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Techniques, Applications, Tools and Data Sets,

Standardization, and Future Directions
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Abstract—The design of integrated sensing and communica-
tion (ISAC) systems has drawn recent attention for its capacity
to solve a number of challenges. Indeed, ISAC can enable
numerous benefits, such as the sharing of spectrum resources,
hardware, and software, and improving the interoperability of
sensing and communication. In this article, we seek to pro-
vide a thorough investigation of ISAC. We begin by reviewing
the paradigms of sensing-centric design, communication-centric
design, and co-design of sensing and communication. We then
explore the enabling techniques that are viable for ISAC (i.e.,
transmit waveform design, environment modeling, sensing source,
signal processing, and data processing). We also present some
emergent smart-world applications that could benefit from ISAC.
Furthermore, we describe some prominent tools used to collect
sensing data and publicly available sensing data sets for research
and development, as well as some standardization efforts. Finally,
we highlight some challenges and new areas of research in
ISAC, providing a helpful reference for ISAC researchers and
practitioners, as well as the broader research and industry
communities.

Index Terms—Integrated sensing and communication (ISAC)
systems, Internet of Things (IoT), radio-frequency (RF) sensing
applications, sensing data sets, sensing tools, target modeling,
wireless sensing.

I. INTRODUCTION

W ITH the advance of information and networking tech-
nologies, smart-world Internet of Things (IoT) systems

can be enabled by deploying a massive number of smart
devices with both sensing and communication capabilities [1].
Smart home, smart manufacturing, smart transportation, and
smart healthcare are typical IoT systems [2]–[6]. Closely rel-
evant to IoT, cyber–physical systems (CPS) are referred to the
systems that have sensing, communication, computing, and
control capabilities [3], [7]. With the support of IoT and CPS,
the status of numerous things (also known as, objects) of dif-
ferent types can be tracked, monitored, and controlled. Some
typical things to track and monitor include human activities,
vehicles, and environmental pollution. As both sensing and
communications are essential components to these systems, it
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is critical to have a joint design to maximize the overall system
performance.

Nonetheless, deploying sensors is costly and may not
be feasible in some deployment scenarios. Thanks to the
widely deployed wireless communication infrastructures, such
as mobile/cellular networks and ubiquitous WiFi connectivity,
the widely available wireless networks have brought new sens-
ing opportunities, providing a cost-effective infrastructure to
enable wireless sensing. While the wireless waveform conveys
information to the intended receiver, the same waveform can
be used as an illuminator to perform sensing by collecting and
analyzing the signals reflected or scattered from the target and
the environment.

In terms of technology development, there are growing
similarities between communication and sensing systems. A
number of hardware modules, such as radio-frequency (RF)
front end and analog–digital (A/D) converters, may be shared.
In particular, the phased array antennas, consisting of a number
of antenna elements, have been recently adopted in millime-
ter wave (mmWave) communication systems to mitigate high
propagation loss and support multiuser communication [8].
The same antenna architecture has been used by multiple-
input and multiple-output (MIMO) radar to enable high spatial
resolution sensing and multitarget monitoring. In addition to
hardware components, some basic signal processing modules
can also be shared. Integrating these two functionalities could
significantly reduce the overall system cost, device size, and
energy consumption.

Generally speaking, there are three design paradigms:
1) sensing-centric design; 2) communication-centric design;
and 3) co-design of sensing and communication [9]. In the
sensing-centric design, the main functionality of the system
is sensing, while communication is secondary; this design
can be used for an application not requiring high through-
put. In general, radar waveforms are transmitted in the system
with information embedded in the radar waveform without
degrading radar detection performance. In communication-
centric design, the system focuses on achieving high through-
put to meet the communication application requirements.
Opportunistic sensing can be carried out on the communica-
tion waveform reflected or scattered from the objects, from
which the channel characteristics can be extracted at the
sensing receivers. By monitoring changes in the propagation
environment, targets can be detected and tracked. In such
a system, throughput and packet error rate are the key
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performance indicators, while the sensing performance in
general cannot be guaranteed. In the co-design of sens-
ing and communication, the system is designed by con-
sidering both sensing and communication requirements. In
specific scenarios, sensing and communication require dif-
ferent time, frequency, or spatial resources. This co-design
(also called joint-design or integrated design) can be realized
through the configuration of the communication waveform
(e.g., allocating sufficient pilot signals to satisfy sensing
requirements when carrying out pilot-based sensing). In addi-
tion, when sensing and communication have different desired
beam patterns, the co-design can be realized by design-
ing the signal covariance matrix or the precoding matrix
considering both sensing and communication performance
requirements.

At the sensing receiver, which might be different from the
intended communication receiver, various sensing sources may
be used, namely, the received signal strength (RSS) [10]–[13],
channel state information (CSI) [14], or the received waveform
directly [15]. Generally speaking, RSS is a measurement that
can be easily accessed at the receiver, but it only provides
overall received signal power, which is a coarse-grained chan-
nel information. Thus, it only supports designated applications
and often requires multiple transmitters and/or receivers to
form a group to perform the task. CSI offers more detailed
information about the channel; instead of a single RSS value,
it contains the amplitude and phase information of a set of
subcarriers in the orthogonal frequency-division multiplexing
(OFDM) system. A number of research efforts on CSI-based
sensing have leveraged CSI tools that work with a commodity
IEEE 802.11n network interface card (NIC) to collect chan-
nel CSI for WiFi-based sensing [14]. The received waveform
is the most flexible sensing source, as it provides the raw
interaction between the transmit signal and the environment,
while more signal processing may be required to extract the
channel information.

With enabling techniques, a number of sensing applica-
tions have been studied through experiments or simulations.
These applications span the domains of smart home appli-
cations [16], [17], automotive radar [18], [19], traffic mon-
itoring [20], and environmental monitoring [21], and more
emerging applications are being discovered every day, driven
by advances in communication, sensing, machine learning,
and big data analysis technologies. Depending on the target
sensing applications and available sensing sources, various sig-
nal processing and data processing techniques can be used
to accomplish sensing tasks. Furthermore, to assist integrated
sensing and communication (ISAC) system design, both high-
fidelity channel model and target model are essential. These
models enable the evaluation of more complicated scenarios
when the experiment is challenging to set up and config-
ure. For instance, to achieve ubiquitous sensing and reliable
sensing, sensing tasks could involve numerous sensing enti-
ties, target nodes, and various motion patterns. An accurate
channel model can provide a viable means to obtain more
realistic results and identify potential issues that must be
resolved.

The significant contributions of this article are as follows.
1) We explore the enabling techniques that are viable

for ISAC, including transmit waveform design, envi-
ronment modeling, sensing source, signal processing,
and data processing. We also discuss emergent applica-
tions, including human activities, target localization and
tracking, and others.

2) We provide descriptions of some prominent tools used to
collect sensing data and publicly available sensing data
sets. For the toolsets, we detail the operating frequency
band, the use of these tools, and the generated data
format. Regarding the sensing data sets, we list their
intended applications and data collection details and out-
line where and how to find them. In addition, we review
some standardization efforts on ISAC, such as IEEE
802.11bf.

3) We review the technological advancement of ISAC and
outline challenges and topics that need further research,
including collaborative sensing, sensing-assisted com-
munication, software-defined networking (SDN) and
edge computing-enabled RF sensing, cross-component
and cross-layer design and optimization, channel and tar-
get models, machine learning and big data analytics for
wireless sensing, and security and privacy.

Several survey papers exist on the topics of radar
sensing and communication [14], [22]–[25]. For exam-
ple, Liu et al. [25] reviewed the progress of research on
radar-communication coexistence and dual-functional radar-
communication (DFRC). Hassanien et al. [23] focused on
the radar-centric system and presented techniques to embed
information into radar signals (i.e., beam pattern modulation,
index modulation, and fast time modulation). Feng et al. [22]
reviewed joint radar and sensing communication from both
military and commercial applications and presented differ-
ent levels of the integration of sensing and communication,
such as coexistence, cooperation, co-design and collaboration,
and the existing works in these categories. Ma et al. [14]
conducted a survey on CSI-based WiFi sensing. Likewise,
Liu et al. [24] focused on human activities detection and
estimation application and reviewed RSS-based, CSI-based,
frequency-modulated continuous-wave (FMCW)-based, and
Doppler shift-based techniques.

In contrast to these existing survey papers, our survey is not
limited to a particular radio technology. We instead provide a
comprehensive survey on the key enabling techniques (trans-
mit waveform, environment modeling, sensing source, signal
processing, and data processing) used for diverse applications
that span a variety of categories, such as detection, recog-
nition, localization and tracking, parameter estimation, and
others. Viable tools and data sets are new areas to explore, and
standardization efforts are reviewed. Challenges and a body of
new research directions are presented as well.

The remainder of this article is organized as follows. In
Section II, we review the key enabling techniques of ISAC.
In Section III, we introduce emergent applications that can
benefit from ISAC. In Section IV, we review the publicly
available tools and data sets. In Section V, we review some
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Fig. 1. Enabling techniques and applications.

standardization efforts on IEEE 802.11bf. In Section VI, we
outline the challenges and highlight areas of future research.
Finally, we conclude this article in Section VII.

II. ENABLING TECHNIQUES

There are a number of enabling techniques that are viable
for ISAC systems. Fig. 1 shows the key techniques, includ-
ing transmit waveform, environment modeling, sensing source,
signal processing, and data processing.

A. Transmit Waveform

The goal of ISAC systems is to use a single wave-
form to perform communication and radar functionalities
simultaneously, optimizing spectrum utilization, enabling
hardware reuse, and reducing power consumption. The trans-
mit waveform design is thus a fundamental aspect of an
ISAC system. We discuss three different waveform design
paradigms: 1) radar-centric design; 2) communication-centric
design; and 3) joint waveform design [26], [27], to take into
consideration both communication and sensing requirements
to support ISAC. We then review the MIMO beamforming
techniques for an ISAC system with multiple transmit and/or
receive antennas to achieve MIMO communication and MIMO
radar functionalities at the same time. Finally, we list the most
commonly used performance metrics used in the waveform
design along with their tradeoffs.

1) Waveform Design and Optimization: The existing wave-
form design can be categorized into the following three
classes.

Radar-Centric Waveform Design: This type of waveform
is adopted in a system in which the main functionality is to
carry out sensing while communication is the secondary func-
tionality (e.g., embedding data in the radar waveform for data
transmission). To facilitate communication using radar-centric
waveform, some commonly used methods are beam-pattern
modulation, index modulation, and fast-time modulation [23].
As all aforementioned methods are low-rate modulation, the
communication data rate in these systems is generally low

compared to the occupied bandwidth. For example, in beam-
pattern modulation, the amplitude or phase of the radar beam
is modulated based on the transmitted information. Amplitude
modulation is applied to the spatial sidelobe (i.e., by chang-
ing the amplitude of the sidelobe according to the transmitted
information). Phase modulation can be applied to the main
beam since it does not affect the radar radiation pattern; it
controls the phase of the transmitted beam pattern and embeds
the communication information in the phase changes. In addi-
tion to beam pattern modulation, index modulation embeds
information in the transmission parameters corresponding to
the index from a set, such as a waveform ID from a set of avail-
able waveforms, frequency hopping codes, or the antenna IDs
in an antenna set. Fast time modulation divides the radar pulse
into subpulses and uses each subpulse to transmit information,
leading to improved communication data rate with minimal
detriment to radar performance.

Communication-Centric Waveform Design: Unlike tradi-
tional radar waveform using pulse or chirp signal, in order
to provide high throughput, a continuous waveform is used
for data transmission. Some commonly used communication
waveforms are OFDM-based waveform that has been adopted
in 4G/5G cellular and WiFi standards. Communication signal
has its performance limitations for sensing. For example, it,
in general, has a high peak-to-average power ratio (PAPR).
Moreover, the cyclic prefix (CP), which is used to avoid
intersymbol interference (ISI) in the communication system,
could introduce Doppler ambiguity in radar sensing [28].
Furthermore, the information-carrying waveform can lead to
high sidelobe gain, which, in turn, reduces the detection
dynamic range. Thus, additional signal preprocessing should
be in place to address these issues.

Some existing works have been conducted to evaluate the
sensing performance utilizing communication waveforms. For
example, Sturm and Wiesbeck [28] studied the suitability
of single-carrier (SC) signals with spectrum spreading and
multicarrier waveforms for joint sensing and communica-
tion. They explored the radar signal processing algorithms
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to realize the sensing functionality using these waveforms.
Simulation results reveal that the OFDM waveform has
some advantages, such as a larger dynamic range and eas-
ier relative velocity estimation over the SC spread spectrum.
Fink and Jondral [29] compared the radar functionality of
OFDM waveform and chirp sequence in terms of detec-
tion accuracy, maximum detection range, required resources,
and signal processing. Their analysis demonstrated that both
waveforms have the same two-dimension detection accuracy
(i.e., range and Doppler) and have similar radar process-
ing demand by configuring the waveform frame structure
accordingly, while OFDM is more suitable for simultaneous
communication and sensing with additional signal process-
ing effort to remove CP and the dependence on modulation
symbols.

Likewise, Nguyen and Heath [19] studied multitarget detec-
tion with IEEE 802.11p short-range communication waveform,
which is based on the OFDM frame structure defined in
the standard. In particular, estimation of signal parameters
via rational invariance techniques (ESPRIT), an extension of
the multiple signal classification (MUSIC) algorithm, was
adopted to detect multiple targets simultaneously. In their
study, the range ambiguity, velocity ambiguity, and their rela-
tionships with the system parameters were identified (e.g.,
the range ambiguity is inversely proportional to the subcarrier
spacing; whereas the velocity ambiguity is inversely propor-
tional to the carrier frequency and the detection sampling
interval). Also, range resolution improves with increasing
bandwidth, as does velocity resolution with increasing car-
rier frequency and observation window. The authors demon-
strated that their designed scheme can detect the presence
of multiple targets in the environment. In their scheme, the
channel response at a given time slot across the subcarriers
and the channel response at a given subcarrier over multiple
time-slots are used to estimate the range and the velocity,
respectively.

Interestingly, OFDM-based WiFi waveform, adopted in com-
mercial WiFi devices, has also been widely used to demonstrate
the capability of human activity sensing [30]–[36]. For example,
Wang et al. [30] used WiFi signals to recognize humans based
on fine-grained gait patterns, whereas Ali et al. [34] used WiFi
signals to recognize keystrokes. Likewise, Cao et al. [35] and
Abdelnasser et al. [36] considered WiFi signals for fine-grained
writing recognition and gesture recognition, respectively.

Joint Waveform Design: To use a single waveform to
transmit data and perform radar sensing simultaneously, the
waveform should be able to accommodate the radar sensing
requirements, such as range and velocity estimation accuracy,
as well as communication requirements, such as reliability,
throughput, and latency, while satisfying power consump-
tion requirements. To fulfill these requirements, one approach
is to carefully configure the system parameters (e.g., frame
length, pilot size, and pilot transmission frequency). In this
context, Braun et al. [37] studied the application of vehicle-
to-vehicle (V2V) communication at 24-GHz frequency band,
where the OFDM waveform is used for range and veloc-
ity estimation. The authors also discussed OFDM modulation
parameter selection (for example, carrier spacing, number

of subcarriers, and frame length) to meet range and veloc-
ity resolution requirements. Moreover, the minimum required
signal-to-noise ratio (SNR) to perform communication and
radar detection is studied in this work, and the effective
data rate is evaluated based on the selected OFDM frame
structure.

Likewise, Kumari et al. [38] proposed a preamble structure
to improve the accuracy of velocity estimation in a mmWave
WiFi system. In the proposed design, the preamble can be
transmitted nonuniformly, and by using these preambles, sev-
eral virtual preambles can be reconstructed to facilitate vehicle
velocity estimation, with a small reduction in communication
throughput. This approach jointly optimizes radar and com-
munication performance by finding the minimum number of
frames required to meet the radar Cramer-Rao bound (CRB)
requirements or the optimized frame locations to minimize the
CRB if the number of frames is given. Ozkaptan et al. [39]
used OFDM waveform, especially pilot symbols, for mmWave
automotive radar operating at 76–81-GHz spectrum band. In
their work, a joint optimization problem utilizing the OFDM
parameters (for example, pilot subcarriers and power alloca-
tion for pilots) is formulated to maximize radar performance or
communication capacity subject to the constraints from other
functionalities.

Finally, some existing work studied the ISAC system using
combined independent communication waveforms and radar
waveforms [40], [41]. In these studies, a monostatic radar
setup with multiple transmit antennas is used to communi-
cate with multiple users and transmit the same waveform as
the probing signal to radar targets simultaneously, as a combi-
nation of a MIMO communication system and a MIMO radar
system. By adding the radar waveform, the spatial degrees
of freedom (DOF) of the MIMO radar could be increased.
When only communication waveform is used, the spatial DOF
of the MIMO radar is limited to the number of commu-
nication users [40], which in turn distorts the radar beam
pattern, especially when the number of users is much fewer
than the number of transmit antennas. On the same topic,
Hua et al. [41] studied whether the dedicated radar/sensing
signal is necessary to improve the beampattern matching
performance. The study suggests that adding radar waveform
to the communication waveform improves sensing beampat-
tern matching performance in general; however, it brings more
benefit when the receiver can perfectly cancel the interference
from the sensing signal.

2) Beamforming Design: The ability to form additional
transmit beams for target sensing is essential when the target is
outside the illumination coverage of the communication beam.
Thus, the MIMO system, being capable of forming multiple
directional beams as shown in Fig. 2, should be considered
to enable multiuser communication and multitarget sensing
simultaneously.

The beamforming design problem can be formulated as a
joint optimization problem between communication and sens-
ing. Depending on the sensing and communication objectives
and requirements, the goal is to achieve pareto optimality
of the system. On this topic, Liu et al. [42], [43] studied
a simultaneous cellular communication and sensing scenario,
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Fig. 2. MIMO enabled simultaneously communication and human sensing.
Additional beam is formed for sensing when a human target is outside of
communication beams’ coverage.

in which a transmitter, equipped with multiple antennas,
transmits information to multiple users while detecting several
radar targets at the same time. Here, the objective of the
communication model is to maximize the achievable sum-
rate by minimizing the multiuser interference (MUI) while
the objective of the radar model is to design a desired beam
pattern by formulating the correlation matrix of the probing
signal. In particular, in [42], the tradeoff between the radar
and communication performance is tackled by optimizing the
weighted summation of communication and radar individ-
ual objective functions, and the weights can be adjusted to
balance the radar or the communication functionality accord-
ingly. Likewise, Liu et al. [40] investigated how to leverage
the MIMO paradigm to achieve sensing and communication
simultaneously. In their study, a combined waveform, which
consists of uncorrelated radar waveforms and communica-
tion waveforms, is transmitted through multiple beams toward
multiple users and targets. It is worth noting that the uncor-
related radar waveform for each antenna element is generated
using pseudorandom coding. In order to jointly design the
radar precoding matrix and communication precoding matrix,
the optimization problem is formulated as a radar beam pat-
tern matching problem under the constraints of the minimum
required signal to interference and noise ratio (SINR) at each
user and the per-antenna power constraint.

The advancement of mmWave communication technologies
brings unique opportunities for supporting sensing applications
with more stringent requirements. The large bandwidth used
in the mmWave communication system has the potential to
improve the sensing resolution in terms of range. Also, the
usage of a phased-array antenna offers more DOF to support
more users and monitor more targets simultaneously. To this
end, Liu and Masouros [44] designed a hybrid A/D (HAD)
precoding matrix to communicate to a single user device with
multiple antennas and simultaneously monitor multiple targets
of interest. The design goal is to balance the tradeoff between
communication and target sensing. In particular, for commu-
nication, the goal is to best match the hybrid beamforming

matrix to the digital beamforming matrix of a full-digital trans-
mitter, while, for the sensing, the goal is to best match the
hybrid beamforming pattern to the desired radar beam pat-
tern. The objective function is formulated as the weighted
sum of the minimum squared error (MSE) between the full
digital precoding matrix and the HAD precoding matrix, as
well as the difference between the HAD precoding matrix
and the desired radar beamforming matrix multiplied by a
unitary matrix that does not change the desired beam pat-
tern. A nonconvex optimization framework was developed
to solve the optimization problem. Moreover, to effectively
support simultaneous multiuser communication and sensing,
Liyanaarachchi et al. [45] designed both the transmit and
receive beamforming by optimizing the transmit beamform-
ing so that the beamforming gain in the direction of the target
can be maximized while reducing the interuser interference.
At the receiver, analog combining weights of each subarray
are selected to maximize the receiver beamforming gain in
the target direction and suppress the self-interference from the
transmitter due to a full-duplex configuration.

There are several existing works on precoding design to
leverage the IEEE 802.11ad system for vehicular radar. Since
IEEE 802.11ad employs analog beamforming to form a highly
directional beam to support a single data stream, the field of
view (FOV) of the beam can be limited. In order to increase
the FOV, it is possible to exploit sector-level sweep (SLS)
during the beam training phase [46]. During the SLS step, the
transmitter and the receiver exchange training frames over an
exhaustive set of predefined directions (i.e., antenna sector) to
find the sector pair that provides the best signal quality; the
training frame can be used as the probing signal for sensing.
The FOV can alternatively be expanded by activating only a
subset of phased-array antennas [47], effectively widening the
beam by shortening the aperture length. In this case, a random
subset of the transmitter antennas is selected, the main beam
can be steered toward the communication receiver, and the
random grating beams can be obtained for sensing.

3) Performance Metrics: The waveform design or MIMO
precoding design problem, in general, can be formulated
as a joint optimization problem to maximize an objective
function for communication or sensing while satisfying cer-
tain constraints with respect to resources and the deploy-
ment. To study the tradeoffs between communication and
sensing performance, a set of performance metrics can be
used.

1) Communication Performance Metrics: The examples of
communication metrics include channel capacity [39]
that describes the amount transmitted signal carried in
the received signal, MUI [42], SINR [40], as well as the
difference between the hybrid beamforming precoding
matrix and the full digital precoding matrix [40] to
measure the communication perform degradation due to
hybrid beamforming.

2) Sensing Performance Metrics: There are some typical
metrics for quantifying the performance of sensing. The
examples include mutual information for sensing [48]
that describes the amount of channel information car-
ried in the received signal, Cramer–Rao lower bound
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(CRLB) [38], a minimum variance for an unbiased
estimator, or difference between generated beam pat-
tern and radar desired beam pattern [43]. Also, detection
probability and false alarm probability can be used for
sensing applications. For example, Xu et al. [48] derived
radar mutual information between the target channel and
the received signal to evaluate the radar performance
given a known transmit signal.

B. Environment Modeling

1) Channel Model: A significant portion of sensing
research efforts have been carried out using commercial WiFi
devices or software-defined radio (SDR), especially in the
human activity sensing, mainly in the sub7-GHz frequency
band [24], [50]. Although commercial devices and testbeds
are closer to reality, the study can be limited by the supported
waveform and hardware configurations. Thus, to fill the gap,
simulations that use a channel model to represent the physi-
cal environment are required. An accurate channel model is
essential to study the fundamentals of joint sensing and com-
munication and can be used to provide a performance baseline
for such systems.

The transmit signal reaches the receiver via multiple prop-
agation paths. In addition to the direct path, the signal also
interacts with the environment. Multiple scaled and delayed
copies of the transmitted signal arrive at the receiver after
reflecting from macroobjects (much larger than the wave-
length) and diffracting from microobjects (comparable to the
wavelength). Other factors such as surface roughness also con-
tribute to the received signal. In an ISAC system, the modeled
channel usually contains the target-related propagation path
(that is, the propagation paths interfered by the target) and
the target-unrelated propagation paths (that is, the propaga-
tion paths interfered only by the surrounding environment).
Conventional stochastic channel models, such as tap delay line
(TDL) and cluster delay line (CDL) [51], can be adopted to
model target-unrelated propagation paths. Nevertheless, they
lack spatial consistency, which is essential to model the impact
of the environment on the target sensing. In contrast, hybrid or
quasideterministic channel models, such as QD model [52] and
QUADRIGA [53], can capture spatial consistency with much
lower computation complexity than deterministic models using
ray tracing or ray bouncing.

2) Target Model: When the transmit signal reaches the tar-
get, it will scatter into all directions, and the scattered energy
from the target is proportional to the power of the incident
waveform illuminated on the target. The ratio of the scattered
power density to the incident power density is denoted as the
radar cross-section (RCS) [54], which can be obtained from
real-world measurements. Note that the RCS value depends on
the scattering characteristics of the target. Besides modeling
the target’s RCS, the ability to describe the spatial–temporal
evolution of the channel due to the motion of the target
is essential for micro-Doppler analysis. To this end, several
human models have been adopted in the existing literature.
For example, Li et al. [55] proposed a primitive-based autore-
gressive hybrid (PBAH) channel model for joint sensing and

communication. In the primitive-based channel model, human
is modeled using multiple body parts [56], having sphere,
cylinder, or ellipsoids shapes. The position of these body parts
changes over time by following the Thalmann model [57].
For each body part, radar reflection can be computed using a
primitive-based method and added at each simulation step to
obtain the target model. Moreover, the target unrelated propa-
gation paths are generated based upon the QD channel model,
while the time evolution is taken into account.

In addition, Vahidpour and Sarabandi [58] studied the use
of mmWave radar for detecting human and human carrying
objects. This work modeled the radar backscatter of walk-
ing humans using the polarimetric model, which leverages the
geometric optics (GO) and physical optics (PO) models to
compute the electric and magnetic currents on the body sur-
face at W-band (75–110 GHz). Likewise, Gürbüz et al. [59]
proposed a human model composed of 12 points, where each
point represents a body part, and the point trajectories provide
motion information. The simulations include the human tar-
get, the ground clutter, and some nonhuman objects to emulate
the realistic environment. In their model, the human head is
modeled as a sphere, and the other body parts are modeled as
cylinders. Clutters, as reflections from nontarget objects, are
modeled using the colored Gaussian model.

Some efforts have been made [60], [61] to introduce the
human target notion into the QD channel model and include
the target-related rays (T-rays) through the raytracer, as shown
in Fig. 3. This proposed QD channel model provides consis-
tency in both spatial and time domains to enable a realistic
micro-Doppler description; however, it cannot represent the
sensing uncertainty that arises due to higher order reflections
from the walls and body parts and target RCS is yet to be
modeled. This human target modeling is an ongoing effort,
and several channel measurement campaigns have been con-
ducted by NIST to fine-tune this model [62], as shown in
Fig. 4, including measuring and modeling the RCS values for
the scattering centers.

For nonhuman sensing applications such as automotive
radar, a single-reflection point target model has been widely
used while analyzing the system performance [63]. In a recent
study, Duggal et al. [64] verified through the real mea-
surements that the target involved in the automotive radar,
including cars, bicycles, and pedestrians, should be modeled
as an extended target described by a number of modeling
parameters, such as target size, shape, and components.
Also, PyBullet [65], an open-source software development kit
(SDK), was used to generate the target motion data for cars
and bicycles, which was further integrated into the primitive
modeling technique [66] to simulate radar return signals based
on electromagnetic models. It is worth noting that the pedes-
trian animation data was obtained from Sony America [67]
instead of using the PyBullet SDK.

C. Sensing Source

The presence of the target and its movement can interfere
with the propagation of wireless signals. While in a communi-
cation system, the channel/environment effect is estimated and
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Fig. 3. Channel modeling with human target (a) human walking simulation and (b) channel impulse response consisting of deterministic rays (D-rays),
T-rays, and random rays (R-rays).

Fig. 4. NIST channel measurement campaign. (a) Human tracking using NIST 28-GHz phased-array channel sounder. The sounder extracts the (co-polarized
and cross-polarized) complex amplitude, delay, and azimuth/elevation AoA of resolvable paths scattered from the human body, in real time and with high
precision. In this setup, the human object walks directly toward and then away from RX, following the red arrows. (b) Hilbert spectral analysis of the extracted
propagation paths. The main frequency components correspond to the motion of the human torso. The human motion patterns from the spectral analysis,
including the regions of acceleration, relative constant speed, and deceleration, match the measurement setup in Fig. 4(a).

compensated (e.g., multipath and Doppler effect) so that the
received signal can be decoded reliably, sensing functionality
generally exploits the channel information embedded in the
received signal for target detection and sensing parameter esti-
mation. To perform sensing, we can use the following typical
forms: the received signal directly, RSS information, or CSI.
The benefit of leveraging RSS and CSI for sensing is that both
RSS and CSI can be easily accessed at the receivers [68].
Among these three forms, the received signal provides the
most primitive information, so it may require more signal
processing, computational and network overhead, and custom
hardware support.

1) RSS: RSS is a physical layer measurement commonly
used in wireless systems, determined by the propagation loss
between transmitter and receiver, and has been widely used
in indoor localization [10], [11]. Both device-based localiza-
tion [10] and device-free localization [69] have been studied
in the existing literature. For RSS-based localization, multiple

communication links are required to collect the radio signature
from each target at each location. In addition to localization,
other applications, including room occupancy monitoring [12]
and breathing finding [13] using RSS, have been investigated
in wireless sensor networks. Regardless of its easy acces-
sibility, RSS is highly sensitive to signal interference and
shadowing effects. It also requires a sensor network, which
consists of multiple transmit and receiver nodes to perform
the task, and often requires RF calibration (for example, for
the RSS-ranging conversion).

2) CSI: CSI is the complex gain per subcarrier in an
OFDM system, and is available on some commercial devices.
For example, Intel 5100 NIC [70] and Nexmon [71]—a
firmware patch—are used to extract CSI for OFDM-based
WiFi systems. To obtain CSI, the propagation channel is esti-
mated using the known training pilots in the communication
waveform. The channel frequency response (CFR) at each
subcarrier is then computed and reported. By collecting the
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CSI variation over time, which has more fine-grained chan-
nel information than RSS, target motion and its pattern can
be detected and recognized. In this context, Ma et al. [14]
conducted a comprehensive survey on WiFi sensing with
CSI, where the related signal processing techniques, algo-
rithms, and applications are reported. Unlike RSS, CSI has
been used in broader applications, including target detection,
human activities recognition, and target parameter estima-
tion, such as range, direction and/or velocity estimation [14].
Some representative applications include human counting [72],
human identification [30], human tracking [50], activity recog-
nition [31]–[33], gesture recognition [34]–[36], and breathing
monitoring, among others. For example, to support the applica-
tion of recognizing fine activities (gesture recognition, stroke,
etc.), Duan et al. [31] first used CSI amplitude variation
and leveraged the backpropagation neural network algorithm
to classify driver’s actions using commodity WiFi product.
Ali et al. [34] also studied key stroke recognition using CSI;
however, in order to achieve better recognition performance,
the data were collected in a stable and controlled environ-
ment. Likewise, Cao et al. [35] presented a device-free WiFi
signal-based writing system, where the CSI values from com-
mercial off-the-shelf (COTS) WiFi devices are collected and
subsequently used as input in the detection algorithm.

3) Waveform: As an alternative to CSI and RSS, wave-
forms reflected from the target have been directly used for
radar sensing. In principle, basic radar processing relies on
signal correlation and frequency analysis over time to estimate
delay and Doppler frequency shift (also known as, Doppler),
which translate to target range and velocity, respectively. Two
types of waveform have been used to perform waveform-
based sensing: one based on radar waveform and one based
on communication waveform. For the first type, the traditional
radar waveform such as FMCW has been used to carry out
sensing tasks, such as elder fall detection [73] and multiple
persons tracking and identification of their locations in indoor
office building environments [74]. In terms of communica-
tion waveforms, Huang et al. [75] investigated how to use
multipath reflections of OFDM-based WiFi signals to construct
the image of tracked objects and demonstrated a prototypical
system to localize static human beings and metallic objects.
Likewise, Pu et al. [15] introduced a gesture recognition
system, which uses WiFi signals to carry out human gesture
recognition for whole-home sensing. In their study, a prototype
system based on a universal software radio peripheral (USRP)
was leveraged to demonstrate the feasibility of sensing (i.e.,
recognizing nine gestures with an accuracy of over 90 %) in
office and apartment environments.

To employ communication waveform for sensing, one com-
mon practice is to use the pilot signal, which is known
at the receiver [39], [63]. For instance, Kumari et al. [63]
leveraged IEEE 802.11ad-based radar at the 60-GHz unli-
censed mmWave band for joint vehicular radar and com-
munication. This work utilizes the preamble in a data
frame defined in IEEE 802.11ad SC mode for frame
detection, time synchronization-based range estimation,
and frequency synchronization-based velocity estimation.
Similarly, Ozkaptan et al. [39] studied sensing using the pilot

signals in an OFDM waveform. The other method is to use the
whole waveform, including the data frame, to perform sensing.
In this case, we have a longer sensing waveform compared to
pilots only, which can potentially increase the detection range.
However, the transmit data symbols are unknown, especially
when considering a radar bistatic configuration. Direct sens-
ing using this waveform leads to poor correlation properties
or high computation complexity if using more advanced sig-
nal processing techniques to reconstruct the channel [76]. In
order to use the whole waveform, the data symbol can be
obtained either by decoding the information at the commu-
nication receiver or directly passed from the transmitter if
the transmitter and the receiver are co-located. With the prior
knowledge of transmitted symbols, the effect of the data sym-
bol can be removed from the received signal to acquire the
channel response [77].

D. Signal Processing

We now introduce some commonly used sensing signal
processing techniques.

Clutter Removal: For sensing applications, the objective is
to detect the targets by observing the impact of the target on
the wireless signal propagation over time. However, in a rich
scattering environment, beyond the signal scattered from the
target, the received radio signal can also contain unwanted
echoes from the objects in the environment, including the
direct signal from the transmitter to the receiver. By containing
very little information regarding the target, these unwanted sig-
nals can interfere with the target sensing and degrade sensing
performance. These nontarget-related propagation paths are
referred to as clutters, originating from static objects present
in the environment (for example, trees and buildings in the
outdoor environment and walls and furniture in the indoor
environment).

Several clutter removal techniques have been proposed for
different sensing scenarios and deployments. For example,
Dokhanchi et al. [78] leveraged the spatial precoder design
to steer the illumination signal toward the target so that the
signal-to-clutter ratio (SCR) can be improved. Background
subtraction has also been proposed [79]–[81] to remove the
static clutter by averaging the inputs over a time window
and subsequently subtracting the average value from the
inputs. Similarly, Huang et al. [82] designed the scheme to
simply remove the direct current (DC) component in the
range-Doppler map from each range bin in order to sup-
press the clutter. Storrer et al. [81] designed the delay-line
canceller algorithm, which engages a filter to keep the differ-
ence between two consecutive channel estimation coefficients
so that the impact of static objects can be eliminated. In
addition, the work in [81] evaluated and compared several
computationally intensive clutter removal algorithms, includ-
ing the extended cancelation algorithm, which removes clutter
from the received signal by projecting the received signal to
a subspace orthogonal to the clutter space.

Range-Doppler Map: Range-Doppler map is a widely used
technique in radar processing, which leverages matched fil-
ter by correlating the received waveform with the transmitted
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Fig. 5. Three-dimensional (3-D) radar processing data matrix [54, Fig. 3.8].

waveform. A range-Doppler map contains a fast time axis
and a slow time axis as shown in Fig. 5. Each slow time
instance contains one received sample collected for one radar
pulse, or equivalently one data processing unit (containing
pilot signal and/or one data frame) in a communication wave-
form. Different fast times correspond to different propagation
delays or ranges. On the slow time axis, the same collection
process is repeated over multiple pulses with pulse interval
TPRI. When the system has multiple receiver channels due to
multiple antenna elements, the 2-D data matrix can be stacked
along these receiver channels to form a 3-D data matrix, as
shown in Fig. 5. Through the correlations along the fast time
axis, the target’s delay can be extracted and converted to the
signal propagation distance from the transmitter to the target
and the receiver. Subsequently, by fixing the range bin along
the fast time axis and performing fast Fourier transform (FFT)
along the slow axis for a given coherent process interval (CPI)
TCPI, the Doppler feature can be extracted for each range bin,
which corresponds to a fixed delay bin. In addition, beam-
forming can be applied to the received channels to retrieve
the spatial properties of the target.

The fast time sampling rate determines the range resolu-
tion. For example, with a monostatic sensing deployment (i.e.,
transmitter and receiver are collocated), the target range res-
olution can be computed as �r = (cTs/2), where c denotes
the speed of light and Ts is the sampling interval. For a fixed
range, the slow time discrete-time Fourier transform (DTFT)
extracts the Doppler information of the targets at that range.
The maximum unambiguous range r can be computed as
r = (cTPRI/2). The maximum unambiguous frequency shift
fDmax along the slow time axis is determined by the pulse rep-
etition interval, and can be computed as (1/2TPRI). Moreover,
the Doppler shift resolution �fD depends on CPI TCPI, and
can be computed as ([fDmax × TPRI]/TCPI). For gesture recog-
nition, the study in [83] extracted the features of the moving
hand using the range-Doppler map, range profile, Doppler pro-
file, and spectrogram, which describes the signal spectrum over
time. On the other hand, Ozkaptan et al. [39] coherently inte-
grated the reflected pilot signal in an OFDM system through
the matched filtering to estimate the range and velocity of

Fig. 6. Ambiguity function of a 128-length complementary Golay sequence.

the target. Also, Gürbüz et al. [59] leveraged synthetic aper-
ture radar (SAR) techniques to obtain the range-Doppler map.
This work further computes the spectrogram by taking the FFT
over short and overlapped time segments and stacking them
together to detect torso movement and stride length and the
RCSs of different body parts.

Since these techniques are based on the matched filtering
results, the range and Doppler estimation performance can be
greatly impacted by the waveform correlation property (i.e.,
ambiguity function). For example, the Golay sequence, a type
of complementary sequence used as pilot signals in the IEEE
802.11 WiFi system, has excellent autocorrelation property
and is ideal for range detection in the static state. While in
terms of Doppler/velocity detection, it exhibits a wide main
lobe and high side lobes as shown in Fig. 6, which indi-
cates low resolution for Doppler/velocity detection. Also, this
technique requires continuous waveform along the fast time
axis, which may not always be satisfied in a communication
system, e.g., in an OFDM system where physical layer ref-
erence signals are used to perform sensing. In these cases,
more advanced superresolution techniques can be considered
to improve the sensing performance, which will be discussed
in the remaining part of this section.

Sensing Parameter Estimation: There are several widely
used parametric estimation algorithms to estimate sens-
ing parameters: CLEAN, space-alternating generalized
expectation maximization (SAGE), RiMax, MUSIC, and
ESPRIT [84]. CLEAN is a computational algorithm that
assumes the signal consists of multiple components and
decomposes the signal into these components iteratively.
After estimating the parameters relative to the strongest signal
component, the processed signal is removed from the signal
space. The processing repeats until a stop criterion is met.
The CLEAN algorithm can not only be used to carry out
interference cancelation but also to detect weaker targets [76].
When the number of parameters to be estimated is high,
an exhaustive search is almost impossible. To address this
issue, the alternating-projections method can be used [85]. In
particular, the SAGE is an expectation–maximization (EM)
algorithm that computes a maximum-likelihood estimation
(MLE). It typically uses CLEAN algorithm’s output as an
initial guess and alternatively executes and iterates between E
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and M steps until the whole process converges. SAGE refines
the CLEAN estimation and removes all the unwanted signals
during the parameter(s) estimation steps, but at a higher com-
putational cost. Joint MLE (RiMax), another MLE algorithm,
separates dense and specular components parameters into
two separately sets, and estimates the parameters between
these two sets alternatively to maximize the log-likelihood
function [85]. RiMax outperforms CLEAN and SAGE in the
dense multipath environment but with the cost of computation
complexity.

MUSIC and ESPRIT belong to the subspace methods, that
is, the noisy signal is separated into signal subspace and noise
subspace, and both leverage the spatial covariance matrix to
estimate signal parameters, such as Angle of Arrival (AoA),
delay, and Doppler shift [19], [38]. MUSIC searches over the
spatial directions to find the ones that are orthogonal to the
noise space. Compared with MUSIC, Unitary ESPRIT has
lower computation complexity as it computes the eigen vec-
tors directly to estimate the angle, but it requires that the
antenna array can be separated into two identical subarrays
with known displacement between them. In general, MUSIC
and ESPRIT provide less accuracy than SAGE in terms of
parameter estimation, but with less computation complexity.
Thus, they have been widely used in the literature for target
detection. For instance, ESPRIT has been applied for mul-
titarget detection and range-Doppler estimation in an IEEE
802.11p system assuming the perfect channel estimation [19],
and MUSIC was used in [38] and [50] to estimate the velocity
of the target.

Compressed Sensing: Compressed sensing, also known as
compressive sensing, is a signal sparsity-based technique,
which can also be used to estimate target parameters. This
sparsity-based sensing technique is useful when the target
scene is sparse and only a relatively small number of parame-
ters need to be estimated, such as delay, Doppler shift, AoA,
Angle of Departure (AoD), and the amplitude of signal echoes
from the target. When the target scene can be presented with
suitable sparse representation, the measurements can be taken
below the Nyquist sampling rate and the target scene can be
reconstructed reliably with sparsity sensing algorithms, such
as basis pursuit, convex optimization, and Bayesian approach,
among others [86]–[88].

Compressed sensing has been widely adopted in mmWave
communications to estimate the mmWave channel through
sparse signal recovery [89]. It has also drawn significant
interest in radar sensing, aiming to achieve superior resolution
and better accuracy. Compressed sensing has been reported
outperforming the subspace method such as MUSIC algorithm
in the noisy condition when strong dominant clutter and direct
signal present [90]. Furthermore, since compressed sensing
can reconstruct the signal with a small number of samples
through optimization by exploiting its sparsity, it can cope with
the situation that the continuous target observation may not
be available, and the sampling interval may not be constant.
Since ISAC systems often sense with limited radio resources,
it may lead to fragmented channel measurements, spread-
ing over time, frequency, and space. Additionally, data flows
in ISAC systems in an on-demand fashion, making channel

measurements taken at an irregular intervals. While traditional
signal processing algorithms, such as MUSIC and ESPRIT,
require continuous signal observation [91], compressed sens-
ing can be a powerful tool to address these challenges in
the ISAC system. Additionally, with compressed sensing, the
number of pilot signals required to perform sensing can be
significantly reduced, and the overall ISAC performance [92]
can be improved.

Compressed sensing supports both on-grid sensing and
off-grid sensing. The on-grid sensing discretizes the chan-
nel parameters to a set of grid values. In contrast, off-grid
sensing can estimate continuous-value sensing parameters
but at the expense of significantly high computational com-
plexity and is challenging to operate in real time [91].
Compressed sensing can be used to estimate a single parame-
ter at a time, as well as to support high-order estimation and
estimate multiple multipath parameters simultaneously. High-
order compressed sensing can improve estimation performance
while adding more computation cost. There are some exist-
ing efforts to recover the channel using compressed sensing.
For example, to aim at high-resolution channel reconstruc-
tion, Rahman et al. [79] leveraged the incoherent channel
measurements in the received data block to formulate the
parameter estimation problem as an on-grid sensing problem
and employed the 1-D sensing technique to estimate chan-
nel parameters individually. Berger et al. [90] used the
OFDM channel estimate results as the measurements and
applied Basis Pursuit, a compressed sensing algorithm, to
identify targets. With compressed sensing, high-resolution
target detection can be achieved, but the processing complex-
ity is much higher compared to traditional FFT processing.
Zheng and Wang [93] used compressed sensing to perform
joint delay and Doppler estimation on a passive OFDM radar
system. The designed sensing algorithm takes into account
the demodulation error of removing the modulated symbols,
and performs off-grid parameter estimation through the atomic
norm to account for the grid mismatch issue, that is, the sens-
ing parameters may not fall exactly on the discrete grid points.
Likewise, Maechler et al. [94] applied compressed sensing
to target localization problems using the WiFi-based passive
bi-static radar system.

E. Data Processing

The collected sensing data (i.e., RSS, CSI, or received
waveform) will be preprocessed first to remove clutter and/or
extract the target-related information such as range and
Doppler frequency shift through the signal processing module.
Furthermore, the extracted signal features will be processed
by the data processing algorithms to support various sensing
applications. Depending on sensing applications, data pro-
cessing can be model-based, learning-based, or hybrid by
combining model-based and learning-based approaches.

Learning Based: For human activity recognition and ges-
ture recognition, in order to categorize detected human motion
into one activity within a set of unique activities, learning-
based classification algorithms are more commonly used.
For example, Singh et al. [95] conducted human activity
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recognition measurements using mmWave radar. Based on the
measurement data, this work compared several learning-based
algorithms, such as support vector machines (SVMs) classifier,
multilayer perceptron (MLP) classifier, bidirectional long-short
term memory (LSTM) classifier, and time-distributed con-
volutional neural network (CNN). Among these classifiers,
the combination of CNN and LSTM demonstrated the best
recognition performance due to this method can explore the
spatial and time dependency of the data. Zhao et al. [96] used
mmWave radar operating at 77–81-GHz band for smart space
applications, such as gait recognition and human tracking and
identification. In their study, a deep recurrent network was
used to perform the tasks. Differently, Lien et al. [83] used ran-
dom forest classifier for gesture sensing using mmWave radar.
Li et al. [97] used a simple 2-D CNN for activity classifica-
tion. Moreover, Zhao et al. [98] inferred 3-D human skeletons
using CNN. Sengupta et al. [99] used forked-CNN on the
point clouds, i.e., the target echos collected using mmWave
radar, to estimate and track human skeleton. In addition,
learning-based algorithms have been used for localization. For
instance, Koike-Akino et al. [100] measured the spatial beam
SNRs using the IEEE 802.11ad/ay systems and leveraged a
ResNet-based deep learning scheme for indoor localization.

Model Based: Model-based algorithms are often used to
estimate sensing parameters and locate targets. For example,
Nguyen and Heath [19] used ESPRIT for multitarget detection
and range-Doppler estimation for automotive radar. Similarly,
Li et al. [101] proposed a dynamic-MUSIC method to detect
the reflected signal from the human body to localize the human
target. The proposed method leveraged coherent receive sig-
nal can achieve a localization accuracy better than 0.6 m when
the human target moves. Another example of the MUSIC algo-
rithm is [50] using CSI information to extract Doppler velocity
information via Doppler-MUSIC and using Doppler and AoA
information to estimate human trajectories. With model-based
approaches, the required amount of data can be reduced com-
pared to machine learning, especially deep-learning methods.
There are also some model-based approaches designed for ges-
ture activities. For example, WiSee [15] used a Doppler-based
gesture pattern matching approach to identify and classify a
set of gestures.

Hybrid: Hybrid approaches combine the model-based and
the learning-based algorithms to perform sensing. For exam-
ple, Huang et al. [82] focused on fast indoor people detection
and tracking. It uses the recursive Kalman filtering for track-
ing combined with the global nearest neighbor algorithm to
associate tracks with people. Also, Wei and Zhang [102]
combined the phase tracking algorithm and a decision tree
to recognize touch-based gestures, allowing passive writing
objects (such as pens) to be recognized with subcentimeter
accuracy. Some hybrid methods also incorporate deep learn-
ing algorithms together with model-based algorithms. On this
topic, Pegoraro and Rossi [103] used an extended Kalman
filter to estimate the position and shape of the object, and fur-
ther used a deep learning classifier to identify the subject.
Zhao et al. [96] conducted human tracking and identifica-
tion based on point cloud collected using mmWave radar.
The proposed approach first uses the DBScan algorithm to

cluster the objects and the Hungarian algorithm to associate
the objects between frames. In addition, the Kalman filter was
used to track and predict undetected objects in some frames,
and finally, deep recurrent neural networks were adopted for
gait recognition.

Recall that we have surveyed sensing and communication
performance metrics used in the transmit waveform design. To
evaluate sensing algorithms and systems, additional system-
level performance metrics are needed. Moreover, depending
on the use case, some metrics might be preferred. For exam-
ple, cardinality measures (e.g., the number of valid motion
trajectories or tracks, the number of false targets, and the num-
ber of missed targets) can be defined to measure the number
of tracks associated with the truth and the number of missed
and false tracks. These metrics are useful when the application
requires counting and tracking multiple targets. An observation
of cardinal measure over time can be quantified with detection
probabilities and false positives. A finer metric to quantify the
performance of a sensing system is sensing accuracy, which
is defined as the difference between the sensed and true val-
ues of range, angle, velocity, or any other estimated parameter.
Finally, latency (i.e., the time elapsed between an event and the
availability of the sensing information) is an important param-
eter for time-sensitive sensing applications, such as industrial
IoT and autonomous driving.

III. APPLICATIONS

In this section, we introduce some typical applications for
ISAC systems, including human activities, target localization
and tracking, and others. In addition, we highlight how the
sensing techniques enable these applications.

A. Human Activities

Liu et al. [24] provided a review of wireless sensing on
human activities. Some representative human activities include
gesture recognition, human identification, vital sign detec-
tion, and walking profiling. Human activity sensing can be
integrated with smart home/building applications to monitor
room occupancy, identify and locate people, monitor human
well-being, support surveillance applications (i.e., safety pro-
tection and intrusion detection), and enable human interactions
with smart computing systems and IoT devices. As an exam-
ple, Li et al. [68] designed a passive WiFi radar system
for human sensing, including breath detection and human
counting, and addressed the issue that WiFi access points
(APs) do not always have data to transmit. In their study,
a beacon-only signal transmission scenario is evaluated, and
an enhanced cross-ambiguity function (CAF) algorithm is
designed to improve the Doppler performance. The key idea
of the algorithm tends to synchronize and extract the beacon
signal before passing through the CAF.

Human Counting and Identification: Xi et al. [72] addressed
the issue of accurately estimating the number of human beings
in a designated area and proposed a CSI-based scheme. After
analyzing the correlation between the change of CSI and the
number of people in the target area, this study adopts a metric
called the percentage of nonzero elements in the dilated CSI
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matrix, which is highly correlated to the number of human
beings. Wang et al. [30] proposed a system that uses com-
mercial WiFi devices to recognize human targets based on the
notion that the variation patterns on WiFi CSI are highly cor-
related to different people. Then, to characterize the pattern
of human actions (such as walking), spectrograms from CSI
measurements are generated, and corresponding features are
extracted. In this work, the experiments are conducted on the
measurement data collected in a room with 50 human beings,
and the simulation results demonstrate that the system achieves
the recognition accuracy of 80%–90%.

Human Activity Detection: Wang et al. [32] used CSI to
detect and monitor human activities. The authors quantified
the correlation of the CSI variation with the moving speed
and used the movement speed of each human body part to
detect human activity. The experiment setup consists of a lap-
top and an AP running IEEE 802.11ac protocol, operating in
the 5-GHz frequency band with 20 MHz of bandwidth. The
experiments demonstrated that 98% true positive rate can be
achieved for small movements (i.e., pushing hand) and large
movements (i.e., walking) when the target is at a distance up
to 5 and 12 m, respectively.

Indoor Human Localization and Tracking: Intrusion detec-
tion and human tracking are important to enable smart home
applications. For indoor human tracking, Li et al. [50] used
the CSI information to extract Doppler frequency. This work
addresses random CSI phase offset in each CSI measure-
ment and designs a mechanism to adjust the power level of
each antenna so that the desired Doppler component can be
obtained. In this study, MUSIC-based Doppler estimation is
applied, and estimated Doppler and AoA spectrum are adopted
jointly to estimate the human trajectory. Also, Li et al. [101]
presented a WiFi-based device-free passive indoor localiza-
tion system, where a dynamic-MnIC algorithm is designed to
detect and identify the human target angles. Using the off-
the-shelf NIC, the proposed algorithm demonstrates a median
location accuracy of 0.6 m for walking human targets.

Gesture Recognition: WiFi signal has been used to carry
out hand gesture recognition [36], [104], [105]. For instance,
IEEE 802.11bf, an ongoing WiFi sensing standard, is defining
some gesture recognition use cases [106] as follows: the short-
range (< 0.5 m) gesture recognition should deal with the
identification of a gesture from the movement of finger(s);
the medium-range (> 0.5 m) gesture recognition should deal
with the identification of a gesture from the movement of
a hand; and the large-range (> 2 m) gesture recognition:
which deals with the identification of a gesture from full-body
movement.

One challenge of human gesture recognition is that it
is highly sensitive to position and orientation (for exam-
ple, facing the transmitter or not). To address this issue,
Virmani and Shahzad [105] proposed a translation function;
with the designed function, only one configuration of all ges-
tures is required, and virtual samples for all configurations
can be generated based on the designed translation function.
When the model is in use, the user’s configuration will be first
automatically estimated, and then the gesture will be evaluated
against the classification model for the estimated configuration.

The authors also demonstrated that the translation function
could improve gesture recognition accuracy.

High-frequency bands, such as mmWave and Terahertz, can
be used to refine the granularity of gesture recognition, thanks
to large bandwidth and enhanced spatial resolution brought
by narrow beamwidth. For example, Wang et al. [107] inves-
tigated the use of Terahertz radar to conduct microgesture
recognition. In their study, the changed motion between ges-
tures is characterized based on a range-Doppler map and
a CNN-based deep learning technique is used to recognize
different gestures. Likewise, Wang et al. [108] investigated
Terahertz radar to carry out fine-grained gesture recognition.
In their work, the range profile sequence as the key feature is
extracted from the radar signal and the random forest-based
machine learning scheme is used to establish the model from
the extracted features. To improve efficiency, the principal
component analysis (PCA)-based dimensionality reduction is
also utilized.

Vital Sign Monitoring: Adib et al. [17] used wireless sig-
nals to monitor human breathing and heart rate. The minute
movement of the chest and the skin due to breathing and heart
beat can be detected from the reflected wireless signal by mea-
suring the phase variations. The authors demonstrated that the
monitoring device could track a person’s breathing and heart
rate even in different rooms. Furthermore, the device can also
monitor and track multiple people’s breathing and heart rates
simultaneously. In this study, the authors also built a real-time
FMCW radio prototype to develop several insights. As another
example, Liu et al. [109] considered commercial WiFi devices
to track breathing and heart rate during sleep by utilizing chan-
nel knowledge, demonstrating that the system can work well
with two people laying on a bed.

Writing Recognition/Computer Human Interaction:
Cao et al. [35] addressed the writing recognition issue and
designed a WiFi signal-based system. The designed system
leverages the CSI values from WiFi devices to detect the
motion of hands and fingers, leading to the recognition of
corresponding written letters.

It is worth noting that mmWave WiFi sensing has received
increasing attention recently and has brought new sens-
ing opportunities. Millimeter-wave communications employ
highly directional and electronically steerable antennas to
achieve their required communication range. Due to its
high angular resolution, the narrow beam can better track
small and fine-grained motion. Thanks to their smaller size
and widespread availability, mmWave devices can be eas-
ily deployed to support various IoT applications, such as
human sensing and area mapping. Aside from these benefits,
mmWave WiFi sensing has its own challenges. For exam-
ple, due to the directional antenna and limited antenna FOV,
multiple beams are often required to cover an area; there-
fore, beam pattern design, beam training, and beam tracking
are essential in mmWave WiFi communication and sensing.
In addition, the low-cost mmWave WiFi devices, such as the
IEEE 802.11ad/ay systems, have limited antenna elements and
may not be able to produce high-resolution angle estimation
by default. To address this issue, superresolution angle esti-
mation algorithms are often required. Related to this direction,
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Wei et al. [110] designed E-Mi, a framework to use 60-GHz
radio channel to reconstruct the environment and reflectivity to
predict communication signal strength for a given deployment.

B. Localization and Tracking

In addition to human beings, other objects such as vehicles
can be localized and tracked via ISAC.

Automotive Radar: Autonomous driving vehicles need to
constantly monitor the environment, assessing the distance
and velocity of surrounding vehicles to avoid a collision or
participate in vehicle platooning. On the other hand, communi-
cation is important for autonomous vehicles to stay connected
and exchange information; thus, leveraging the communication
waveform for vehicular sensing has drawn significant interest
recently.

Some research efforts have been focusing on using com-
munication waveform for automotive radar. For example, an
IEEE 802.11ad-based automotive radar [63] is proposed using
SC PHY. The preambles, consisting of Golay complemen-
tary sequences, are used for target detection, as well as range
and velocity estimation for single target and multiple tar-
gets scenarios. Through a simulation study, the feasibility of
simultaneous centimeter (cm)-level range detection accuracy
and cm per second (cm/s)-level velocity accuracy, as well as
a gigabits-per-second data rate, are demonstrated. In addi-
tion to SC PHY, Control PHY of IEEE 802.11ad is also
explored to support automotive radar applications. In par-
ticular, sector-level sweeping is exploited to perform target
detection and range/velocity estimation [46]. In addition to
IEEE 802.11ad, IEEE 802.11p, which is an OFDM-based
waveform, is studied for vehicle range and velocity estimation
through simulation [19].

Moreover, some experiments using a prototype have been
conducted to perform automotive radar functions [18]. The
prototype consists of directional antennas and software radio
transceivers to transmit the IEEE 802.11a/g waveform to
estimate ranges in a vehicular environment.

C. Other Applications

Area Map Reconstruction: Taha et al. [111] constructed an
augmented reality (AR) and virtual reality (VR) depth map for
mixed-reality experience using IEEE 802.11ad SC PHY. More
specifically, a beamforming codebook is designed to steer the
overlapped beam to a rectangle grid in the xz plane to obtain
the backscatters from objects for sensing. Furthermore, suc-
cessive interference cancelation and joint beam processing are
performed to construct the depth map. For performance eval-
uation, a detailed multipath propagation model is generated
using the commercial ray-tracing tool.

Smart City: As an important IoT/CPS application, smart
cities tend to optimize city operation so that energy effi-
ciency, transportation services, people’s health and wellness,
and economy can be improved by leveraging the information
and communication technologies [112]. In smart city appli-
cations, RF signals can be used to monitor traffic or control
street lights. For example, WiTraffic [20], a WiFi-based traf-
fic monitoring system implemented using off-the-shelf WiFi

devices, analyzed the CSI pattern of the reflected signal from
the passing vehicles and conducted vehicle classification, lane
detection, and speed estimation. Experiments were performed
on both highways and local roads, showing around 96%
accuracy of vehicle classification and lane detection.

Besides the traffic monitoring, the RF sensing data collected
by wireless devices through mobile crowdsensing (MCS) [113]
can be used to estimate human occupancy in a tourism site or
an indoor restaurant, which can provide real-time information
to customers. Furthermore, the collected human activity data
can be shared and compared within community to promote
healthy living style. Compared with traditional sensors in
sensor networks, these wireless devices have better communi-
cation, sensing and data processing capabilities [113].

In-Cabin Monitoring: In-cabin monitoring can support a
number of safety features, including driver behavior moni-
toring, reckless driving recognition, authorized driver iden-
tification, passenger health monitoring, passenger counting,
and child presence detection to avoid leaving a child behind
in an unattended vehicle, among others [114]. For example,
WiFind [115] detected driver’s fatigue by leveraging the self-
adaptive method to recognize the body features of the driver
in multiple modes using WiFi signal. The experiments con-
ducted in the real-time driving environment demonstrated the
detection accuracy of 89.6 % can be achieved with a single
driver. Likewise, WiDrive [116] designed a WiFi-based driver
activity recognition system to prepare safe driver takeover in
the autonomous vehicle. It realizes the real-time recognition
of driver’s activities through a hidden Markov model (HHM).

Environment Monitoring: Large-scale wireless networks
(such as cellular networks) can assist environmental stud-
ies. Rainfall measurement, pollution monitoring, fog, snow,
and sleet detection are potential applications that can be
enabled by analyzing the changes of the wireless propaga-
tion due to atmospheric phenomena. Related to this direction,
Messer et al. [21] demonstrated the feasibility of measuring
the RSS level in the cellular backhaul links to monitor surface
rainfall level with reliable performance.

IV. TOOLS AND DATA SETS

In this section, we introduce some tools1 and publicly avail-
able data sets that can be beneficial to carry out ISAC research
in practice.

A. Tools

Linux 802.11n CSI Tool [70]: It is a widely used WiFi
CSI collection tool running on a commodity IEEE 802.11n
NIC. This tool measures each packet preamble at the receiver
for every transmitter and receiver pair. The toolkit works
with the Intel WiFi link 5300 wireless NIC and reports CSI
for 30 subcarriers, which are evenly spread in the entire
bandwidth [70].

1Certain commercial equipment, instruments, or materials are identified in
this article in order to specify the experimental procedure adequately. Such
identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply
that the materials or equipment identified are necessarily the best available
for the purpose.
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Talon Tools: Talon Tools [117] is a software toolset work-
ing with TP-Link’s Talon AD7200 router, supporting IEEE
802.11ad. The Talon router consists of a phased array antenna
with 32 antenna elements, which can be individually controlled
to change the magnitude and the phase. With the toolset, the
Talon router can be used to study 60-GHz mmWave com-
munication in realistic environments. The tools included in
the toolkit are LEDE, Talon AD7200 Sector Patterns, and
Nexmon, which is a C-based patching framework that can
be used to develop the customized firmware patches to com-
plete certain tasks, such as accessing the RSS of sector sweep
frames and extracting the CSI of OFDM-modulated WiFi
frames (802.11a/g/n/ac) for each frame with up to 80-MHz
bandwidth [71]. LEDE provides an interface to configure the
router to set up communication links between multiple devices.
Talon AD7200 Sector Patterns are a tool that can be used to
measure the beam and sector patterns.

TI mmWave Radar Sensor [118]: TI mmWave radar oper-
ates in the mmWave frequency range with 4-GHz bandwidth.
It includes transmitter, receiver, and signal processing mod-
ules and employs radar waveform such as FMCW for sensing.
The output of the sensor is the point cloud, including a
set of reflection paths with range, angle, and radial velocity
information.

SimHumalator [119]: This tool targets human radar signa-
ture models in passive WiFi radar scenarios [120]. It lever-
ages IEEE 802.11 WiFi compliant waveforms (i.e., 802.11g,
802.11n and 802.11ad) for sensing and outputs micro-Doppler
features of human targets.

WiGig Tools [121]: WiGig Tool is a set of open-source
tools to simulate IEEE 802.11ad/ay WLAN systems, which
can facilitate mmWave sensing research with the standardized
communication waveform. The tool package consists of the
following tools.

1) NIST Q-D channel realization software leverages full
3-D ray tracing to model the specular reflections
between two reference points in space, and the dif-
fused paths are reconstructed based on a statistical model
obtained from NIST measurements [122]. The mod-
eled propagation paths are described by their magnitude,
phase, time of arrival, AOD, and AOA. Furthermore, by
raytracing the close-located antenna elements in space,
the software is capable of supporting the spatial corre-
lation between different MIMO streams. Recently, the
software has been enhanced to support the ray tracing
of targets, as explained in Section II-B.

2) NIST IEEE 802.11ay PHY is a digital transceiver model
that supports the main features of the IEEE 802.11ay
PHY [8], [123]. It supports SU-MIMO and MU-MIMO
for both OFDM and SC modes. The implemented digi-
tal transceiver can perform channel synchronization and
channel estimation using the preamble provided in the
IEEE 802.11ay packet, which can be further utilized for
sensing applications.

3) NIST Q-D Interpreter Software is a visualization tool
that can visualize the environment along with targets
and also analyze the ray tracing and PHY simulation
results.

B. Data Sets

Table I lists a set of publicly available data sets. In the table,
we provide the information of 12 data sets, which consider
different sensing applications. For each data set, we provide
the data set name, the application that can be applied, the
organization that provides the data set, the note that includes
some key properties of the data set, as well as the Web link
to directly access the data set. From the table, we can see that
some data sets are CSI measurements for WiFi signals, such
as IEEE 802.11n and 802.11ad. Several data sets are collected
from mmWave radar sensors applied for indoor sensing.

V. STANDARDIZATION

As ISAC can provide numerous benefits and support a vari-
ety of emergent applications, it has received growing attention
from not only the research community, but also the standard-
ization organizations. In particular, IEEE has recently initiated
an effort toward IEEE 802.11bf WiFi or WLAN sensing, the
specification that will turn WiFi devices into object sensors
to perform enhanced sensing operations in frequency bands
between 1 and 7.125 GHz and above 45 GHz.

Different from the broader WiFi sensing research efforts,
which focus on building sensing prototypes and designing
algorithms to provide better sensing solutions, the objective
of the IEEE 802.11bf standards development tends to address
interoperability challenges by defining sensing procedures and
protocols to allow the sensing devices to effectively work in
a system. In particular, a WLAN sensing procedure is being
proposed to allow discovering available devices for sensing,
forming sensing groups, defining required sensing measure-
ments, and feeding back sensing results. The suggested WLAN
sensing procedure is composed of one or more of the fol-
lowing: sensing session setup, sensing measurement setup,
sensing measurement instance, sensing measurement setup ter-
mination, and sensing session termination [136]. It is worth
noting that the directional multigigabit (DMG) sensing proce-
dure is a subset of the WLAN sensing procedure, specifically
targeting the frequency band above 45 GHz. The DMG sens-
ing procedure consists of an extra DMG sensing burst session
than WLAN sensing, allowing DMG sensing burst to expand
over multiple DMG sensing instances to obtain more accurate
Doppler shift estimation.

Several roles have been defined for the devices participat-
ing in the sensing procedure [137]: 1) sensing initiator is a
station (STA) that initiates a WLAN sensing procedure and
requests the sensing results; 2) sensing responder is a non-
initiator STA that participates in a WLAN sensing procedure
initiated by a sensing initiator; 3) sensing transmitter is an
STA that transmits packets used for sensing measurements
in a sensing procedure; 4) sensing receiver is an STA that
receives packets sent by a sensing transmitter and performs
sensing measurements in a sensing procedure; and 5) sensing
processor [138] is an STA that processes the sensing measure-
ments (e.g., raw CSI and received waveform) and obtains the
sensing result after signal processing (e.g., compressed CSI,2

2In compressed CSI, the measurement vector that need to be feedback has
reduced dimensions in comparison to the full CSI [139].
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TABLE I
AVAILABLE SENSING DATA SETS

range-Doppler map, and range-time map). Note that the sens-
ing processor needs to process the measurements and further
feedback sensing results to the sensing initiator in case the
sensing initiator and the processor are different STA. In the
sensing procedure, the sensing initiator and sensing responder
can be either a sensing transmitter, sensing receiver, or both,
and sensing can be performed using either uplink or downlink
transmissions.

It is also worth noting that sensing measurement and report-
ing is one of the important issues especially for the case
when sensing receiver that performs the measurements is not
a sensing processor. To reduce the size as well as the num-
ber of feedback for reporting the measurements, the following
approaches have been proposed.

A. Truncated Channel Impulse Response-Based Sensing
Measurement and Reporting

In truncated power delay profile (PDP) or channel impulse
response (CIR)-based sensing measurement and reporting, the

following steps can be considered. In the first step, the CFR,
i.e., CSI in frequency domain is converted to CIR (time
domain) using inverse discrete Fourier transform (IDFT) such
as inverse FFT (IFFT). Subsequently, in the second step,
only the subset of complex samples corresponding to the
range of interest of the entire CIR [140] is reported to the
sensing initiator or processor. This scheme can significantly
reduce feedback overhead and can also provide complete/full
information within the range of interest with lower side-lobe
level in comparison to grouped CSI (frequency domain) where
IFFT is performed on a subset of the total subcarriers.

B. Threshold-Based Sensing Measurement and Reporting

As mentioned earlier, a sensing initiator can act as a trans-
mitter, receiver, or both or neither whereas a sensing responder
can act as a transmitter, receiver, or both. Note that if a sensing
initiator is a sensing receiver, there is no feedback needed since
the sensing initiator can directly obtain the measurements to
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get the sensing result. On the other hand, if a sensing initia-
tor is a sensing transmitter, feedback is required to get CSI
measurement (e.g., compressed CSI and sensing result) from
sensing receiver(s). Threshold-based sensing measurement and
reporting procedure has been specified in [137] as an optional
procedure applied to trigger-based sensing.

The frequency of feedback depends on the use cases. Some
use cases, such as intruder detection, require frequent CSI
feedback, but most of the feedback may be highly correlated
over a period. Thus, the sensing receiver does not need to
feedback the CSI all the time. The receiver can feed back
only when the CSI variation becomes large. For this purpose,
a threshold can be used in the reporting phase of the procedure.
This procedure is known as the threshold-based sensing mea-
surement procedure [137], [141]. If the CSI variation meets the
feedback threshold criteria, i.e., if the CSI variation is greater
than the threshold, the sensing receivers will send the feedback
response to indicate that they will perform further feedback,
and then the feedback will be triggered by the sensing trans-
mitter and finally sensing receiver can feedback the received
null data packet (NDP), CSI, compressed CSI, or the final
result.

The CSI variation could be quantified by the time-reversal
resonating strength (TRRS) [142], which is the maximal
amplitude of the entries of the cross-correlation between two
complex CIRs. This scheme is more robust than conventional
correlation coefficients since it takes the maximum value of the
correlation coefficients [142]. However, one can also propose
a better metric to evaluate CSI variation. Thus, the calcu-
lation of CSI variation is suggested to be implementation
specific, where different devices can have different methods
to determine CSI variation. However, the estimated value of
CSI variation needs to be mapped to a closed interval [0,1] to
quantify the degree of variation, where 0 and 1 indicate the
minimum and maximum CSI variation, respectively.

As an example, we consider an empty indoor environment
with two moving targets and two mmWave communicating
devices each consisting of a single antenna, as shown in
Fig. 7(a). The normalized CSI variation for this scenario
assuming perfect channel knowledge can be seen in Fig. 7(b),
where the TRRS scheme is used. One can observe that for
each time when CSI variation is below the threhsold, the CSI
measurement feedback is not required. Thus, different val-
ues of threshold in feedback threshold criteria result in the
different number of feedback required to report the CSI mea-
surements. As shown in Fig. 7(c), if we increase the threshold
value from 0 to 0.04, the number of feedback reduces by 30 %.
This feedback can be further reduced to 50 % by increasing
the threshold to 0.06. Nonetheless, the velocity versus time
plot does not degrade significantly even though the feedback
is reduced by half. In Fig. 8, we can clearly identify the
movement of two targets through two stronger oscillations in
all three cases. Note that Fig. 8(a) corresponds to the ground
truth utilizing all the CSI measurements by considering thresh-
old value equal to 0. On the other hand, Fig. 8(b) and (c)
corresponds to the cases utilizing 30% and 50% CSI mea-
surements, respectively, by setting threshold value as 0.04 and
0.06.

Fig. 7. Threshold-based WLAN sensing measurement and reporting under
perfect channel knowledge, where threshold = 0 means that CSI mea-
surements always need to be feedback even though the channel does not
change for the entire duration. (a) Living room environment with two tar-
gets. (b) Normalized CSI variation over time. (c) Impact of threshold on the
number of feedback.

VI. CHALLENGES AND FUTURE RESEARCH DIRECTIONS

In this section, we present challenges and some important
research directions.

A. Challenges

By using the communication waveforms for sensing and
leveraging pervasive wireless networks, sensing services are
very promising to become an integral part of the next-
generation wireless system. However, there are a number of
challenges that need to be addressed.
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Fig. 8. Velocity versus time considering threshold-based WLAN sensing measurement and reporting with different values of threshold. (a) Threshold = 0.
(b) Threshold = 0.04. (c) Threshold = 0.06.

First, to support an application, in the existing research,
sensing is commonly conducted in one particular environment
with a fixed geometric setting, and the sensing performance
can be significantly affected by numerous factors such as rela-
tive distance between the target and transmitters/receivers, the
number of targets in the area, and the RF waveforms used for
sensing, among others. In addition, mutual impact and assis-
tance between sensing and communication have not been thor-
oughly studied. Thus, it is important to leverage collaborative
sensing, communication-assisted sensing, and sensing-assisted
communication to optimize the system, achieve good integra-
tion gain, and use SDN and distributed edge computing to
build a sensing ecosystem to achieve ubiquitous and reliable
sensing.

Second, applications for an ISAC system are diverse, and
applications have various performance requirements in terms
of sensing accuracy and communication QoS. To compare
different systems and algorithms within the ISAC context,
dedicated performance indicators inherited from both commu-
nication and sensing technologies need to be considered. In
wireless communication, the goal is to ensure a seamless user
experience independently of environmental factors. Thus, peak
data rate, average data rate, and latency need to be respected
under different connection density (devices/km2), mobility
(km/h), and area traffic capacity (Mbit/s/m2). Whereas, for RF
sensing, the goal is to detect, locate, or track one or multiple
targets with high accuracy independently of environmental fac-
tors. For example, in an industrial IoT environment, where
a robot needs to perform high reliable and high precision
tasks, subcentimeter level accuracy with ms one-way latency
and reliability of up to 99.9999% may be required [3], [143].
To support such ultralow latency, highly reliable, and precise
industrial applications raises a challenge for ISAC design.
Given limited resources, designing a cost-effective ISAC
to satisfy performance requirements from both communi-
cation and sensing functionalities raises new challenges to
system design and integration. To this end, some important
research areas include improving performance by carrying out
cross-layer and cross-component design, the investigation of
high-fidelity channel model and target model to assist system
design, and others.

Fig. 9. Future research directions for ISAC.

Third, the ISAC system can generate massive amounts of
data to be processed in a timely manner. Also, the system
could operate in a dynamic environment with numerous uncer-
tainties. On the one hand, to make the collected data useful
to support applications, it is challenging to effectively extract
valuable knowledge from massive amounts of sensing data
rapidly. On the other hand, the collected sensing data could
contain privacy-sensitive information, and balancing the pri-
vacy and utility of the data is an unsolved issue. In addition,
the ISAC system could be subject to component failures,
security threats, etc. For instance, in an ISAC system, to
accomplish sensing, a transmit signal with a significant power
level will illuminate the target. The illuminating signal may
contain messages for the intended communication receiver,
which can be disclosed to adversaries and subject to a variety
of attacks. Thus, it is important to systematically investigate
the security risk of ISAC systems and develop correspond-
ing countermeasures to make ISAC secure. To this end, new
research areas should include the foundation and application
of machine learning and big data analytics for radar sensing,
security, and privacy in ISAC systems and others.

B. Future Research Directions

In the following, we introduce several critical areas of
research, as illustrated in Fig. 9.

1) Collaborative Sensing: Currently, most RF sensing
systems target one particular application and are highly depen-
dent on the deployment of sensors and the environment. In
order to better adapt the sensing systems to a real-life scenario
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Fig. 10. Collaborative WLAN sensing with three possible implementations. (a) First implementation, (b) second implementation, and (c) third implementation.

and take advantage of the ubiquitous availability of wire-
less devices, collaborative sensing is an important enabling
technology.

In collaborative sensing, multiple devices can collaborate
as a group to capture additional information about the sur-
rounding environment. Fig. 10 presents three possible ways
of implementing collaborative sensing utilizing the roles con-
sidered in the IEEE 802.11bf amendment as described in
Section V. In the first implementation, as shown in Fig. 10(a),
multiple STAs can forward their sensing results directly to the
initiator (i.e., the device initiated the sensing procedure) after
processing the CSI measurements, and the AP initiator can
combine each of the sensing results to make a final decision.
In some use cases, for example presence detection, one-bit
feedback from each STA to indicate the presence status can
be considered. In the second implementation, as shown in
Fig. 10(b), since the initiator acts as a processor, which directly
processes the CSI measurements, multiple STAs can feedback
their CSI measurements in an orderly fashion. In this way,
AP can capture additional information about the surrounding
environment since the raw measurements of multiple channels
would be available. In the third implementation, as shown in
Fig. 10(c), the initiator acts as a receiver and also as a proces-
sor. In the beginning, the initiator forwards a trigger packet to
all STAs, and in response to the trigger packet, each responder
transmits a CTS-to-self packet if it is available to participate
in sensing (known as the polling phase). Subsequently, the ini-
tiator retransmits the trigger packet to all STAs that agreed to
participate, and in response to the trigger packet, each STA
transmits an NDP one by one to sound the channel.

In this area, the following issues should be addressed:
1) how to organize the collaborative sensing groups? If there
are too many participants, too much redundant information
will congest the communication network and degrade the com-
munication performance; 2) related to protocol design, how
to dynamically organize the sensing group for different sens-
ing tasks? 3) how often should the sensing be performed
with the consideration of application requirements and the
number of participants involved in sensing tasks? 4) how
much information should be processed locally, and what is
the granularity of the sensing information that should be
collected, aggregated, and processed by networking and com-
puting infrastructure so that timely important knowledge can
be provided to applications. Fine granularity may allow the use

of more advanced data mining/fusion and machine learning
techniques, but it incurs more overhead and longer processing
time. Thus, it is interesting to determine the desired granu-
larity level for supported applications, and applications may
have different granularity levels to support; and 5) it is critical
to have a fundamental understanding of sensing performance
and its fundamental limitation.

2) Sensing-Assisted Communication: A significant amount
of research work has been done on utilizing existing commu-
nication systems to perform sensing tasks. In the meantime,
sensing should also assist communication, which is especially
important and beneficial for communication in high-frequency
bands, such as mmWave and Terahertz bands. Due to high
propagation loss in these bands, beamforming and often nar-
row beams have been used to compensate for the path loss.
When the receivers or transmitters are in motion, the commu-
nication links (i.e., the direction of beams) must be constantly
reconfigured to keep good alignments and thus, maintain the
desired throughput. Beam reconfiguration through training and
beam refinement can be expensive, especially in the narrow
beam (e.g., pencil beam) setup involving fast motion. In this
case, if the location and trajectory of the receivers can be
estimated, or changes in the surrounding environment can
be predicted, the beam can be adjusted in time, significantly
reducing the need for beam training or beam refinement. For
example, in the vehicular network, the beam tracking over-
head can be reduced by tracking and predicting the kinematic
parameters of vehicles [144].

In addition, a real-time area map obtained through sens-
ing can be used to predict blockage and pick up another
propagation path to continue data transmission if the current
communication link is going to be blocked. One challenge of
designing ISAC systems is to perform simultaneous environ-
ment sensing, user localization, and trajectory tracking while
maintaining high communication throughput. Other issues
include how to translate the sensing results to communication
design in real time. It is worth noting that with the increasing
interest in 6G Terahertz communication, sensing is becoming
an integral and necessary component to support communica-
tions. In this regard, some emergent techniques such as the
reconfigurable intelligent surface (RIS) can be leveraged to
extend communication range through intelligent beamform-
ing, which heavily relies on real-time environment sensing
to perform environment-aware beamforming [145]. Thus, the
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modeling, simulation, testbed, and standardization about lever-
aging sensing information to assist communication in the
next-generation wireless systems shall be further researched.

3) SDN and Edge Computing-Enabled Wireless Sensing:
RF sensing can be ubiquitous and cost effective. Collected
wireless sensing data need to be integrated with data col-
lected from other sensors [e.g., image sensors, laser imaging,
detection, and ranging (LIDAR)] to help smart environments
make accurate decisions. In a smart environment, some areas
may be covered by existing sensors (e.g., surveillance systems
in a building or a campus) and may capture a number of
physical objects (humans, intruders, etc.). However, existing
sensing infrastructure may not cover all areas and may not
work in all conditions. When some objects (e.g., intruders)
enter the noncovered area, it is critical to engage RF sens-
ing. In order to achieve this, the state of the physical object
needs to be tracked, and the RF sensing function should be
dynamically turned on and off. To achieve seamless integra-
tion of heterogeneous sensor groups and dynamically enable
tracking and sensing policies, SDN technology should be con-
sidered to provide a common interface to allow the system
dynamically execute sensing policies within or across multiple
sensing systems, greatly supporting the vision of the smart
environment.

Also, a sensing ecosystem should consider distributed edge
computing for sensing data processing. Edge computing,
as a new distributed computing infrastructure, has shown
great potential to support a number of smart-world IoT
systems [146]. In a large-scale sensing system, transmitting
massive amounts of data collected by sensing devices to
the cloud will introduce significant overhead to the network,
causing network congestion and long latency due to data trans-
mission. To mitigate against this, distributed edge computing
will be capable of providing sensing data processing near to
devices or even on devices locally. The edge computing in
ISAC systems shall consider the management of edge nodes
and coordination of procession on RF sensors and edge nodes.
Also, as transmitting sensing data to edge nodes may pose an
overhead to wireless communications, how to efficiently man-
age the computing and network resources of RF sensors and
edge nodes should be carefully studied.

4) Cross-Component and Cross-Layer Design and
Optimization: Numerous smart-world IoT applications have
strict performance requirements in terms of both sensing (e.g.,
accuracy, real time, and reliability) and communication (e.g.,
throughput, latency, and reliability) [3]. In an ISAC system,
sensing and communication share time, frequency, spatial,
and power resources. It is important to conduct resource
management to satisfy performance requirements for both
sensing and communication.

To meet performance requirements, cross-component design
and optimization shall be considered. Sensing involves
multiple components as shown in Fig. 1, including transmit
waveform generation, sensing environment, signaling process-
ing, and learning-based or model-based sensing algorithms.
When studying a sensing solution, the impact of individual
components should be carefully considered. For example, the
sensing environment, such as the deployment of the transmitter

and the receiver, target location, and sensing application
requirements, should guide the transmit waveform design and
configuration. In addition, appropriate signal processing tech-
niques and sensing algorithms should be selected depending on
the adopted waveform and accuracy and latency requirements.

Furthermore, the cross-layer design shall be considered.
ISAC system can be mapped into a layer structure, includ-
ing physical object layer, sensing and communication layer,
and application layer. The physical object layer consists of
different types of objects (e.g., humans and vehicles) as sens-
ing targets, which can be either static or mobile. The sensing
and communication layer engages the radar-based sensing and
communication components to track the state of the physical
objects of interest and provide communication services simul-
taneously. The application layer consists of a number of smart-
world applications, including smart home, smart healthcare,
smart city, and smart transportation, to name a few. Many such
smart-world applications have stringent performance require-
ments in terms of sensing and communication. Thus, a critical
problem is enabling radar sensing, collecting and aggregat-
ing data related to radar sensing, and storing and processing
the data in real time to support application requirements. It
involves cross-layer design, including sensing infrastructure,
communication network, and computing-driven data process
and analysis. Thus, it is essential to jointly design sensing,
control, communication, and computing to optimize the overall
system performance.

5) Channel and Target Modeling: Existing studies have
focused on single or multiple sensing tasks involving sev-
eral sensing transmitters and receivers. These studies have
demonstrated the feasibility of sensing applications, but the
performance can often be affected by system deployment and
application requirements. In order to integrate these sens-
ing entities to accomplish more complicated tasks in support
of emergent smart-world IoT applications, we need to study
a more large-scaled and more complicated system consist-
ing of more entities to gain the fundamental understanding
of the design issues and its expected baseline performance
before actually deploying it. To support this effort, an accurate
channel model and target model are essential.

To model the communication channel, the hybrid chan-
nel model (i.e., a combination of deterministic and statistical
approaches) has been widely used, especially for evaluating
mmWave communication systems. In particular, the channel
MPC parameters (i.e., path gain, delay, 3-D AoA, AoD, and
Doppler shift at each simulation instance) should be mod-
eled to help design beamforming and evaluate communication
performance. In ISAC, obtaining an accurate target model
is paramount. In the wireless sensing environment, as the
distance between the signal emitter and the target is rela-
tively closer than in a traditional radar system, the target,
in general, cannot be modeled as a simple point target but
rather an extended target with multiple scattering centers, and
intensity of rays from these scattering center can be mod-
eled using RCS. There are some existing research efforts on
using electromagnetic methods to compute the rays reflected
or scattered off the target [58], [66], but these methods are
too computationally intensive to generate rays in real time
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to support system-level simulation. A desired channel model
should have a good balance between accuracy and complexity.
The model should consider the various polarization configu-
ration between transmitter and receiver antenna. In addition,
it is critical to accurately model the time-varying property of
channels, especially the target, to enable sensing.

Another essential issue is how to determine the proper scat-
ter centers in order to model the target. It is critical to model
the RCS value, which is dependent on the incident angle,
reflection/scattering angle, the shape of the target, material,
and waveform frequency. In addition, when the target is in
motion, which may involve the local motion of target com-
ponents or scattering centers, the relative scattering centers of
the target may change, and each scattering center may have its
own local moving speed and direction. Other issues include
modeling the RCS value over time while maintaining phase
continuity, determining the correlation time and distance for
this channel, and designing a statistical model that considers
the target speed, direction, and motion type.

6) Machine Learning and Data Analytics for RF Sensing:
Machine learning, especially deep learning, has shown a great
ability to transform data collected from disparate systems and
generate insightful knowledge to make intelligent decisions
and achieve automation. With the support of high-performance
computing (edge/cloud computing) and advanced networking
and communication technologies, machine learning has shown
great success in a number of areas, including enabling the
intelligence of IoT systems [147]. In order to apply machine
learning and data analytics to radar sensing, it is critical to
have a good understanding of the application performance
requirements (i.e., accuracy and latency), as well as the fea-
tures of the available sensing data. In addition, it is essential
to have a unified framework to enable machine learning at dif-
ferent layers and components, supporting distributed learning
and transfer learning, as well as a theoretical foundation of
machine learning (e.g., robustness and explainable).

Integrating machine learning into radar sensing creates
opportunities for novel interdisciplinary research topics, such
as machine learning for radar sensing, sensing deployment,
and operations; machine learning-enabled low-latency radar
data analytics; machine learning-enabled sensing and deci-
sion making; and machine learning-enabled ultralow latency
and highly reliable communication. Some interesting subjects
include: 1) exploring the machine learning architecture, train-
ing model, and well-designed training algorithms to build
highly accurate models based on a small amount of sens-
ing data; 2) leveraging the newly received data to continually
retrain the model to adapt the machine learning model to the
new environment; 3) systematically studying various machine
learning techniques (e.g., supervised/unsupervised learning
and enforcement learning) and their use in radar sensing
systems; and 4) establishing a theoretical foundation to address
the uncertainty, interpretability, generalization, and security
resilience of machine learning models.

7) Security and Privacy: An ISAC system consists of a
number of components and multiple layers. All components
and their interactions could be subject to attacks. Sensing
and communication infrastructure can also be subjected to

a number of threats, which tend to affect the availability,
integrity, and confidentiality of the system. Therefore, it is
critical to thoroughly explore various threats in the systems
(e.g., attack objectives and attack techniques), design schemes
to understand the impacts of the potential threats, and develop
countermeasures to secure ISAC systems. For instance, one
prominent threat in a sensing system is rouge and comprised
devices. To this end, Liu et al. [148] performed a compre-
hensive survey on detecting and identifying IoT devices. In
this work, the authors focused on reviewing the state-of-the-
art machine-learning algorithms to recognize devices using
passively collected wireless signal patterns and system traffic
traces.

Another threat to the ISAC system is that, since sensing
and communication share the same waveform, the target can
also receive the same data stream for the intended communi-
cation receivers and conduct eavesdropping and even actively
jam the communication channels. Thus, corresponding coun-
termeasures should be considered in the physical layer design
to prevent information from leaking to malicious sensing tar-
gets or passive radar receivers via the echoes scattered from the
target. In particular, secure communication techniques, such
as cost-effective cryptography and authentication, should be
considered to prevent eavesdroppers from decoding the mes-
sage. Furthermore, to enable the legitimate parties to carry
out secret communication, artificial noise [149] can also be a
viable solution. With this technique, artificial noise (signal in
the null space of the receiver’s channel) can be injected into
the transmit signal to only degrade the eavesdroppers’ channel.

The massive amounts of data collected during the sensing
procedure may contain privacy-sensitive information, such as
personal health data, an individual’s daily routine, and habits.
To this end, it is critical to understand the privacy implica-
tion of privacy disclosure and linkage threats in ISAC. As a
defense, it is important to consider mechanisms, such as data
perturbation, differential privacy, and secure multiparty com-
puting schemes to systematically study the tradeoffs between
privacy guarantee and utility of the data collected in ISAC.
Also, the performance impact of privacy-preserving mecha-
nisms on the ISAC system should be further investigated.

VII. FINAL REMARKS

In this article, we conducted a comprehensive review
of ISAC, including the state-of-the-art enabling techniques,
applications, tools and data sets, and standardization, and
outlined research challenges and future research directions.
For the state-of-the-art enabling techniques, we explored
existing efforts on transmit waveform design, environment
modeling, sensing source, signal processing, and data pro-
cessing. Regarding the applications supported by ISAC, we
reviewed some key applications (human activities recognition,
target localization and tracking, etc.). We also introduced some
useful tools and data sets, as well as efforts toward standard-
ization. Finally, we highlighted some challenges and provided
a number of promising future research directions. We hope our
efforts can provide some valuable reference for future research
and development, and the progression of ISAC technologies.
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