of Scission. The architecture, the under-
lying benchmarking approach, the context-aware 
decision-making process, and finally the querying 
capability of Scission are then presented 

A. Background
A DNN is a sequence of layers and is a general term 
that covers all neural networks with multiple hid-
den layers (that is multiple layers between the input 
and output layers)1,2. A DNN may consist of different 
layers and the most common types are as follows: 1) 
Fully-connected layers connect every neuron to all 
neurons in the previous layer with the aim of preform-
ing high-level reasoning. 2) Convolution layers con-
volve the input to produce feature maps of inputs with 
the aim of learning features. 3) Pooling layers apply a 
pre-defined function (maximum or average) to down 
sample the input. 4) Activation layers apply non-linear 
functions and the most commonly used is the rectified 
linear unit (ReLu). 5) A Softmax layer is generally used 
for classification with the aim of generating a probabil-
ity distribution over the possible classes.

In this paper, 18 DNNs as shown in Table I are con-
sidered. The table presents the size of a trained model 
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and its corresponding weights, the total number of lay-
ers in the DNN (including input and output layers), the 
number of valid points for partitioning, and the type 
of the DNN. These models are explored in the context 
of Keras†, an open source neural network library that 
runs on TensorFlow‡. These models are trained on the 
ImageNet database18.

Two categories of DNNs are considered, namely 
linear and branching. In a linear DNN, the neural net-
work is sequential - the input of one layer is connected 
to the next. This results in a singular path between the 
first and last layers as seen in Figure 2a. Figure 3 shows 
the execution time and the output data size of the 23 
different layers of VGG16, an example linear model 
(executed on the ‘Cloud’ resource shown in Table II). 
It is noted that the layers have varying execution time 
and the output sizes of the layers 
vary. 

If a linear DNN that has N lay-
ers needs to be distributed across 
two resources, then a partitioning 
approach would need to create 
two partitions of the DNN. The 
first partition would consist of 
a sequence of the first x layers 
and the second partition would 
consist of N − x layers. The output 
of the xth layer would need to be 
provided as an input layer for the 
second partition. DNNs naturally 
lend themselves to distributed 
execution as their segmented 
structure provides rational points 
to partition. There are N − 2 poten-
tial partitioning points (rather than 
N − 1) since a partition configuration in which the first 
partition comprises only the first layer, results in the 
second partition containing a duplicated input layer. 
Figure 2a provides an example of a linear DNN that is 
distributed across a resource pipeline consisting of 
the device, edge, and cloud. The red connectors show 
the valid partitioning points in the linear model. 

On the other hand, in a branching DNN, a layer may 
be connected to more than two layers which results 
in parallel paths between the first and last layers. 

†	 https://keras.io
‡	 https://www.tensorflow.org/

Partitioning a model in a parallel region can lead to syn-
chronization issues and may add additional commu-
nication overhead as multiple metadata outputs will 
need to be transferred from one resource to another8. 
Therefore, layers within a branch are grouped together 
as a block of layers and treated as a single entity. 
This reduces the number of partitioning points (for 
example, the ResNet50 DNN has 177 layers, but only 
23 valid partition points as shown in Table I). Figure 4 
shows the execution time and the output data size of 
the 25 different entities (layers and blocks are identi-
fied by the layer numbers) of ResNet50, an example 

DNN Model Size(MB) Layers Partition Type 
   points 

Xception [9]  88  134  13  B
VGG16 [10]  528  23  21  L
VGG19 [10]  549  26  24  L
ResNet50 [11]  98  177  23  B
ResNet101 [11]  171  347  40  B
ResNet152 [11] 232  517  57  B
ResNet50V2 [11]  98  192  15  B
ResNet101V2 [11]  171  379  15  B
ResNet152V2 [11]  232  556  15  B
InceptionV3 [12]  92  313  18  B
InceptionResNetV2 [13]  215  782  60  B
MobileNet [14]  16  93  91  L
MobileNetV2 [15]  14  157  65  B
DenseNet121 [16]  33  429  21  B
DenseNet169 [16]  57  597  21  B
DenseNet201 [16]  80  709  21  B
NASNetMobile [17]  23  771  4  B
NASNetLarge [17]  343  1041  4  B

TABLE 1. Pre-trained DNN models from Keras used in this 
paper; Type: L - linear, B - branchings.

(a) Linear DNN

(b) Branching DNN

FIGURE 2. An example of partitioning a linear and branching DNN across the entire 

resource pipeline comprising device, edge and cloud. An example of a block is 

shown in Figure 2b (Layers 2-5). Red connectors between layers/blocks are valid 

partitioning points. Blue connectors are inter-resource communication.
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branching model. Again the variable execution time 
and output data size of layers/blocks are noted. Figure 
2b shows an example of a branching DNN that is dis-
tributed across the device, edge and cloud. Layers 2-5 
are considered as a single block.

The above highlights that DNNs may have a large 
number of layers and may take the form of linear or 
branching models. The execution time of individual 
layers and the output size vary for each layer. If a DNN 
needs to be distributed across multiple resources, it 
would be impossible to manually determine efficient 
partition configurations. This is due to the poten-
tially complex structure of a DNN and a large search 
space arising from the combination of partitioning 
points, target hardware resources, and optimization 

criteria. Therefore, an automated 
approach for DNN partitioning is 
required.

B. Motivation
Scisssion proposed in this paper 
is designed on the following six 
practical observations to make it 
widely applicable for maximizing 
the performance of DNNs:

(i) 	 DNN partitioning must account 
for multiple resource tiers in 
cloud-edge continuum. Many 
options for distributing large 
DNNs become available as 
more resource tiers between 
the cloud-edge continuum 
become accessible for comput-
ing. The approach for identify-
ing optimal partitions of DNNs 
should scale across resource 
tiers. This paper considers the 
device, edge and cloud tiers.

(ii) 	DNN partitioning must be based 
on empirical data obtained from 
the underlying hardware rather 
than based on estimates. A 
large body of existing research 
estimates optimal partitions by 
relying on predicted perfor-
mance on a given resource 

by making assumptions of the target hardware 
platform. However, modern hardware is known to 
have complex processor and memory architec-
tures that sometimes results in a non-linear rela-
tionship between performance and the amount 
of resource19. Hence, empirical data based par-
titioning will be more reliable than alternate 
approaches.

(iii) 	 DNN partitioning must be able to identify a 
set of performance efficient partitions. This is 
important because the most efficient DNN par-
titions may only have a negligible improvement 
over the other partitions, which may be more 
practical due to organizational or geo-political 
reasons.

FIGURE 4. Average execution time (of five runs) and output data size of each layer 

of ResNet50 on a ‘Cloud’ resource (refer Table II).

FIGURE 3. Average execution time (of five runs) and output data size of each layer 

of VGG16 on a ‘Cloud’ resource (refer Table II).
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(iv) 	 DNN partitioning needs to be context-aware 
across multiple dimensions. Identifying perfor-
mance efficient partitions is not only dependent 
on DNN layer characteristics and output 
data. Performance is affected by hardware 
capabilities of the target platform, resource 
locality, load and failures, and network condition 
between resources. These dimensions need to 
be taken into account.

(v) 	 DNN partitioning must account for user-defined 
objectives or constraints. A performance effi-
cient partition obtained by optimizing against 
the dimensions described above may not always 
be ideal. A human must be able to specify con-
straints as input to the partitioning process. For 
example, an application administrator may want 
a particular sequence of layers to be executed 
on an end device for retaining intermediate data 
of a few layers on the device although it affects 
the overall end-to-end latency.

(vi) 	 Practical DNN partitioning must be rapid. 
Variations in network conditions and changes 
to resource workloads may affect the optimal 
partition points of a DNN. For example, the 
available bandwidth to a drone may increase 
as it navigates away from a low coverage area. 
This may result in the DNN to be partitioned 

from device-native (which may be less 
energy efficient) to be distributed across the 
device-edge-cloud. This repartitioning needs to 
occur with low overheads to be advantageous 
in real-world use (the worst case prediction for 
Scission only takes 0.05 seconds on the cloud).

C. Partition Methodology
The six step methodology for automated partition-
ing adopted by Scission is shown in Figure 5 and 
described below:

Step 1: Parse the DNN to find valid partitioning points. 
As presented in Section II-A the DNN is parsed to 
identify valid partitioning points. For a linear DNN this 
is straightforward, where as for a branching DNN, the 
parallel paths need to be identified. Layers within the 
parallel path are considered as a single entity, referred 
to as block. As shown in Figure 5 the red connectors 
show the valid partitioning points.

Step 2: Partition into individual layers/blocks. This 
step ensures that the DNN is partitioned into distinct 
sub-models with individual layers or blocks for the 
purposes of benchmarking. It should be noted that 
each sub models requires an input layer to facilitate 
the processing of the output from the previous layer.

FIGURE 5. The underlying six-step benchmarking and partitioning methodology of Scission.
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Step 3: Benchmark each layer/block on target hardware 
resources. In this step, given a set of target hardware 
resources, such as the device, edge, or cloud, each layer/
block is benchmarked five times. The average execu-
tion time and the output data size is recorded. The 18 
DNNs shown in Table I are considered in this paper.

Step 4: Create partition configurations from bench-
mark data. The benchmark data comprises the average 
execution time of each layer/block. The communica-
tion overhead to transfer output data across different 
resources is calculated from user-provided data, such 
as the average bandwidth available. This data is used 
to exhaustively develop partition configurations such 
that the end-to-end latency (compute and communi-
cation overheads) of all combinations of layers/blocks 
paired to different resources are known.

Two types of partition configurations are consid-
ered by Scission, namely native and distributed as 
shown in Figure 1. Native partition configurations are 
those in which all layers/blocks execute on a single 
resource (for example, device-native, edge-native, or 
cloud-native). Distributed partition configuration are 
those in which the DNN collaborates across multiple 
resources by executing the layers/blocks on multiple 
resources (for example, distributed execution across 
device-edge, device-cloud, and device-edge-cloud).

Step 5: Rank partition configurations. Once all parti-
tion configurations have been generated, they are 
ranked. The ranking may be generated by optimizing 
against end-to-end latency (additional objectives, such 
as minimum data transfer across resources, or a com-
bination of these can be provided in Step 6). The Top N 
partition configurations are presented to the user.

Step 6: Query Scission for partition configurations 
given user-defined constraints. Scission interacts 
with the user by not only providing the default rankings 
produced in Step 5, but also accepting user-defined 
constraints provided as queries. The example shown 
in Figure 5 is the result of executing the query for the 
fastest DNN partition configuration that collabo-
rates between all (device, edge and cloud) resources. 
Queries are not limited to only minimizing execution 
latency or bandwidth. For example, they may be con-
structed to:

›› Apply bandwidth constraints (for example, the 
edge resource must not transfer more than 1MB 
to the cloud).

›› Apply execution time constraints (for example, 
the execution time on the device must not 
exceed 1 second, or 30% of the overall execution 
time must be on the edge).

›› Include or exclude resources (for example, distri-
bution must not include the cloud, or execution 
must be edgenative).

›› Specify layer/block execution locations (for 
example, Layer 7 must execute on the edge).

The Top N partition configurations are presented 
to the user. More complex queries can be provided to 
Scission. Examples include: (i) Find the partition con-
figuration that results in the lowest execution latency, 
but the device and edge must not transfer more than 
1MB. (ii) Find partition configuration that has the 
lowest inter-resource data transfer, but n layers are 
executed on the edge. (iii) Find partition configuration 
with lowest end-to-end latency and does not use the 
cloud and at least half of the layers/blocks must be 
executed on the device.

III. EXPERIMENTAL STUDIES
This section presents the experimental test bed and 
software set up and is followed by the results obtained 
from Scission.

A. Setup
Experiments are carried out on hardware resources 
shown in Table II to reflect a range of resources typi-
cally used. Two edge resources are employed with dif-
ferent hardware characteristics. Two cloud resources 
are used with and without a GPU.

To emulate real world network performance, 
Scission uses the average network latency and band-
width for: (i) 3G (1.6 Mbps upload and 67ms network 
latency)§, (ii) 4G (12.4Mbps upload and 55ms net-
work latency)§, and (iii) wired home fibre broadband 
(20Mbps upload and 20ms network latency)¶. A 
network latency of 25ms and a bandwidth of 50Mbps 
is assumed for all edge-cloud connections. Results 
reported are average of five experimental runs.

§	 https://bit.ly/3hrGk4N
¶	 https://bit.ly/2EfHjqr
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The Scission tool is imple-
mented in Python and requires 
Tensorflow 2.0+ to be installed. 
Tensorflow is an end-to-end open 
source machine learning platform, 
which is used as the back end to 
run the pre-trained DNNs provided 
by Keras. NumPy is used for pro-
cessing multi-dimensional arrays that are produced as 
layer outputs.

Scission makes two assumptions. Firstly, the 
communication overheads can be calculated as 
network latency + data size/bandwidth. The second 
assumption is that the total inference time of a model 
is the sum of the execution times of individual layers 
or blocks. This assumption has been validated in previ-
ous research 20,21

B. Results
The experimental results obtained from Scission are 
exhaustive and discussing them entirely is outside the 
scope of this paper. However, the experiments and 
results to demonstrate the following five capabilities 
of Scission are considered in this paper: 1) DNN par-
titioning under different network conditions, 2) DNN 
partitioning under different input data sizes, 3) DNN 
partitioning under userdefined constraints, 4) DNN 
partitioning for comparing different target hardware 
resource pipelines, and 5) the top N DNN partitions. 
Sample results for executions on VGG19, ResNet50, 
MobileNetV2, InceptionV3 and DenseNet169 are pre-
sented. All experiments in this paper use a 150KB size 
input image unless otherwise stated.

The results from the above capabilities address 
Q1: ‘Which combination of potential target hardware 
resources maximizes performance?’ that was posed in 
Section I, but is specifically considered by the fourth 
capability. Similarly, all five capabilities will determine 
the best sequence of layers (or partition configura-
tion) to address Q2: ‘Which sequence of layers should 
be distributed across the target platform for maxi-
mizing the DNN performance?’ The third capability 
specifically addresses Q3: ‘How can the performance 
of DNNs be optimized given user-defined objectives or 
constraints?’

The time taken by the Scission partitioning meth-
odology (overhead) is shown in Table III using an input 

image of size 150KB. The time on the cloud, edge and 
device is proportional to the number of layers in the 
DNN model. Gathering benchmark data for the DNNs 
on the device takes the most time as expected. How-
ever, if a dedicated device were to be utilized, then 
the DNN will only need to be benchmarked once in an 
offline manner. The edge resources can benchmark all 
DNNs (except NASNetLarge) in under half a minute. 
Given these overheads, the methodology cannot be 
used in a highly transient environment, but can be 
used to respond to operational changes periodically. 
The querying time on the benchmark data is just under 
50 milliseconds if two resource (cloud-edge-device) 
pipelines are considered.

1.	 DNN partitioning under different network 
conditions: The results obtained from Scission 
highlight that DNN partitioning is affected 
by different network conditions (the optimal 
partitions for the same DNN may be different 
under different network conditions). 
	 Figure 6 and Figure 7 show that the lowest 
end-to-end latency execution of VGG19 and 

Resource CPU Arch. CPU freq.  CPU RAM GPU OS
  (GHz) cores (GB)

Device  ARMv8  1.5  4  4  N/A  Raspbian Buster
Edge (1)  AMD64  4.5  2  4  N/A  Ubuntu 18.04 LTS
Edge (2)  AMD64  3.7  4  8  N/A  Ubuntu 18.04 LTS
Cloud  AMD64  4.5  8  32  N/A  Ubuntu 18.04 LTS
Cloud   AMD64  4.5  8  32  Nvidia  Ubuntu 18.04 LTS
     GTX 1070

TABLE II. Specification of the target hardware resources used.

DNN Model Cloud Cloud Edge (1) Edge (2) Device

Xception  2.95  2.11  7.07  6.78  36.10
VGG16  3.85  1.93  8.52  9.83  44.88
VGG19  2.98  1.92  8.43  11.86  51.82
ResNet50  3.12  1.92  6.65  5.27  29.91
ResNet101  6.03  5.19  12.42  9.55  57.67
ResNet152V2  9.37  7.86  18.41  14.17  82.11
ResNet50V2  3.31  2.77  6.59  5.27  33.30
ResNet101V2  5.97  4.96  11.43  9.28  52.27
ResNet152V2  8.85  7.49  17.27  14.23  77.99
InceptionV3  4.93  4.36  9.46  7.48  43.46
InceptionResNetV2  11.67  10.14  22.64  18.01  105.73
MobileNet  1.66  1.52  3.60  2.97  14.09
MobileNetV2  2.63  2.48  4.70  3.64  22.37
DenseNet121  5.88  5.45  10.67  8.22  48.40
DenseNet169  8.26  7.73  14.64  11.31  66.66
DenseNet201  9.94  9.24  17.78  14.09  82.34
NASNetMobile  10.40  9.95  17.42  13.02  77.45
NASNetLarge  18.69  13.99  38.14  35.25  172.27

TABLE III. Overhead (in seconds) in benchmarking DNNs 
using the Scission partitioning methodology.
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ResNet50, respectively, under 3G and 4G 
conditions would be obtained if the DNN 
is cloud-native. This is because the cloud 
resource in terms of its execution performance 
is much faster than the device and edge 
resource utilized in this experiment. The com-
munication overhead of 800ms of sending the 
image from the device to the cloud does not 
offset the compute performance obtained on 
the resource. 
	 However, Figure 8 demonstrates the 
end-to-end latency of MobileNetV2 (that has 
sub-second execution performance when it 
is device-native) under 3G and 4G conditions. 
In the 3G context, the DNN has the least 
inference time when the DNN is device-native. 
However, in the 4G context, given a lower 
latency network, the DNN is performance 
efficient when it is cloud-native. The above 
highlights the capability of Scission to identify 
optimal DNN partitions under different 
network conditions.

2.	 DNN partitioning under different input data 
sizes: If the input image size were increased 

from 150KB to 170KB, then for ResNet50 under 
3G conditions, a device-native execution is 
determined by Scission to be performance 
efficient as shown in Figure 9. This is in con-
trast to a cloud-native execution that Scission 
identifies as performance efficient for a 150KB 
input image size (Figure 7a).

3.	 DNN partitioning under user-defined con-
straints: Figure 10 and Figure 11 are exemplars 
of performance efficient distributed execution 
of the DNN when the constraint imposed 
is that the entire resource pipeline must be 
employed. The results are shown for 3G and 4G 
network conditions for VGG19 and ResNet50. 
The difference in the optimal DNN partition is 
immediately evident. For example, the optimal 
partition configuration for VGG19 in a 3G 
network is: device executes Layers 0-23, edge 
executes Layer 24 and cloud executes Layer 
25 (refer Figure 10a). However, in a 4G network, 
the optimal partition configuration is: device 
executes Layers 0-6, edge executes Layers 7-22, 
and cloud executes Layers 23-25 (refer Figure 
10b).

(a) 3G (b) 4G

FIGURE 7. DNN partition of ResNet50 with lowest end-to-end latency for different network conditions.

(a) 3G (b) 4G

FIGURE 6. DNN partition of VGG19 with lowest end-to-end latency for different network conditions.
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4.	 DNN partitioning for com-
paring different target hard-
ware resource pipelines: 
Two examples from Incep-
tionV3 and DenseNet169 
highlight that Scission can 
compare target hardware 
resource pipelines specified 
by a user for identifying 
which resource pipeline is 
performance efficient. 
     Figure 12 considers the 
execution of InceptionV3 
when the edge resource 
must be used in a pipeline 
and the device is connected 
to the edge resource via a 
wired connection for two 
different edge resources. 
Although the edge-native 
execution of InceptionV3 on Edge (1) and Edge 
(2) differed only by 0.07 seconds, the DNN parti-
tion configuration when the resource pipeline 
has Edge (1) and Edge (2) is different. The DNN 
partition is sensitive to the hardware capabili-
ties of different resources in the pipeline. Since 
these are subtle, it would not be evident to a 
human, and therefore demonstrates the value 
of a tool, such as Scission. 
     Figure 13 and Figure 14 considers the 
distributed execution of InceptionV3 and 
DenseNet169, respectively, for the entire 
resource pipeline (device, edge and cloud) 
when a device is connected to the edge 
through a wired connection for two different 

(a) 3G

(b) 4G

FIGURE 8. DNN partition of MobileNetV2 with lowest endto-end latency for differ-

ent network conditions.

FIGURE 9. DNN partition of ResNet50 with lowest end-

toend latency in a 3G network when input data size is 170KB 

(instead of 150KB).

(a) 3G (b) 4G

FIGURE 10. DNN partition of VGG19 with lowest end-to-end latency when the constraint imposed is that the device, edge 

and cloud must be used in different networks.
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(a) 3G (b) 4G

FIGURE 11. DNN partition of ResNet50 with lowest end-toend latency when the constraint imposed is that the device, edge and 

cloud must be used in different networks.

(a) Edge (1) (b) Edge (2)

FIGURE 12. Lowest latency executions of InceptionV3 when the edge must be used in a wired network with the device.

(a) Edge (1) (b) Edge (2)

FIGURE 13. Lowest latency executions of InceptionV3 when the device, edge and cloud (entire resource pipeline) must be used 

in a wired network with the device.

(a) Edge (1) (b) Edge (2)

FIGURE 14. Lowest latency executions of DenseNet169 when the device, edge and cloud (entire resource pipeline) must be 

used in a wired network with the device.
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edge resources. For the same resource pipe-
lines it is noted that for InceptionV3 there is no 
change to the partition configuration whereas 
for DenseNet169 the partition configuration 
changes.

5.	 Top N performance-efficient DNN partitions: 
Scission provides a list of potential candidate 
DNN partitions. Table IV shows the top three 
partitions with lowest endto-end latency 
of ResNet50 for four different distributed 
pipelines that use a wired network between the 
device and the edge. 
     Figure 15 shows the DNN partitions with the 
first and second lowest end-to-end latencies 
for ResNet50 when Edge(1) must be used in the 
resource pipeline. The fastest partition requires 
offloading the most layers to the cloud, result-
ing in an end-to-end latency of 0.237 seconds, 
transferring a total of 0.785MB across the 
resources. On the other hand, the second DNN 
partition is an edge-only execution that has an 
end-to-end latency of 0.248 seconds, and only 
requires the input 150KB to be transferred to 
the edge. The benefit of the second partition is 
that it uses a much lower bandwidth than the 
first partition. Scission thus provides a user 
with a list of potential DNN configurations each 
of which might benefit in different scenarios.

C. SUMMARY
The following are observations from the results:

1.	 Scission takes between 1.52 and 38.14 seconds 
for generating the benchmark data for differ-
ent DNNs on the cloud and edge. Due to this 

overhead Scission would be more appropriate 
for responding to operational changes periodi-
cally rather than in real-time.

2.	 DNN partitioning is affected by different 
network conditions. Although a cloud-native 
DNN execution was beneficial for some of the 
examples (VGG19 and ResNet50), it was noted 
that MobileNetV2 presented the possibility of 
both a device-native and cloud-native execu-
tion for 3G and 4G networks respectively.

3.	 A slightly larger input data of 170KB over 150KB 
changes the DNN partition of ResNet50. This 
highlights the potential sensitivity of DNN 
partitioning to data sizes. These are subtle and 
not quickly evident to manual inspection.

4.	 User constraints, such as requiring the use 
of the entire resource pipeline, affects DNN 

Layers End-to-end
latency (s)

Total data
transfer (MB)Device Edge(1) Cloud(GPU)

Device-Edgepipeline
0-1 2-176 - 0.446 0.634
0-91 92-176 - 0.944 0.831
0-175 176 - 0.979 0.008

Device-Cloudpipeline
0-1 - 2-176 0.339 0.635
0-91 - 92-176 0.920 0.803
0-101 - 102-176 0.996 0.803

Edge-Cloudpipeline
- 0-1 2-176 0.237 0.785
- 0-175 176 0.269 0.159
- 0-153 154-176 0.319 0.552

Device-Edge-Cloudpipeline
0-1 2-175 176 0.468 0.643
0-1 2-153 154-176 0.517 1.036
0-1 2-163 164-176 0.523 1.036

TABLE 4. Top 3 DNN partitions with the lowest end-to-end 
latency for ResNet50 across different distributed resource 
pipelines.

(a) First rank (b) Second rank

FIGURE 15. Top two DNN partitions with lowest end-to-end latency for ResNet50 when Edge (1) must be used and the device is 

connected to the edge via a wired network.
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partitions. The sequence of layers on the 
device, edge and cloud change for different 
networks, such as VGG19 and ResNet50. These 
cannot manually be identified.

5.	 Variation in the edge hardware characteristics 
affects DNN partitioning. For InceptionV3 
it was noted that using two different edge 
resources did not result in different partition 
configurations. However, the difference in 
performance between the two edge resources 
resulted in different configurations for 
Densenet169.

6.	 Obtaining a set of ranked configurations can 
help maximize performance in different scenar-
ios. For example, the fastest partition with the 
lowest end-to-end latency for ResNet50 when 
a certain edge resource is to be utilized has 
more layers on the cloud. The second fastest 
partition is edge-native (suitable for enhanced 
privacy). The results that can be observed on 
Scission are exhaustive. The above is only a 
subset of those observations arising from the 
experimental results. The need for such a tool is 
essential as more complex DNNs are appearing 
and is required to optimally leverage the edge 
and maximize the performance of distributed 
DNNs.

IV. RELATED WORK
Many applications have been demonstrated to bene-
fit from using the edge either by running them natively 
on the edge, across the cloud and edge, or across the 
cloud, edge and device22,23,24. DNNs are an example 
application that can be executed natively on a single 
resource, such as a end user device, or on the edge 
or cloud, or in a distributed manner across multiple 
resources6. DNN partitioning is one approach that 
is essential for the distributed execution of DNNs6,7. 
This has gained prominence with the upcoming para-
digms in distributed systems, such as edge comput-
ing3,4,5, because by using an edge resource a series of 
layers of the DNN can be executed closer to the input 
data source, thereby reducing the ingress bandwidth 
demands and end-to-end latency in a resource rich 
environment.

There are two main methodologies that have been 
considered in DNN partitioning for inference (DNN 

partitioning for training is not considered in this paper). 
The first is DNN layer distribution and the second is 
DNN sub-model distribution. DNN layer distribution 
refers to the distribution of a sequence of layers on to 
a resource by assuming that the resource has access 
to the entire pre-trained model and weights25,26,27 
(this methodology will be further considered).

DNN sub-model distribution on the other hand 
refers to slicing the DNN model for different resources 
and does not require the entire model, rather it only 
requires the metadata relevant to the slice of the 
model being executed28,29. IONN introduces the 
concept of incremental offloading in which a DNN 
is partitioned and incrementally uploaded on to an 
edge server so as to enable partial execution of the 
DNN even before the entire DNN is available on the 
edge server28. DeepX partitions the DNN model into 
several sub-models, which are then distributed to 
the edge29.

However, DNN layer distribution is a less intrusive 
method than DNN sub-model distribution as it does 
not require the DNN to be modified. Regardless, 
both methodologies require the identification of 
valid and optimal partitioning points for deploying 
optimal DNN partitions across resources, given the 
numerous combinations that may be possible. Scis-
sion is positioned as a tool to be used by system and 
network administrators for maximizing distributed 
DNN performance using the edge. Therefore, the 
design decision is one that is less intrusive and can 
be broadly applied.

Approaches adopted for determining optimal DNN 
partitions are: (i) Profiling and estimation-based, (ii) 
integer linear programming-based (ILP), (iii) structural 
modificationbased, and (iv) benchmarking-based 
approaches.

Profiling and estimation-based approaches are 
popular and aim to estimate the performance against 
metrics, such as end-to-end latency, energy or a com-
bination, for each layer type in the DNN. Four examples 
of this approach are presented.

Neurosurgeon is one example in which a 
regression-based method is used for estimating opti-
mal partitions between a device and the cloud25. This 
is achieved by building models on the performance 
of individual types of layers and their configuration. 
DeepWear similarly uses a similar approach to train 
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prediction models to estimate latency and energy 
consumption of four popular layer types and their 
parameter combinations across a wearable and 
its paired device30. The models are also trained 
with device-specific latencies and energy predic-
tion models. Musical Chair is another profiling and 
estimation-based approach that develops behavioral 
models that are trained to estimate the latency and 
memory usage of specific layer configurations31. 
Couper is another such approach in which the 
end-toend latency of each potential partition is veri-
fied on a set of resources and then assumed as a direct 
correlation to hardware capability for other resource 
configurations8. These approaches generally work 
well within the space they are trained for. However, if 
a new layer type/configuration or hardware emerges, 
then the estimation models will not be accurate. In 
addition, many of these approaches make assump-
tions regarding the execution behavior of different 
layers on the underlying hardware. It is not entirely 
possible to accurately model the execution profiles on 
complex hardware architectures.

ILP-based approaches have also been considered 
for DNN partitioning. Within the context, the partition-
ing problem is formulated as an ILP problem with the 
aim to find an optimal partition that minimizes the 
inference latency and maximizes accuracy26,32. ILP 
techniques can be time consuming.

Structural modification-based approaches can 
efficiently partition DNNs, but in an intrusive man-
ner. It can be achieved realistically only by modify-
ing underlying libraries of existing frameworks or 
by writing bespoke code for DNNs. However, these 
approaches provide a finegrained control over DNN 
partitioning. Examples include DeepThings33 and 
MoDNN34. DeepThings utilizes fuse tile partitioning, 
in which a DNN is not partitioned horizontally (based 
on layers), rather they are partitioned vertically to 
reduce resource footprint33. MoDNN is developed 
for distributing DNNs across different nodes of the 
same cluster34. Three approaches are presented: 
(i) for partitioning the convolutional layers, biased 
one-dimensional partitioning, (ii) for partitioning the 
weights, modified spectral co-clustering (the fully 
connected layers are dependent on weights), and 
(iii) for partitioning sparse fully connected layers, 
fine-grain cross partition are proposed.

Benchmarking-based approaches are proposed so 
that actual measurements or observations are made 
on the target hardware resource. No assumptions are 
made of the underlying hardware or performance of 
the layers on the hardware and therefore are more reli-
able. In these approaches, benchmarking data of the 
DNN on the hardware is first obtained. Then during 
deployment, a snapshot of the operational environ-
ment (for example, load on the network and compute 
resource) is taken and the optimal partition is calcu-
lated. This approach is minimally intrusive, requires no 
modification to the code, and is a pragmatic solution 
in the complex space of DNNs with many layers (and 
layer types and configurations) and the availability of 
diverse hardware resources, although they cannot 
operate in real-time and can only be used periodically. 
Scission proposed in this paper is therefore positioned 
as a benchmarking-based approach. This approach is 
used by LAVEA for distributed video analytics35.

Other approaches, such as approximation-based 
are also considered in the literature27, but are not con-
sidered here.

V. CONCLUSIONS
This paper presented Scission, a tool for automated 
benchmarking of DNNs on a given set of target device, 
edge and cloud resources for determining the opti-
mal partition for maximizing DNN performance. Scis-
sion is underpinned by a benchmarking approach that 
determines the combination of potential target hard-
ware resources and the sequence of layers that should 
be distributed for maximizing distributed DNN per-
formance while accounting for user-defined objec-
tives. Scission relies on empirical data and does not 
estimate performance by making assumptions of 
the target hardware or the DNN layers. Experimental 
studies were carried out on 18 different DNNs to dem-
onstrate that Scission is a valuable tool for obtaining 
context-aware and performance efficient distributed 
DNNs. Scission can also make decisions that cannot 
be manually made by a human due to the complexity 
and number of dimensions affecting the search space.

Limitations and Future Work: Since Scission relies 
on exhaustive benchmarking and search it cannot 
be used in scenarios that need to account for rapid 
changes (failures or variance) given the time overhead. 
Nonetheless, it would prove useful in scenarios where 
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accuracy of the partition configuration is important. 
Meta-heuristic optimization will be considered to 
rapidly respond to network congestion or resource 
failure. Other metrics, such as monetary costs and 
performance improvements, as well as trade-offs that 
exist among performance gain and costs, and optimal 
partitioning and responsiveness of the approach will 
be considered. The offering of Scission as a service 
will be integrated within a standard orchestration 
framework to monitor and partition DNNs. The cur-
rent work assumes that partitioning a given DNN is 
beneficial and does not account for whether the per-
formance gain may be relatively low. Scission can be 
further extended to determine whether an alternate 
DNN can be selected for performance gain instead of 
partitioning a given DNN.
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