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ABSTRACT 

In order to predict cell population behavior, it is important to 

understand the dynamic characteristics of individual cells. 

Individual induced pluripotent stem (iPS) cells in colonies have 

been difficult to track over long times, both because segmentation 

is challenging due to close proximity of cells and because cell 

morphology at the time of cell division does not change 

dramatically in phase contrast images; image features do not 

provide sufficient discrimination for 2D neural network models of 

label-free images. However, these cells do not move significantly 

during division, and they display a distinct temporal pattern of 

morphologies. As a result, we can detect cell division with images 

overlaid in time. Using a combination of a 3D neural network 

applied over time-lapse data to find regions of cell division activity, 

followed by a 2D neural network for images in these selected 

regions to find individual dividing cells, we developed a robust 

detector of iPS cell division. We created an initial 3D neural 

network to find 3D image regions in (x,y,t) in which  identified cell 

divisions occurred, then used semi-supervised training with 

additional stacks of images to create a more refined 3D model. 

These regions were then inferenced with our 2D neural network to 

find the location and time immediately before cells divide when 

they contain two sets of chromatin, information needed to track the 

cells after division. False positives from the 3D inferenced results 

were identified and removed with the addition of the 2D model. We 

successfully identified 37 of the 38 cell division events in our 

manually annotated test image stack, and specified the time and 

(x,y) location of each cell just before division within an accuracy 

of 10 pixels. 
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1 Introduction 

Characterizing and predicting cell population behavior is critical to 

the efficiency and flexibility in manufacturing cell-based products. 

Characterization is challenging because individual cells within 

populations demonstrate heterogeneous and dynamic 

characteristics.  Individual cells express their properties slightly 

differently and at different rates, and data quantifying the dynamic 

characteristics of large numbers of individual cells over time are 

needed for meaningful characterization.  Image segmentation of 

individual induced pluripotent stem (iPS) cells can be difficult 

because they reside very close to one another in colonies.  In 

addition, each individual cell must be tracked over time as it divides 

into two daughter cells, which is difficult because the morphology 

of these cells does not change significantly while they are dividing. 

Phase contrast images of iPS cells during cell division exhibit very 

different morphology than other stem cell types previously studied, 

such as the C3H10 mesenchymal stem cell line [1,2], in which the 

parent cell rounds up and then splits into two daughter cells. In this 

iPS cell line, the rounding of cells is not obvious (see Figure 1), and 

while features of metaphase appear in phase images, they are 

difficult to capture due to the high level of pixel noise. 

 

We have previously created AI models that locate the nuclei of 

individual stem cells in phase contrast images of iPS cells, by 

training the models with cells containing a fluorescent nuclear 

protein [3, 4] to segment nuclei. However, these models cannot 

capture the nuclei of cells as they divide, and so tracking of cells is 

interrupted at cell division. Recognizing when a cell is undergoing 

division so that its daughter cells can continue to be tracked and 

linked to the parent cell is a critical challenge that still needs to be 

https://doi.org/10.1145/3535508.3545532
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3535508.3545532&domain=pdf&date_stamp=2022-08-07


Semi-supervised 3D Neural Network to Track iPS Cell Division ACM-BCB’22, August 7-10, 2022, Chicago, IL USA F. Surname et al. 

 

 

 

resolved for the automated tracking of individual stem cells within 

a colony. 

 

Efficient automation is essential since we aim to collect many 

images of each of thousands of cells over long periods of time, 

resulting in volumes of data that are too large to rely on manual 

processing. In this study, our intention is to develop a reliable 

mitosis detector that enables tracking of label-free iPS cells in 

phase contrast images.  While fluorescence probes have been used 

to study mitosis, exposure to the wavelengths and intensities of 

light needed to excite fluorescence can be damaging to cells, 

especially when such exposure at short time intervals and for long 

times is required [4].  

 

We begin with a small set of manually annotated images, and then 

greatly expand our training set using semi-supervised learning. A 

large number of different techniques are used in the literature to 

create semi-supervised training data [5-9], which includes both 

labeled and unlabeled training data. Each method is formulated 

from the specific image features of each data set, either by using a 

student-teacher model [5], segmentation of image regions by 

methods other than neural networks [6], including clustering [7] 

and interactive cell segmentation [8], and by using generative 

adversarial networks [9]. 

Here we use a combination of 2D and 3D neural networks to create 

semi-supervised training data: a 3D neural network that locates 

regions of cell divisions, and then a 2D network trained with images 

found by the 3D model to locate dividing cells. 

 

 
Figure 1: Seven time steps that show a single iPS cell (at the 

center of each image tile in the red boxes) in the course of cell 

division. A phase-dense line of chromatin seen in the first 5 

frames is associated with the metaphase stage, which is followed 

by anaphase and telophase stages of cell division. The cell does 

not change shape during these time steps. 

1 Methods 

2.1  Culture and Image Acquisition Protocols 

All images were acquired using a human iPS cell line in which 

Lamin B1 hads been endogenously tagged with mEGFP 

(LamB1:mEGFP) using CRISPR/Cas9 technology generated at the 

Allen Institute for Cell Sciences (WTC-mEGFP-LMNB1-cl210), 

and was obtained from Coriell Institute for Medical Research 

(Catalog # AICS-0013, Camden, NJ). Cells were regularly 

maintained using complete mTeSR medium supplemented with 

Pen/Strep in six well tissue culture treated plates (TPP, Product # 

92006, Switzerland) coated with Matrigel (hESC certified, from 

Corning). Generally, cells were passaged using Accutase when 70 

to 80% confluent and re-plated at 100k to 200k cells per well. 

Immediately prior to imaging, the cell culture media was aspirated, 

the cell culture plate was placed on the microscope stage (Ludl 

Electronic Products, Hawthorne, NY) and maintained at 37 ◦C in a 

custom built incubation chamber (Kairos Instruments, Pittsburgh, 

PA). Time lapse image capture was performed on a Zeiss 200M 

microscope (Carl Zeiss USA, Thornwood, NY) using a Zeiss 10×, 

0.3NA objective (Zeiss part number 420341-9911- 000) and a 

CoolSNAP HQ2 CCD camera (Photometrics, Tucson, Arizona). 

Stage, filters and shutters were controlled with µManager1 open 

source software. The stage was programmed to move from field to 

field with an overlap of adjacent fields of 10%. A summary of the 

data sets used in this paper are given in Table 1.  The time interval 

between images for data sets 1 and 2 was 125 s and the time interval 

between images in data set 3 was 160 s. The sample was exposed 

to light from a low-power LED (centered at 525 nm, Thorlabs, 

Newton, NJ) with Kohler aligned Zernike phase contrast optics. 

The illumination power was 26 µW over a 10 ms exposure time. A 

spatial calibration target was used to determine that each pixel is 

equivalent to an area of 0.394 µm2. 

 

Table 1: Data sets: Images were collected on two separate days, 

Day 1 and Day 2 below. Images from the first day were used to 

create 20 different image stacks in time which were used for 

model training. The smaller test set from Day 2 is used as our 

test data set. 

 

Set  1 2 3 

Day 

collected 

 1 1 2 

Use  training training testing 

Tile #  Tile 0 Tiles 1-19  

Used to 

train 

 Initial 

3D; 2D 

models 

Final 3D 

model 

 

Label  manual automatic manual 

Tile Size   256x256 

x 500 

256x256 x 

500 

256x256 x 

200 

# cell 

divisions 

 46  38 

# human 

identified 

 40  26 

Interval 

between 

images 

 125 s 125 s 160 s 

 

2.2  Manually annotated training data for our 3D 

and 2D models 

A summary of the neural network models used in this study is given 

in Table 2. Initial training data for all models were created from 

data set 1 from Table 1, a stack of 256x256 pixel images over 500 

time frames (256x256x500, in x,y,t). Manual annotations generated 

a list of 40 (x,y,t) positions at which a cell division was seen. The 

following steps (see Figure 2) were carried out to create training 
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data from these coordinates, which were used to train both our 3D 

and 2D models:  

 

Table 2: Neural network models 

 

# Model use Training 

data 

Training 

data set 

1 Initial 3D 

model 

Finds mitotic 

regions in 3D 

image data 

manual 1 

2 Final 3D 

model 

Finds mitotic 

regions in 3D 

image data 

automatic 2 

3 2D sister 

chromatid 

model 

Finds dividing 

cells with sister 

chromatids 

manual 1 

4 2D all 

chromatin 

model 

Find all 

condensed 

chromosomes 

of division 

manual 1 

 

1. At each (x,y,t) location in space and time corresponding to a 

cell division event, a stack of sub-images was processed. 

Each sub-image contained an individual dividing cell in (x,y) 

centered around (x,y) with 21 layers in time, 10 before and 

10 after the labeled point of division. The size of the pixel 

tile was chosen to contain the entire cell as well as the two 

daughter cells. Figure 2a shows 11 of the 21 time steps for a 

dividing cell that was manually annotated. 

2. Manual annotations of dividing cells assigned a pixel value 

of 2 for the phase-dense chromatin, as shown in Figure 2, for 

8-12 time steps per division, depending upon the number of 

steps for which dense chromatin was present. Nuclear pixels 

were given a pixel value of 1. Labeled nuclear pixels overlap 

with those found using our nuclear segmentation model [1,2].  

 

2.3 Training the initial 3D model (Model 1 of 

Table 2) 
 

The following steps were taken to train our initial model: 

1. Pixels corresponding to the nuclear mask in the 

256x256x500 image stack were labeled as class 1 using the 

previously published nuclear segmentation model [1,2]. 

2. Class 1 and class 2 labels from the manually labeled image 

of each mitotic event (steps 1-2 above) were then added into 

the 256x256x500 mask overlaying the class 1 nuclear pixels, 

shown in grey for a single slice in Figure 2c. 

3. Due to GPU memory constraints, the 500 time step image 

was sub-divided into tiles with a smaller number of time 

steps to feed into the network. Overlapping tiles of size 

256x256x16 were created at 4 time step intervals of 16 

consecutive steps. 

4. The 3D tiles fed into the network went through an 

augmentation process. Images were randomly flipped in (x,y) 

and randomly rotated in (x,y), and then a smaller tile size of 

128x128x16 was randomly selected to send into the network. 

Each batch of images (batch size=4, 128, 128,16) is slightly 

different and the dataset covers the entire 256x256x500 

stack. 

5. A 3D U-Net [10] network was then trained on the 

128x128x16 tiles to create Model 1 in Table 2. Full 3D 

convolutions were used in the model. 

 

The 3D U-Net was run using Tensorflow python code. Each phase 

image in time was normalized individually.  We use a z-score 

normalization that puts each image in the same pixel value scale, 

and also handles outliers. All pixel values in the normalized images 

are capped at ±5 standard deviations. Weights are applied to the 

loss terms for the three classes (background, nuclei, chromatin), in 

the ratio of [1.0, 2.0, 40.0]; i.e., a very heavy weight is assigned to 

loss terms for the infrequent chromatin pixels. We used an Adam 

optimizer, and an original learning rate of 1.0e-4. This rate is 

reduced by a factor of 10 for the first epoch and then replaced with 

the original value. 

 

Mitotic events are obtained from the output of the 3D model as 

clusters of pixels labeled as chromatin (pixel value of 2). 

Interestingly, when we used the trained 3D model (x,y,t) to 

inference the original 256x256x500 stack of phase images (data set 

1), we found 6 additional mitotic events that were not included in 

the 40 that were manually identified, increasing our confidence that 

the model was performing well. We added the 6 new events, along 

with the original 40, to the training image stack and retrained the 

3D model. We refer to this updated model as our initial 3D model 

(Model 1). 

 

2.4 Training the 2D models (Models 3,4 of Table 2) 

for chromatin and chromatid classification 
 

Given the limited amount of data, our 3D mitosis model was able 

to roughly identify regions in space and time where mitotic events 

take place (see Figure 3, part 2). This resolution is not sufficient for 

accurately tracking parent and daughter cells in time. To overcome 

this limitation, we include 2D models to refine the (x,y,t) estimate 

of cell division. (Starting out by training a 2D model to find the cell 

divisions was not successful because of the rarity of the events; 

events are not rare in the limited images found by the 3D model.) 

Training data for the 2D models were created in two different ways, 

as shown in Figure 2 to generate two separate models. For the first 

model, called the sister chromatid model (Model 3 in Table 2), pairs 

of adjacent areas of phase-dense chromatin (sister chromatids) were 

labeled in corresponding masks of 2D phase slices (as in Figure 2c, 

middle). For the second model, called the all-chromatin model 

(Model 4 in Table 2), we labeled both the sister chromatids and the 

corresponding dense line of metaphase chromatin that appeared for 

several preceding time steps (Figure 2c, bottom row). The output 

from both models were used because the sister chromatid model 

found more of the sister chromatids than the all-chromatin model. 

The 2D model training data is created with these steps: 

 

1. Training data for the 2D models have only 2 classes: dense 

chromatin as class 1, and the background as class 0. Section 

2.2 and Figure 2c describe how the chromatin was labeled 
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for the 2D models. 128x128 2D phase images centered 

around each manually assigned dividing cell were used for 

training, covering 30 time steps centered at the dividing cell 

in time (the areas inferenced by the 3D model cover a wider 

(x,y,t) range than the annotated data). 

2. Augmentation included image flipping, random rotation, and 

image blurring. 

3. Due to the relative sparsity of division events, the loss terms 

are weighted for the 2 classes in the ratio of 1 for the 

background and 20 for the class 1 chromatin. 

4. Both of the 2D models (3,4 in Table 2) are used in the next 

step to make semi-supervised training data.  

 

2.5 Creation and testing of semi-supervised training 

data for the final 3D model (Model 2) 
 

To create more 3D training data and improve generalizability 

without additional manual annotation, we developed a semi-

supervised training data creation process, which is completely 

automated and uses both the 3D and 2D models, and some classical 

image processing (thresholding of phase images, discussed below). 

We created a new set of training data (see Figure 3, parts 2 and 3) 

using 19 additional 256x256x500 image tiles (Data set 2 of Table 

1) with the following steps:  

 

1. Each new image stack is inferenced with the 3D model 1 

(Figure 3, part 2). This creates 3D stacks of class 2 

(chromatin) pixels, representing the mitotic events. The 3D 

model finds the regions in space where mitotic events occur. 

2. To be used in the training data, class 2 pixel clusters of this 

3D inference have to extend for at least 6 time steps and have 

a total area over all time steps greater than 1000 pixels 

(Figure 3, part 3A). 

3. From each 3D pixel cluster of step 2, we create a set of phase 

contrast images 128x128 in (x,y) and covering 30 time steps, 

centered at the center of the cluster in (x,y,t) (Figure 3, part 

3B). We then use the 2D models (Models 3,4) to identify the 

dense chromatid material associated with a cell division, 

metaphase chromatin and individual sister chromatids in 

dividing cells. 

4. We use the test outlined in Figure 4 to determine if   

inferenced chromatin pixel clusters belong to true mitotic 

events. The cells in all of our data sets do not move 

significantly while they are in metaphase, so we test an (x,y) 

stack over time to see if there is a stack of static condensed 

chromatin. To do this test, corresponding phase contrast tiles 

are thresholded to find their darkest phase-dense regions, 

below the 20th percentile intensity. We find the center value 

of the sister chromatid pixels in the inferenced cell. Resulting 

dark pixel clusters (Figure 4b) found within 10 pixels of the 

sister chromatid (x,y) location are selected from previous 

time steps. (As more data is collected, we will verify the 

assumption that the cells do not move as they divide.)  

5. False positive events from the 3D model are identified when 

the 2D inferencing finds sister chromatids, but we cannot 

trace the sister chromatids in the thresholded phase image for 

at least 4 time steps.  

6. Chromatin pixels that are part of a timed event are then 

overlaid onto nuclear masks (Figure 3, part 3C) and labeled 

as class 2 (Figure 3, part 3D). 

7. Tiling and running the final 3D network are done using the 

same steps as for the initial model. 

 

A. 

 
B. 

 
C. 

 
D. 

   
 

Figure 2: Manual annotations for the 3D (A-B) and 2D (C) 

models, using all of the events that were manually selected in 

our 256x256x500 tile. A:  Below each time frame of a dividing 

cell is the additional annotation of that cell as nucleus (grey, 

class 1) and chromatin (white, class 2). B: an enlarged version 

of A. C: Labeling of chromatin for the 2D models: first row, the 

phase images in time, second row, labels of sister chromatids 

prior to division of the cell in orange, third row, label of all 

chromatin prior to separation of sister chromatid and division, 

in orange. D: An example cell division event labels put into the 

3D image stack. 
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Figure 3: Creating semi-supervised training data: Data are 

manually annotated to find phase-dense chromatins for both 

the 3D and 2D models (see Figure 2); Top row: an initial 3D 

model is trained using nuclear masks and manual chromatin 

labels; 19 additional image stacks are inferenced with this 

initial model to find 3D regions that contain a cell division; 

Bottom row: 3D clusters are collected that span at least 6 time 

steps;  2D slices from those regions are inferenced with the 2D 

models to find chromatin objects; sister chromatid objects that 

persist over 4 time steps are added as new training data labels, 

overlaid over nuclear masks. 

 

2.6 Evaluation of the pipeline that identifies (x,y,t) 

positions for each cell division 
 

We evaluated our models for cell division using a separate small 

test image set collected on a different day than our training data set 

(Set 3 in Table 1). The test set is a 256x256x200 image stack. We 

used this data set to test both the initial 3D model, trained from the 

manually annotated image stack of (256x256x500 time steps), and 

the final 3D model, which was made from the 19 stacks of semi-

supervised data, together with the 2D models, and compared 

results. 

  

The test process follows similar steps to creating the semi-

supervised training data. We first inferenced the test tile with our 

3D models to find regions of mitotic activity, then selected out 

phase images found by the 3D models and inferenced with the 2D 

models to find dividing cells. To find the (x,y,t) of the specific cell 

that is dividing we find the end of the event, which is the last time 

step before the divided cells start moving away from one another. 

The identification of cell coordinates at this stage is critical to 

provide input to the program for tracking cells, including dividing 

cells, over long times. As an additional check, for each dividing cell 

that we located with the 2D models, we also make sure the pixels 

that we believe indicate division were found by the 3D model. For 

this, we count the number of class 2 pixels from the 3D model 

inference in a small region around the dividing cell, 21x21 pixels 

in (x,y) and 5 pixels in time. It is possible that the 2D model can 

incorrectly inference cells that are not dividing but were included 

in the collection of 128x128x30 images. Cells for which there are 

not corresponding pixels in the 3D inferenced stack are not 

considered in the final count of true and false positive events. 

3. Results 

 

We inferenced both of our 3D models, Model 1 and Model 2, on a 

separate test image stack, dataset 3. The pipeline for testing both 

models included inferencing with the 3D model (Models 1 or 2) to 

find regions of mitotic activity and then using the 2D models 

(Models 3 and 4) to find the dividing cells. 

 
Both models found 38 dividing cells in our test tile set 3. Our 

models found 12 events that were not identified by a human but 

were later validated to be true division events. Taking into account 

that the time steps between images was longer in the test data set 

(125 sec. vs 160 sec.) we were very encouraged by these results. 

Visually, Model 2 was able to locate the areas associated with 

phase-dense chromatin with smoother boundaries, as shown in 

Figure 5. Although the shapes of the inferenced regions differed, 
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both models found the same mitotic regions after filtering out the 

noise. Future work in which more training data are used to train the 

model should be able to locate the chromatin of dividing cells more 

precisely, perhaps even in the absence of the 2D models. 

Identifying the chromatin precisely is essential for the ultimate 

ability to track dividing cells over time. 

 

A. 

 
B. 

 
Figure 4 Testing to see if a presumed phase-dense region is part 

of a mitotic event. A: phase images are thresholded at 20 % 

intensity. A true event will have metaphase chromatin and/or 

sister chromatids in these dark regions of the phase images that 

largely maintain their(x,y) coordinates over the time of the 

mitotic event (seen in the bottom thresholded image colored in 

yellow). B: An example of an event inferenced by each 2D 

model, in which the chromatin remained at nearly the same 

(x,y) position over 8 time steps. 

 
For each model, we use the evaluation process in Section 2.6, locate 

the dividing cells, and then compare that list with the list of dividing 

cells from the manual annotation. If the location of the dividing cell 

we found in the model is within 10 pixels in the (x,y) plane and 

within 3 time steps of the annotated value, we consider that cell to 

be a true positive in our test. If a cell is found from the 2D model 

but is not present in the 3D inferencing (defined as fewer than 20 

pixels in the same region surrounding the cell location), we 

consider that to be a false negative for the overall model. The 

overall results of testing both (the initial 3D model + 2D models) 

and (the final 3D model + 2D models) using test data set 3, are 

shown in Table 3. The results are similar for both models, with a 

few more false positive cells for the initial model. There was only 

a single set of sister chromatids that was found using the 2D models 

in the 3D rectangular area defined by an inferenced 3D pixel cluster 

that was not part of that 3D cluster. A few time steps of this 

particular event that was missed by both 3D models is shown in 

Figure 6. The sister chromatids are not distinct, and the metaphase 

chromatin is only present in two of the timed images. This type of 

event will be included in the training of future models.  

 

 
Figure 5: Differences in the inferenced test stack between the 

initial and final models. The center image shows the initial time 

step for the test image stack. Several mitotic events (shown in 

red boxes) can be seen at this time step. On the left is the 

outcome of inferencing with the initial 3D model (Model 1), and 

on the right, with the final 3D model (Model 2). The final model 

defines the mitotic regions more clearly.  

 
Table 3: Tabulated results: Numbers of correctly located 

dividing cells of test set 3, using each 3D model, Model 1 and 

Model 2, combined with our 2D models (#3,4): TP=true 

positive, FP=false positive, TN=true negative 

 

 Cells 

located 

by 2D 

model 

Cells 

located 

by 3D 

model 

TP FP TN 

Initial 

model 

37 38 37 10 1 

Final 

model 

37 38 37 7 1 

 

 

 
 

Figure 6: 4 time steps leading up to the one event not found 

by either 3D model. The splitting cell is within the red 

boxes. 

4. Discussion 
 

Due to the heterogeneous and dynamic aspects of living cells, 

adequate characterization of cell populations requires large image 

datasets that contain many cell images and many time frames. 

Human detection of cell behavior and tracking of cell lineage 

during division is not adequate because of the large amount of data 

required, and because of the subtle nature of the features of interest.  

 
We approached the development of a robust automated method of 

analysis of iPS cell division by starting with a small set of manually 

annotated data that identified dividing cells. To improve and 
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generalize the model, sequential additions of unannotated datasets 

containing dividing cells were analyzed with the 3D U-Net model 

and were further optimized in a semi-supervised fashion that 

included the addition of a 2D network model. These inferred data 

were added to retrain the 3D model. Although the same mitotic 

regions were found from both the initial and final 3D models, the 

regions were more defined and there were fewer false positive 

region detections using the final 3D+2D combination of models. 

Future work will involve improving our model as more data 

becomes available. 

 
Providing a human annotated dataset for training is time consuming 

and error prone. For example, an initial 3D U-Net model based on 

manual annotation identified 6 division events that were not 

previously found by human observation alone. Our models also 

found 12 events in our test tile set 3 that were not identified by a 

human. Part of the challenge is that the dataset that consists of 

dividing cells is relatively sparse. To give some context, the total 

number of cells at each time step is between 260 and 300 as 

determined by applying nuclear segmentation [3,4] and FogBank 

cell separation [11] to each frame.  Over the 200 time steps, this is 

equivalent to 5.6e4 cell image objects. A total of 38 division events 

were found and each event was spread out over approximately 10 

time frames, so approximately only 380 image objects out of 5.6e4 

were associated with a dividing cell.  

 
Another significant challenge in this study is validating the 

accuracy of these image analysis methods. In this study, we have 

relied on manual observations to identify the accuracy of the cell-

division detection pipeline, but it is apparent that the human eye is 

far from adequate at finding these events.  Once the network model 

has identified events, the human eye is guided and can confirm that 

a division event occurred. It is possible that even with careful 

examination we missed events in annotations. 

 
While we consider human observation to be ground truth in this 

study, we also acknowledge that the development of training data, 

and evaluation of accuracy of a pipeline ideally should not be left 

to the human eye. Thus, future work will involve the development 

of more definitive methods for the identification of dividing and 

divided cells.  Recent development of an iPS cell line that expresses 

multiple fluorescent proteins at different levels in individual cells 

[12] suggests an approach for a more robust and automatable way 

of creating training sets and evaluating pipelines for cell division. 

5. Conclusions 
 

We have successfully built a combination of 2D and 3D neural 

network models that identify cell division events in iPS cell images 

taken over time. We have shown that the model does a better job of 

detecting mitotic events than the humans who performed manual 

annotations of the events.  

Our method of creating semi-supervised 3D+2D training data is 

completely automated and can continue to be used to improve our 

model as more data are collected. Because the reliability of 

identifying a division event can occur in an automated fashion, 

manual annotation of new training data will not be required. We 

have seen that the addition of 19 image sets to the initial training 

data resulted in a 3D+2D model that more accurately located the 

mitotic events. 

 

The addition of the 2D models to the pipeline made it possible to 

improve the accuracy of the analysis with a limited amount of 

training data. The 2D models were used both to make new semi-

supervised training data, and to find the location of each dividing 

cell after using the 3D+2D combination of models. This 

combination of models and the creation of semi-supervised 3D 

training data were an effective way to create an analytical pipeline 

while minimizing the difficult and error-prone collection of ground 

truth data by humans. 

REFERENCES 

[1] Y. Su, Y. Lu, J. Liu, M. Chen, A. Liu, Spatio-Temporal Mitosis Detection in 

Time-Lapse Phase-Contrast Microscopy Image Sequences: A Benchmark, 
IEEE Trans. On Medical Imaging, 40 (5), May 2021. 

[2] Y. Su, Y. Lu, J. Liu, M. Chen, A. Liu, Spatiotemporal Joint Mitosis Detection 

Using CNN-LSTM Network in Time-Lapse Phase Contrast Microscopy 

Images, IEEE Trans. On Medical Imaging, 5, 2017. 

[3] NJ. Schaub, NA Hotaling, P. Manescu, S. Padi, Q. Wan, R. Sharma, A. 

George, J. Chalfoun, M. Simon, M. Ouladi, et al, Deep learning predicts 

function of live retinal pigment epithelium from quantitative microscopy. J 

Clin Invest 2020, 130 (2):1010-1023. 

[4] C. Ling, M.Halter, A. Plant, M. Majurski, J. Stinson, J. Chalfoun, Analyzing 

U-Net Robustness for Single Cell Nucleus Segmentation from Phase Contrast 

Images. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern 

Recognition Workshops (CVPRW): 14-19 June 2020. 4157-4163. 

[5] W. Burton, C. Myers, P. Rullkoetter, Semi-supervised learning for automatic 

segmentation of the knee from MRI with convolutional neural networks, 

Computer Methods and Programs in Biomedicine, 189, 2020. 

[6] E. Takaya, Y. Takeichi, M. Ozaki, S. Kurihara, Sequential semi-supervised 

segmentation for serial electron microscopy image with small number of 

labels, J. Neuroscience Methods, 351, 2021. 

[7] M. Peikari, S. Salama, S. Nofech-Mozes, A. Martel, A cluster-then-label semi-

supervised learning approach for pathology image classification, Scientific 

Reports, 8:7193, 2018. 

[8] H. Su, Z. Yin, S. Huh, T. Kanade, J. Zhu, Interactive cell segmentation based 

on active and semi-supervised learning, IEEE Trans. Medical Imaging, 35, 3, 

2016. 

[9] K. Pasupa, S. Tungjitnob, S. Vatathanavaro, Semi-supervised learning with 

deep convolutional generative adversarial networks for canine red blood cells 

morphology classification, Multimedia Tools and Applications, 79, 2020. 

[10] O. Ronneberger, P. Fischer, T. Brox. U-Net: Convolutional networks for 

biomedical image segmentation. Medical Image Computing and Computer-

Assisted Intervention (MICCAI), 234-241, 2015.  

[11] J. Chalfoun, M. Majurski, A. Dima, C. Stuelten, A. Peskin, M. Brady, 

FogBank: a single cell segmentation across multiple cell lines and image 

modalities. BMC Bioinformatics, 15:431-442, 2014. 

[12] D. El-Nachef, K. Shi, K. Beussman, R. Martinez, M. Regier, G. Everett, C. 

Murry, K. Stevens, J. Young, N. Sniadecki, J. Davis, A rainbow reporter tracks 

single cells and reveals heterogeneous cellular dynamics among pluripotent 

stem cells and their differentiated derivatives, Stem Cell Reports, 15, 1, 226-

241, July 2020. 

 

 


