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ABSTRACT

Autonomous physical science is revolutionizing materials science. In these systems, machine learning (ML) controls experi-
ment design, execution and analysis in a closed loop. Active learning, the ML field of optimal experiment design, selects
each subsequent experiment to maximize knowledge toward the user goal. Autonomous system performance can be fur-
ther improved with the implementation of scientific ML, also known as inductive bias-engineered artificial intelligence,
which folds prior knowledge of physical laws (e.g. Gibbs phase rule) into the algorithm. As the number, diversity and uses
for active learning strategies grow, there is an associated growing necessity for real-world reference datasets to benchmark
strategies. We present a reference dataset and demonstrate its use to benchmark active learning strategies in the form of
various acquisition functions. Active learning strategies are used to rapidly identify materials with optimal physical proper-
ties within a compositional phase diagram mapping a ternary materials system. The data are from an actual Fe-Co-Ni thin-
film library and include previously acquired experimental data for materials compositions, X-ray diffraction patterns and
two functional properties of magnetic coercivity and the Kerr rotation. Popular active learning methods along with a recent
scientific active learning method are benchmarked for their materials optimization performance. Among the acquisition
functions benchmarked, Expected Improvement demonstrated the best overall performance. We discuss the relationship
between algorithm performance, materials search space complexity and the incorporation of prior knowledge, and we en-
courage benchmarking more and novel active learning schemes.
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INTRODUCTION

Technological advances are often dictated and driven by mate-
rials discovery. The need for ever-better materials spurs modern
scientists to explore materials of greater and greater

complexity. For instance, interest in high-temperature super-
conductors has grown from the study of single-element materi-
als to complex compounds such as Hg-Tl-Ba-Ca-Cu-O [1].
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Similarly, the number of elements used in the electronics indus-
try increased from around 10–50 during the 1990s [2]. However,
with each newly-added stoichiometric element or processing pa-
rameter, the number of possible materials to investigate grows
exponentially. As a result, the traditional expert-driven
Edisonian, one-by-one trial-and-error approach is rapidly becom-
ing impractical.

In these Edisonian studies, materials scientists first select a
target materials system (e.g. a ternary system A-B-C consisting
of chemical elements A, B and C) to investigate, bounding the
study to a composition and processing space. This in turn deter-
mines the experiment setup, such as the fabrication method,
the material sources to use and appropriate materials process-
ing equipment. Prior knowledge is then used to build a model,
heuristic or intuition to predict desired material properties from
materials synthesis parameters. The materials scientist then
uses the predictive model to guide subsequent materials syn-
thesis, characterization and analysis.

Combinatorial high-throughput (CHT) strategies were devel-
oped to enhance the rate and the efficiency of materials explora-
tion [3]. CHT strategies allow for hundreds to thousands of
materials from a target materials system (A-B-C) to be synthe-
sized in parallel as a composition library. The library consisting of
hundreds of different compositions AxByC1-x-y (where, x and y are
the compositional parameters varied on the library wafer layout
with increment, for instance, of 0.01 (with 0� 1-x-y� 1)) is then
loaded into a characterization system where each material is
measured in rapid succession. However, for characterization
methods of high cost or time, such as X-ray photoelectron spec-
troscopy or determination of the band gap, measuring all of the
hundreds (or even sometimes thousands) of samples within a
given library can be prohibitive. This challenge motivated the use
of active learning, or the machine learning (ML) field of optimal
experiment design (OED), to guide sequence of measurement
experiments across the library [4]. Each measurement is selected
to maximize knowledge toward a user-specific goal, e.g. identify-
ing the compositional parameters x and y which gives the opti-
mal physical property. An important associated goal is often to
determine the composition-phase map across the entire ternary
A-B-C. The use of active learning enables a more streamlined pro-
cedure for screening the materials phase space and provides the
ability to do on-the-fly, adaptive and iterative learning and opti-
mization with a minimal number of experiments [5]. Depending
on the complexity of the composition-property landscape across
the ternary, it is possible to arrive at the ‘correct answer’, i.e. the
optimum composition after only a fraction of the entire library is
measured. This aspect of active learning is particularly attractive
when the search parameter space is extended to multiple dimen-
sions beyond mapping of ternary phase diagrams.

The use of active learning in materials science gained popu-
larity half a decade ago, with active learning driving recommen-
dation engines to guide experimentalists in the lab [6]. Active
learning is often combined with a ML surrogate model for when
the underlying mechanistic model is unknown. Such active
learning tools provided improved performance over traditional
OED methods [7], as the predictive model (i.e. ‘response model’)
is updated upon each iteration, ensuring always optimized
decision-making [8]. More recently active learning has been in-
tegrated into autonomous materials research systems capable
of performing experiment design, execution, and analysis in a
closed-loop [9]. For example, autonomous systems have been
used to optimize materials processing parameters to tune quan-
tum dots optical behavior [10], or come up with best molecular
mixtures for improved photovoltaics films [11], and identify the

new best-in-class phase change memory material—the first
autonomous discovery of a best-in-class material [4]. The
success of these autonomous systems depends on the active
learning schemes employed.

Each active learning scheme pairs a predictive model, used
to ‘forecast’ the properties of yet-to-be-measured materials
with an acquisition function, which defines the utility of
investigating each possible material. Materials compositions of
maximal utility are then selected for subsequent studies. A
probabilistic predictive model provides added advantage: these
models output both an estimate and uncertainty for predic-
tions, an example being the Gaussian Process (GP) [12] which is
used here. Prediction estimate and uncertainty can then be
combined in a Bayesian optimization (BO) algorithm to define
utility [13]. When the task is materials optimization, successive
BO acquisition functions strike a balance between an explor-
atory methods and exploitative methods. Exploratory methods
seek global knowledge of the unknown target function, exem-
plified by choosing materials where the prediction model has
maximum uncertainty. Exploitation methods search for optima
of the target function, exemplified by choosing materials with
predicted property optima. The combination allows an active
learning scheme to avoid falling into local optima and provides
greater speed and stability in the search for global optima [13].
The performance of each active learning scheme is dependent
on the selection of the materials model, the acquisition function
and the materials challenge and system being addressed.

As the number of active learning schemes increases, and the
target materials challenges become more complex, the choice
of active learning schemes becomes more important. The
wrong selection can lead a researcher or autonomous system
astray or greatly delay reaching the researcher’s goals, e.g. iden-
tifying a novel, optimal material. Materials datasets can be used
to benchmark and select optimal active learning schemes. For
the challenge of solid-state materials discovery and optimiza-
tion, the relevant dataset would include data on materials syn-
thesis such as composition, exhaustively varying these
parameters and pairing them with the resulting structure and
functional properties, as functional property is closely tied to
structure. Using such a complete dataset, one can build a highly
accurate composition-structure-property model, which can be
used for the purpose of evaluating the efficacy of different
active learning schemes through simulating closed-loop

Figure 1: Representation of the active learning (AL) pipeline using GP as the ML

surrogate function and Bayesian optimization for materials optimization. The AL

framework guides subsequent experiments to hone-in on the target materials.
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experiments (see Fig. 1). The active learning scheme identifies a
material composition to investigate; pertinent data are then col-
lected from the model to simulate experiment execution; ML is
then used to analyze the collected data, and the process repeats.

The past few years have seen a variety of benchmarking
studies with a focus on ML model selection [14–19]. More re-
cently, a benchmarking study investigated the choice of active
learning scheme for challenges including optimizing 3D-printing
parameters for print feature profile, 3D-printed structure param-
eters for toughness, composite blends for electrical conductivity,
molecular mixtures for photovoltaic stability and synthesis
parameters for nanoparticle optical absorbance [20]. While not
focused on solid-state materials synthesis optimization, this
benchmarking study collects datasets that may serve as poten-
tial surrogates. Another study presented an exhaustive dataset
of solid-state composition and catalytic response [19]. This study
investigated the impact of ML model selection and compared
performance of one active learning scheme to random selection.

In this work, we present a reference materials dataset of
composition, structure and multiple functional properties. The
dataset (Fig. 2) is from a fully-characterized thin film library of
the Fe-Co-Ni [21] system where structural properties and mag-
netic properties were mapped across the entire ternary.
Datasets from such composition spreads are essential for
benchmarking as they contain data for exhaustive experiments
across a synthesis parameter space. We use this database to
benchmark common off-the-shelf science agnostic BO schemes
along with one scientific ML [22] BO scheme for the task of
materials optimization. Here, scientific ML refers to ML algo-
rithms with built-in prior physical knowledge. A previous study
benchmarked active learning schemes for composition-phase
determination on the Fe-Ga-Pd dataset [23]. These benchmark
datasets along with others are available at the Resource for
Materials Informatics website [24]. A link to the code can also be
found in the references [25].

DISCUSSION

A thin film Fe-Co-Ni composition library dataset [21] is used to
investigate materials optimization performance of varying active
learning schemes. Expert-based data cleaning was performed to
simplify benchmark use and a description of these preprocess-
ing steps is given in Supplemental Information. Sample materi-
als span the full ternary composition space of Fe-Co-Ni, with 921
compositions/samples in total. Structure data are collected for

each sample, providing information of the ternary composition–
structural phase diagram (Fig. 2a), i.e. how lattice structure
varies across the composition space. Two materials properties
were measured for each sample—Kerr rotation (Fig. 2b) and mag-
netic coercivity (Fig. 2c). The Kerr rotation is a measure of mag-
netization of the material, while the coercivity is a measure of
the magnetic hardness [26]. Here the composition dependence
of the Kerr rotation is shown to be the less complex of the two,
smoothly varying with a broad peak near the binary of Fe0.4Ni0.6.
Coercivity shows a broad peak at a similar composition which is
overwhelmed by a higher, complex and more ‘granular’ coerciv-
ity response near the Co-Ni binary with many local optima. The
roughness or complexity of the Kerr rotation and magnetic coer-
civity were quantified by fitting a two-dimensional GP to both
datasets after normalizing (values mapped to 0 to 1) and then in-
vestigating the length scales and ratio of variance to length
scales. Kerr rotation has length scales of approximately 50%
larger than those of magnetic coercivity while both share a simi-
lar ratio of variance to length scales. These numbers agree with
the visual, qualitative analysis that the Kerr rotation varies far
more gradually than the magnetic coercivity.

The list of off-the-shelf active learning acquisition functions
[13] benchmarked is presented in Table 1. The off-the-shelf ac-
quisition functions are paired with a GP for the prediction

model. Here, l, r2 and R are the GP mean, variance and covari-
ance, respectively. f ðxþÞ is the maximum found in the previous
iterations; n is the current iteration number; D is the number of
materials to search over; k is a predefined constant, here set to

0.1; the constants
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln Dn2p2ð Þ=3k

q
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 2nþ 1ð Þ=8

p
balance ex-

ploration typified by maximizing r and exploitation typified by
maximizing l; N is the probability density function for the nor-
mal distribution, U and / are the cumulative distribution func-
tion and the probability distribution function for the standard
normal distribution Nðl ¼ 0; r ¼ 0Þ, respectively, n is a user-
controlled variable for reducing the impact of exploitation and
Unif ðÞ is the uniform distribution. The off-the-shelf-acquisition
functions are paired with a GP using an isometric radial basis
function and Gaussian likelihood. These active learning
schemes are compared to a recent physics-informed active
learning scheme named Closed-loop Autonomous Materials
Exploration and Optimization (CAMEO) [4]. CAMEO exploits a
fundamental rule in materials science, that a material system’s
structure, or phase, is predictive of its functional properties.
As such, CAMEO first seeks to maximize knowledge of the target

Figure 2: The Fe-Co-Ni library dataset [21]. (a) The composition–structural phase map for the library. This map was determined through expert analysis of collected X-

ray diffraction data. The two materials optimization challenges have been chosen for their varying complexity. (b) The Kerr rotation (measured in milliradians) is the

least complex dataset. As seen visually, the function is dominated by a large gradually increasing peak with a maximum located along the Fe-Co binary axis. (c) The

magnetic coercivity (measured in milli-Tesla) represents a high complexity system with the global maximum and many local maxima located in a small region near

the Ni-Co binary axis and one broad small peak located along the Fe-Co binary axis.
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material system’s phase diagram. It then uses phase boundaries
to segment the search space and guide the search for materials
optimization.

The materials optimization process is initialized by selecting
one material from the pool of potential Fe-Co-Ni materials with
uniform probability, i.e. all materials have equal likelihood of
being selected as the starting material. The GP is then used to
predict the material property of interest for all materials includ-
ing those without functional property data. The acquisition
function of interest is used to select the next material to investi-
gate. This loop is continued exhaustively for the remainder of
the unevaluated data points (materials cannot be selected twice
in this implementation) with the same acquisition function. For
each acquisition function, the process is repeated 100 times.
Performance is computed using minimum regret, defined as:

minimum regret ¼max sampled
� �

�max global
� �

(1)

The mean and mean confidence intervals for the minimum
regret are computed over the 100 runs, and the mean is plotted
in Figs 3 and 4 for the Kerr rotation and coercivity, respectively.
Figures with both mean and the confidence intervals plotted are
available in Supplemental Information.

For the lower complexity Fe-Co-Ni Kerr rotation dataset, lo-
cating the one dominant peak can be achieved with a simple es-
timated gradient ascent method [7]. As a result, greedier
acquisition functions that focus on exploitation have better per-
formance. Nevertheless, all acquisition functions reach within
0.1% deviation from the maximum within 5% of the 921 data
points. Add-GP-UCB [27] reaches the goal within approximately
11 samples; about double the speed of its next competitor. In
second place is the physics-informed CAMEO algorithm which
must expend initial iterations to identify the phase diagram.
This forced exploration puts CAMEO at a disadvantage when
more aggressive exploitation provides better performance.

Table 1: Acquisition functions

Name Acquisition function Description

Exploration argmaxx r½ � Point where model has max uncertainty
Exploitation argmaxx l½ � Point with predicted max value

Upper Confidence Bound (UCB) argmaxx lþ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln Dn2p2ð Þ=3k

q� �
Balance of exploration and exploitation with iteration n depen-

dent balance ratio. As the number of datapoints in a region
and the iteration number increase, r associated with model
uncertainty will decrease. The weight on r increases to
maintain exploration.

Add-GP-UCB [27] argmaxx lþ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 2nþ 1ð Þ=8

ph i
Balance of exploration and exploitation with iteration-depen-

dent balance ratio. The impact of this ratio is similar to that
of UCB (see above).

Thompson sampling argmaxx f � N l; Rð Þ
� �

Sample function f from Gaussian distribution with model’s
predicted mean and covariance. Then identify the point
with max value.

Expected improvement argmaxx l� f xþð Þ � n
� �

U Zð Þ þ r/ Zð Þ
� �

Z ¼ l� f xþð Þ � n
� �

=r

Identify point expected to have maximal improvement over
past identified maximum

Random sampling x� � Unif ðXÞ Sample point at random

Figure 3: (a) Benchmarking performance of acquisition functions on Fe-Co-Ni Kerr Rotation with reference to random selection. (b) A histogram displaying the counts

of data at different percent deviations from the optimal. (c) The Fe-Co-Ni Kerr rotation dataset replotted.
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All acquisition functions perform significantly better than ran-
dom sampling due to the simplicity of the target function. If the
data are known beforehand to have gradual changes in inten-
sity and one dominant peak, an exploitation-focused acquisi-
tion algorithm is preferable.

The high-complexity material dataset of Fe-Co-Ni magnetic
coercivity has a large broad maximum near the Fe-Co binary
and high roughness/variation with many local maxima in the
proximity of the global maximum, all of which can serve to dis-
tract an acquisition function. The high roughness near the
global maximum results in a small indicative composition re-
gion, making the maximum difficult to find. The majority of ac-
quisition functions perform poorly, easily becoming stuck in
local maxima. Expected Improvement performs well in compar-
ison to other common acquisition functions, and is more ex-
ploratory than the other methods, while still outperforming
random. While the physics-informed CAMEO algorithm is capa-
ble of narrowing the search space to those phase regions that
promise to hold a maximum, the high roughness of the target
phase regions still manages to distract CAMEO from the global
maximum. This is likely due to the use of the UCB algorithm
once CAMEO switches from phase mapping to materials optimi-
zation. The number of samples required to reach 0.1% from the
optimum is larger than that of the simpler Kerr rotation
challenge.

The Fe-Co-Ni Kerr dataset of composition, X-ray diffraction,
Kerr rotation and magnetic coercivity provides some interesting
insights into active learning use for real-world tasks materials
optimization. When a smooth, simple landscape is identified,
schemes with greater focus on exploitation succeed. The alter-
native is also true with exploration being preferable with highly
complex landscapes. This suggests an active learning scheme
that is iteration dependent. At each iteration, one can compare
prediction accuracy and quantify landscape complexity to de-
termine the preferred acquisition function for the next iteration,
shifting the balance between exploration and exploitation.
Nevertheless, expected improvement is the overall winner,

performing well for either task, despite the complexity of the
coercivity data.

The physics-informed CAMEO method lags in performance
when the challenge is simple, due to its forced steps of itera-
tion—it must first converge on a phase diagram before seeking
an optimal material. It is also able to narrow the search space
with a highly complex landscape, but the current choice of UCB
for optimization within the target phase region performs poorly
and should potentially be replaced by an alternative method
such as expected improvement. The authors hope that the Fe-
Co-Ni and Fe-Ga-Pd [4] datasets can spur interest in benchmark-

ing and developing novel active learning schemes for real-world
challenges of materials exploration and optimization.

SUPPLEMENTARY DATA

Supplementary data is available at Oxford Open Materials
Science Journal online.
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Figure 4: (a) Benchmarking performance of acquisition functions on Fe-Co-Ni magnetic coercivity dataset with reference to random selection. (b) Adjacent to the

performance graph is a histogram displaying the counts of data at different percent deviations from the optimal. (c) The dataset is complex, with a broad, minor peak

near the Fe-Co binary and high roughness with many local maxima near the global maximum close to the Co-Ni binary.
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