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ABSTRACT
Transition to a Circular Economy (CE) will be facilitated

by information transfer between life cycle stages, and, partic-
ularly, the transition can be accelerated at the product design
stage where the decisions have impact throughout the life cycle.
Product design, which is often manual, subjective, and specu-
lative, can be enhanced by data transfer from other stages of
product, manufacturing, material, and supply chain life cycles.
Mutually, the CE system can benefit from design systems that
are real-time, designer-in-the-loop, and dynamic with respect to
life cycle information streams. Five identified challenges toward
adapting product design to the CE are

1. Consolidation and identification of DfX areas critical to the
CE

2. Realization of a digital thread to the design activities
3. Incorporation of designer-in-the-loop and AI design agents
4. Introduction of CE data-driven design methods
5. Development of CE design standards

A literature review in each challenge area identifies future re-
search areas. Finally, a preliminary circular product design
convergence model is introduced to illustrate a CE consumer
product design system that addresses the challenges and re-
search opportunities. The work contributes a framework within
which product design can be improved to aid in the realization
of Design-for-the-CE. The circular product design convergence
model can be a framework for exploring standards-driven and
validated solutions to these challenges.

Keywords: Circular Economy, Product Design Sys-
tems, Digital Thread, Digital Twins, Sustainable Manu-
facturing

1 INTRODUCTION
Dynamic and fundamental changes to the manufacturing

economy are resulting from a movement to a circular eco-
nomic model from the dominant classical linear economic sys-
tem [1]. The current manufacturing economic system is de-
fined by a cradle-to-grave perspective where the scope of the
economic system begins with material acquisition from a black
box–representing economic systems that produce materials– and
ends with the disposal of the product back into a black box–
representing various end-of-life economic systems. In the sys-
tem, the consumed products and by-products are no longer
tracked in the original economic scope become “waste”, where
original economic scope is defined as the initial single life cy-
cle of the product and ends with the cessation of the original
enterprise’s purview over the product. In contrast, the circular
economy (CE) focuses on triple bottom line sustainability im-
provements and maximizing the time resources effectively stay
within the economy regardless of the original economic scope.
Through analysis of 114 definitions of a CE, Kirchherr et al. [2]
presents the formalized CE definition as

A Circular Economy is an economic system that re-
places the ‘end-of-life’ concept with reducing, alter-
natively reusing, recycling and recovering materials in
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production/distribution and consumption processes. It
operates at the micro level (products, companies, con-
sumers), meso level (eco-industrial parks) and macro
level (city, region, nation and beyond), with the aim
to accomplish sustainable development, thus simulta-
neously creating environmental quality, economic pros-
perity and social equity, to the benefit of current and fu-
ture generations. It is enabled by novel business models
and responsible consumers.

In the CE, waste is mitigated, while by-products and dis-
posed of products are used in another economic scope. More-
over, while this does occur to some capacity in current economic
systems, such as through secondary markets, the implications of
a system of connected product life cycles is not widely under-
stood. In a CE, we strive to remove the black boxes of the cur-
rent economic system for use during the design process and fully
realize the complex system of systems that can facilitate the max-
imized potential of resources remaining in the economy.

A study, published by the Club of Rome [3], investigat-
ing seven European country economies, suggests that the adop-
tion of a CE system can reduce greenhouse gas emissions by
70% while increasing the labor force by 4%. This study is cor-
roborated by the Ellen MacArthur Foundation [4]. The Ellen
MacArthur Foundation report states that a transition to the CE
could reduce greenhouse gas emissions by 2030 compared to the
current global economic system. A decrease in resource con-
sumption can lead to 1.4-2.8 million new jobs in the European
Union. Although many economic aspects, including business
strategies, improved resource recovery, and consumption reduc-
tion, are hallmarks of a CE, we assert that realizing these eco-
nomic aspects begins with CE-focused product design.

In the context of CE-based product design, the objective is
to maximize value at each part of the product life cycle [5, 6].
In a CE, product design presents opportunities for innovation by
considering multiple life cycles and end-of-life planning that can
lead to regenerative resource flow [7–9]. However, for product
design, circularity is not just measured by classical sustainabil-
ity indicators such as material reduction or resource recaptur-
ing [10]. In product design, circularity success and measurement
is partially a function of data sustainability, information trans-
formation, reuse, and recapture [11–14]. Product design in a
CE relies on life cycle digitization and data transfer back toward
product design activities. Realizing life cycle data transfer back
to design activities requires solving the data-disparity challenges
that inhibit robust data-driven product design systems.

Currently, in product design, information transfer to the de-
sign process occurs through management chains, company cul-
ture, market research, and other shallow data sources that hinders
the ability for product designs to adapt automatically to chang-
ing conditions. We can improve weak data sources by expanding
information transfer to the design process, involving product de-

sign in all parts of the product life cycle, introducing human-in-
the-loop AI agents, and improving response times toward stim-
ulus that cause design changes. Needed advancement toward an
adaptive design cycle for a CE includes identifying Design-for-X
areas critical to the CE, where X can be disassembly, end-of-life,
and sustainable product development. Beyond a DfX focus, the
digital thread and life cycle digitization can be expanded to pro-
vide direct data streams from all product life cycle areas filling
the informatics gap. Finally, inclusion of temporal data streams
to design through digital twins can help move design activities
away from speculation-based approaches and toward a reactive
time-dynamic data-driven design approach [15].

In this paper, we review a CE model and the classical design
approach to provide the context of both systems. Using this con-
text, we postulate five challenges to successfully applying prod-
uct design to the CE system:

1. Consolidation and identification of DfX areas critical to CE
2. Realization of a digital thread to the design activities
3. Designer-in-the-loop and AI design agents
4. CE data-driven design methods
5. CE design standards

For each challenge a literature review provides the context
of what has been done and has yet to be done. The contribu-
tion of this work is to provide a foundation for defining multiple
research challenges that the academic community can take up.
Furthermore, we introduce a model for enhancing the classical
design approach toward adaption in the CE. Through a litera-
ture review of modern developments in product design toward
Sustainable Product Development (SPD) and realizing the CE,
we formulate a data-enhanced design approach to improve the
success and applicability to product design within a CE where
designer-in-the-loop is critical. Through this paper, we invite
collaboration to solve the proposed challenges to help material-
ize topics discussed here.

2 A CIRCULAR ECONOMY MODEL
Before understanding how classical product design can be

adopted for success in a CE economy, we must first under-
stand the circular economy. As previously mentioned, a Circular
Economy is defined as the total elimination of “waste” within an
economic system [16]. That is, manufacturing by-products and
remains, including used products, are continuously re-introduced
into the manufacturing cycle. Strategies advantageous to the
CE include reducing resource sinks, reusing manufacturing by-
products and products, disassembly and re-manufacturing of
products, and reclaiming and recycling discards. Materials with
limited recycling potential should enter and remain in the econ-
omy for long periods and slow material loops; examples of this
include carpets, pipes, and structures, which often have multi-
decade lifespans [17, 18]. To better provide an understanding of
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FIGURE 1: A manufacturing-based Circular Economy IDEF/0 A0 top-level model.

a manufacturing CE, we have provided a CE model created using
IDEF0, shown in Figure 1.

IDEF0 is a modeling methodology that provides multiple
levels of abstraction and describes the interactions of a system
and functions within the systems [19, 20]. Figure 2 provides an
overview of the structure of an IDEF0 activity. Inputs are the
flows intended to be modified by the activity or function. Out-
puts are the resultant flows from the function. Controls are co-
ordination criteria that are used to direct the activity. Finally,
mechanisms are tools and methods that can facilitate the activity.
Activities are arranged in an IDEF0 diagram in relation to other
activities, as is done in Figure 1.

The CE model is defined by the same five major life cy-
cle activities found in current manufacturing economic models.
These are Design Product, Acquire Materials, Produce Product,
Use and Consume, and Treat at End-of-Life (EoL). Differences

FIGURE 2: IDEF/0 format guide

arise through feedback loops introduced to ensure that resources
stay within the economy for more extended periods of time. For
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instance, in Figure 1, activity A5–Treat at End of Life has en-
hanced focus on bringing products back to A2–Acquire Mate-
rials and A3–Produce product. Common applications of a cir-
cular economic system help facilitate the realization of these
feedback loops and diminish products entering landfills. As par-
tially shown in Figure 1 and beyond, this may include expanding
recovery and recycling systems, improving industrial symbio-
sis, setting up material marketplaces, and advancing company-
specific product recovery [21–23]. However, considering the
classical product design process, these efforts may not directly
impact consumer product design. To adapt consumer product
design to the CE, we need to introduce a circular economy of
data and information. Thus the realization of a CE of informa-
tion is to realize the movement from abundant but disparate data
systems, to interoperable data systems that focus on interdepen-
dence of human and artificial intelligence. Product design in the
CE should allow the transfer of informatics from all areas of the
product life cycle back to human and AI designers, fully real-
izing the idea of designer-in-the-loop where the designer is in-
volved beyond the classical design process, or in the case of the
presented IDEF0 model (Figure 1), beyond activity 1.

3 THE CLASSICAL DESIGN APPROACH
The classical consumer product design approach is outlined

in Figure 3. As outlined in the book, The Design Process [24],
product design begins with problem identification, where the de-
signer determines current gaps in the market. This problem iden-
tification often comes from beyond the design team and is in-
fluenced by company goals, government regulations, moderniza-
tion, and market share upkeep [25,26]. Following problem iden-
tification is analyzing stakeholders and determining customer
needs to develop consumer profiles. These activities are gov-
erned by company and market culture. Engineering specifica-
tions are then defined to quantify how customer needs are met.
Then, through an iterative approach, product concepts are gener-
ated, evaluated, and finalized. Upon successful prototyping and
company acceptance the product design enters production.

Throughout the classical design process, several design tools
are used. These tools include focus groups, house of quality,
morphological matrices, Pugh charts, internal product criteria
measurements, and CAD programs. However, these tools are
not knowledge or data-rich and require expertise and cognitive
approaches [27–29]. They are limited by the capabilities of
the designer or design team. In this capacity, current efforts to
supplement the data and dearth of information within consumer
product design include design automation, multidisciplinary de-
sign teams, and internal data capture and knowledge extraction
[30–32]. However, consumer product design largely remains a
’lessons learned’ activity that is supplied data from sources that
are often speculative, product review-based, enterprise internal,
and narrow in scope. Although these sources of data, combined

with expert design teams, prove paramount to successful product
design, as we move from current economic systems to the CE,
introducing the designer into the product life cycle loop is ben-
eficial. In other words, information circularity is of the utmost
importance to support the dynamic systems of systems that are
critical to CE.

Specific to an CE system, designers need to take real-time
information and make dynamic decisions based on uncertain ma-
terial streams, product use locality, secondary markets, industrial
symbiosis partnerships, derivative product life cycles, and chang-
ing regulatory requirements. It is crucial that the designer has
insight into the entire circular economic system including cur-
rent, previous, and derivative product life cycles. Data-driven
approaches are necessary to supplement the lack of comprehen-
sive life cycle expertise. The scenarios explained can be defined
by a set of CE transitional challenges. The following section
highlights these challenges of information exchange, knowledge
extraction, temporal design tools paired with digital twins, and
artificial intelligence design agents that can help manage design
complexity for the realization of CE systems.

4 TRANSITIONAL CHALLENGES IN PRODUCT DE-
SIGN TOWARD A CE
The five challenges explored in this section require solutions

to adapt consumer product design to the CE system. These chal-
lenges are not the only challenges faced in achieving success-
fully product design systems in the CE. However, these chal-
lenges represent immediately attainable research areas by lever-
aging data and progress from Industry 4.0. Here we introduce
each challenge, provide a literature review of current research,
and highlight opportunities for future contribution.

4.1 CHALLENGE 1: CONSOLIDATION AND IDENTIFI-
CATION OF DfX IDEAS CRITICAL TO THE CE

Design-for-X is defined by special consideration of specific
objectives as they apply to new product development (NPD) [33].
Modern DfX areas include, but are not limited to, design for man-
ufacturing, sustainable product design, design for assembly and
disassembly, and design for obsolescence resilience [34–36]. In
consumer product design, DfX has increased design complex-
ity, and motivated specialized designer expertise, along with the
advent of multidisciplinary design teams [37, 38]. Today, de-
sign teams can include Life Cycle Analysis (LCA) practitioners,
psychologists, data scientists, and process engineers. Multidisci-
plinary design teams subsidize knowledge needed for innovation
and successful market introduction of new products. As such
large enterprises have facilitated mechanisms to curate large de-
sign teams and robust design processes [39, 40]. These design
teams and robust internal design systems can easily be directed to
respond to in response to the CE. In contrast, small and medium
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FIGURE 3: A Consumer Product (high-volume/low-mix) Design IDEF/0 model.

enterprises with single design engineers may struggle to keep up
with increasingly complex design requirements found in the CE.
However, when compared to large enterprise hierarchical struc-
tures, these smaller enterprises are likely equipped to quickly
implement dynamic changes in response to CE stimulus. Re-
gardless, small-to-large global product producing enterprises can
benefit from research-based distillation and ranking of DfX areas
that are critical toward the realization of the CE.

An early example of literature DfX toward a CE points to-
ward design topics including slowing and closing resources loops
[41]. Design for slowing resource loops encompasses design
for long-life products and design for product extension. Design
for closing resource loops includes design for disassembly and
reassembly, design for the technological cycle, and design for
a biological cycle. Metre and Cooper presented these coined
DfX terms as a conceptional framework for circular product de-
sign [8]. In the focus of metallurgical infrastructure and product
design, design for recyclability is listed as a CE challenge [42].

CE builds on the principles of sustainable manufacturing,

particularly design for resource efficiency. Earlier work at the
National Institute of Standards and Technology explored how in-
sights from manufacturing production could be used during prod-
uct design to increase production efficiencies [43, 44].The work
emphasizes the use of sharing information from production back
into design through simulations and information flows, thereby
enabling more robust simulations of production systems to in-
form design decision making. The work resulted in a series of
standards from ASTM E60 Committee on Sustainable Manufac-
turing for digitally modeling manufacturing processes for envi-
ronmental improvement [45].

Recently, Sassanelli et al. [46] explored the understanding
of DfX in the context of contribution toward circular design so-
lutions. They claim that circularity can only be addressed by
consideration of multiple DfX areas concurrently. Through this
literature DfX for the CE separated into five classes. The classes
and related DfX areas are:

1. Supply Chain: Design for Supply Chain
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2. Resource/energy efficiency: Design for Resource Efficiency
and Conservation, Design for Multiple Users, Design for
Product Sharing

3. Reliability: Design for Slowing, Design for Maintenance,
Design for Product-life Extension, Design for Serviceability

4. Multiple Life Cycle: Design for multiple life cycles, De-
sign for Disassembly and Reassembly, Design for Re-
manufacturing, Design for recovery, Design for recycling,
Design for End-of-Life, Design for Standardization

5. Sustainability: Design for Sustainability, Design for Envi-
ronment, Design for Social Responsibility

Through this literature review of CE DfX areas, and specifi-
cally through Sassanelli et al.’s work, we begin to establish a list
of current design areas essential to the CE. However, it is yet to
be determined how important these DfX areas are toward the CE.
In addition, a better understanding of the interoperability of these
DfX areas is also needed. Lastly, novel or underdeveloped DfX
areas may be crucial to the CE as well. As an example, design
for industrial symbiosis, design for personalization, design for
social responsibility, and design for supply chain uncertainty can
be explored as a design focus. Upon meeting the specific chal-
lenges discussed, we can adequately define Design for a Circular
Economy.

4.2 CHALLENGE 2: REALIZATION OF A DIGITAL
THREAD TO THE DESIGN ACTIVITIES

The digital thread is defined by the data connections created
to improve the interoperability of disparate product and produc-
tion life cycles areas [47]. The digital thread has been used to
connect standards throughout manufacturing. For example, the
standard representation of machine input codes such as NC code
and G code have been mapped to the machine execution lan-
guage standard MT Connect [48]. The creation of this digital
thread allows for data of manufacturing errors to be translated
and transferred upstream and mitigated during production plan-
ning.

Toward product design, Singh et al. [47] assert the possibil-
ity to leverage the digital thread to help create compelling de-
signs for next-generation products. However, research exploring
conceptual product design in the context of data from other areas
of the product life cycle remains underrepresented [49]. Again,
this points to the lack of data streamed back to product design
processes, leaving these processes manual and based on specu-
lation. To answer the identified lack of a product design digital
thread, a digital twin and digital thread framework have been in-
troduced to improve the efficiency of product data management
that can aid in data-driven design approaches [50]. However,
there is still a need to expand on current literature by applying
digital thread and digital twin representation connecting prod-
uct design to life cycle data instead of generic product data. For
example, End-of-Life data concerning recycled, upcycled, and

recaptured materials can provoke dynamic design changes based
on uncertainty of material quality and availability. Through the
digital thread, material uncertainty can be addressed by intro-
ducing non-destructive material qualifying systems that generate
novel life cycle data to support CE design activities.

Full support of the CE requires research to connect prod-
uct life cycle data through the digital thread and retool it in
data-driven approaches that support design decision-making. In
theory, this can materialize as product and system-level digital
twin representations combined with machine learning and AI ap-
proaches that are reactive to stimulus from all areas of the prod-
uct life cycle—for example, changing engineering specifications
of in-production products caused by material feedstock quality
data combined with machine intelligent representations of the
subsequent change propagation. However, a fully responsive de-
sign system, reactant to changes in the product life cycle, requires
the designer to be within and connected to the product life cycle
data loop.

4.3 CHALLENGE 3: DESIGNER IN THE LOOP AND AI
DESIGN AGENTS

Designer-in-the-loop is a design-adapted concept of human-
in-the-loop. Human-in-the-loop is the hybridization of human
cognitive capabilities and technical systems [51] (Not to be con-
fused with human-in-the-loop as a term for human factors de-
sign [52]). In complex systems-of-systems domains, such as a
CE, human input can incorporate qualitative aspects of product
design such as brand recognition, company culture, and subjec-
tive input. As such human-in-the-loop concepts are congruent to
the personalization of smart manufacturing and other technical
systems that are found in late industry 4.0 [53].

In literature, Schwarts et al. [54] explored designer-in-the-
loop concepts to introduce machine-aided in-design convergence
through a similarity score design loop. This work provides a
method to allow designers to iterate with the help of machine
learning. However, this method remains a black box where only
results (the similarity scores) are interpretable. Furthermore,
real-time considerations are lacking and can be critical to product
design in a CE.

In electrophysiological sensor placement design, Nittala et
al. [55] implemented human-in-the-loop in the optimization pro-
cess of sensor amount, placement, and type. In the integrated
predictive model, an expert user inputs data about a patient. Then
the interactive optimizer provides human interpretable data and
sensor layouts. The expert user can fine-tune the resultant layout
and re-optimize. Although literature exists in the area of connect-
ing humans to technical systems, full realization and application
of sociotechnical systems in product life cycle management are
still a long way off [51]. This presents an opportunity to define
human-machine hybrid systems in product design that focus on
information transfer, real-time design, and life cycle response.
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In product design for a CE, machine integration must be in-
terpretable, partially supported by human cognition, and accessi-
ble by all actors within the product life cycle. This can be espe-
cially important when the designer-in-the-loop human input may
not come from a design engineer or a design team. In practice,
AI design agents may require human input from actors within the
life cycle area to stimulate design changes. Machine operators,
production engineers, and other non-design-trained humans may
need to make design decisions. On the contrary, it is impossi-
ble to assume a design engineer possesses absolute knowledge
about all DfX and product life cycle areas. As such, a research
opportunity remains to implement designer-in-the-loop systems
that interpret life cycle data for trained designers and simplify
design decisions for non-trained workers. The dynamic balance
of human interpretability and input with modern machine intelli-
gence can improve interoperability between product design and
the rest of the product life cycle, thus, helping introduce temporal
approaches to product design.

4.4 CHALLENGE 4: CE DATA-DRIVEN DESIGN METH-
ODS

In Industry 4.0, data-driven design methods have been in-
troduced to supplement designer knowledge during the design
process but are challenged by disparate data and have low adapt-
ability to specific design scenarios [56].An author-led literature
review in data-driven product design (DDPD) shows that these
methods are often product data-scarce and rely on text data (in
the form of customer reviews), simulated data or specifically
curated data for method validation [57]. A similar review fo-
cused on data-driven product design toward intelligent manufac-
turing also concluded that there is a need to explore the use of
product data in DDPD [58]. Although the methods explored in
these reviews apply the principles of Knowledge Discovery in
Databases (KDD) [59], they are still reliant on human interpre-
tation of new knowledge and trust in the accuracy of machine
learning representations. These data-driven design methods also
suffer from data quality pitfalls, where data used in design is
sparse and disparate. Design data is often hidden behind non-
disclosure agreements, intellectual property, confidentiality, na-
tional security, and private design repositories. As such, primary
design data available to human and AI designers is likely limited
to enterprise-based design data. The lack of available design data
can prove detrimental to ML and AI’s ability to make design de-
cisions or even ascertain meaningful knowledge. As such, it is
imperative to consider designer-in-the-loop approaches to con-
sumer product design within the CE.

Applied designer-centric data-driven design tools must be
introduced to fully incorporate designer-in-the-loop within the
CE. Where challenge 3 focuses on addressing AI and ML chal-
lenges with a need for human-machine decision-making hy-
bridization, challenge 4 focuses on developing tools and methods

toward human integration in data-rich environments. These de-
sign tools should be data-driven from all areas of the product life
cycle, simplify knowledge abstraction, utilize human-iterable AI
and ML processes, and value real-time human input. Although
current research aims to provide data-driven design support and
automation methodologies, challenges remain in applied human-
machine and ML-based design approaches.

Echoing back to challenge 2, expansion of the digital thread
and feeding data back toward product planning is beneficial to
DDPD and supports the inclusion of data from all life cycle
stages for product development [60]. Also mentioned in chal-
lenge 2, digital twin representations of products and life cycle
systems can help to facilitate the transfer of data to support prod-
uct design [61, 62]. Although some aspects of challenge 4 repre-
sent the same challenges outlined in challenge 2, additional chal-
lenges are caused by the increasing complexity of data storage to
support DDPD.

4.5 CHALLENGE 5: CE DESIGN STANDARDS
Standards built to specifically address the CE can provide

the structure needed to support data interoperability crucial to-
ward meeting challenges 1 through 4. Currently, the only stan-
dard published explicitly toward CE is the BSI Standard 8001
[63]. This standard focuses on framework and guidance for an
organization to implement CE principles. However, since the
publishing of the BSI CE standard in May 2017, the international
standards organization has introduced technical committees fo-
cusing on drafting the ISO 59000 series for a CE framework [64].

The ISO 59000 series is broken up into five working groups
as part of the technical committee 323. The focus of these groups
is establishing a CE framework, exploring business implemen-
tation, measuring circularity, introducing CE case studies, and
curating a CE-based product data-sheet. This work provides the
needed context to define, demonstrate, and measure the CE prop-
erly. Working items such as measuring circularity and CE-based
product data-sheet have direct applicability toward the realiza-
tion of product design in the CE. However, explicit product de-
sign standards for the CE are needed. For this we propose to
bridge explicit CE standards to existing standards around digi-
tal twin frameworks for manufacturing (ISO 23247-1:2021) and
data representations (ISO 6983,ANSI/MTC1.4-2018,ISO 10303)
[65–68].

Beyond connecting existing standards to CE standard devel-
opment, standards may be developed to establish adaptive data
sources embedded and representative of past, present, and future
product life cycles. In essence, standardizing product genealogy,
passports, adaptive data representations, along a digital thread
can improve product data availability and expansion of product
life cycle assessment scope to consider past, present, and future
life cycles and depart from classic cradle-to-grave models.

Toward Design for the CE, technical committees can fo-
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cus on standard development for each DfX topic relevant to
the CE. Improving end-of-life standards and introducing assem-
bly/disassembly standards can aid in the recapture of material
streams for future product life cycles. The introduction of CE-
centric standards can aid in limiting the complexity of design-
ing for CE imperative DfX areas. Currently, several standards
can be co-opted toward meeting CE DfX principles. ISO 14000–
environment management series, along with ISO 9000 (quality),
50001 (energy), and ISO 20140-1:2019 (automation systems and
integration), can be used to aid in measuring and standardizing
management and measurements in the CE [69–75]. In current
work, these standards are already being applied in support of sus-
tainability [76].

5 A CIRCULAR PRODUCT DESIGN CONVERGENCE
MODEL
In Figure 4, we introduce a preliminary circular product de-

sign convergence (CPDC) model that is focused on improving
design convergence activities in the CE. This model provides a
simplistic understanding of how designers, simple and complex
computation systems, real-time digital twins, and improved data
streams can interact to enhance data-driven design practices. Fig-
ure 4 is separated into three connected systems that each rep-
resent a research opportunity: Digital twins in green, in pink
machine-centric approaches (machine learning, Design Automa-
tion, Knowledge Discovery in Databases, and Optimization), and
complex designer-in-the-loop AI design agents in blue.

5.1 DIGITAL TWINS
First, to apply the CE product design convergence model,

we need to create a digital twin representation of product assets.
This digital twin takes in digital thread data–connected life cy-
cle data– to digitally represent real-time changes to the physical
product during different life cycle activities. We envision this
as real-time data processing that can apply human-interpretable,
visual representations of the product and various product proper-
ties. In theory, this can be a real-time graphical representation of
the number of production units in each life cycle area, assembly
stage descriptors, heat map overlays indicating failure compo-
nents, and consumer use and disposal analytics. The framework
for a product life cycle digital twin should be robust and coop-
erate with other smart manufacturing digital twins. The CPDC
model shows that product digital twin representations can inform
how engineering specifications are being met and if those targets
need to be reevaluated. The product digital twin can provide hu-
man accessible data representation and real-time decision mak-
ing that bridge the initial gaps in sociotechnical systems. How-
ever, though knowledge-rich, this proposed digital twin prod-
uct representation still relies on human-centric manual decision-
making. Thus, it does not directly engage in complex machine

learning methods that designers can use to aid design automa-
tion, evaluation, and optimization.

5.2 MACHINE-CENTRIC APPROACHES
To enhance machine-aided approaches to design, digital

twin data and digital thread can be applied to existing and novel
data-driven approaches. Here machine learning, design automa-
tion, and optimization methods can generate and evaluate design
concepts that are reactive to temporal data streamed from the
product digital twin. Combining smart machine systems with
digital twin representations can improve virtual-physical data
fusion, extract embedded knowledge, and aid design decision-
making. Similar concepts of fusing digital twins and data learn-
ing methods have been introduced to smart manufacturing sys-
tems to aid in continuous system improvement [77]. In a similar
context, the fusion of data learning methods to product digital
twins can result in continued design improvements that respond
to life cycles stimulus. Classification, automation, and optimiza-
tion knowledge extracted via machine learning can be analyzed
in the context of the digital twin, expanding the amount of knowl-
edge available to the designer when making design changes.

5.3 DESIGNER-IN-THE-LOOP AI DESIGN AGENTS
Design becomes a challenge of integrating human under-

standing with the lessons derived from machine learning, tak-
ing advantage of both systems of knowledge. The previous de-
sign paradigm which has been characterized as subjective and
speculative becomes data-driven while still being guided by the
qualitative knowledge provided by the human. The AI Design
Agent of the CPDC model is the hybridization of human intu-
ition to influence the previously introduced technically-gained
insights. Including the concept designer-in-the-loop can help
improve machine-aided design convergence through iteration by
introducing qualitative data sources. In practice, human input
of qualitative data can guide the feasibility of AI-driven design
solutions by converging on designs that meet company identity,
enterprise manufacturing capabilities, standards, and regulations.
In all cases, applying human-in-the-loop concepts to the CPDC
model can increase the velocity at which AI design agents are
optimized to converge on acceptable design decisions while re-
ducing the need for future human interventions.

6 CONCLUSION
The Circular Economy is defined as an economic system that

maximizes the time resources remain in the economy, eliminates
waste, and increases resource utility with explicit consideration
of triple-bottom-line sustainability. The realization and appli-
cation of the CE-system inherit challenges that have yet to be
solved in the current applications of the production economy.
One such issue is facilitating data-driven design practices that
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FIGURE 4: A Design Convergence Model For a Circular Economy.

leverage data sourced from each product life cycle area. In this
paper, we explore the challenges in adapting product design prac-
tices to the CE. Then we introduce a preliminary circular product
design convergence model that can be a framework for exploring
standards-driven and validated solutions to these challenges.

Product design is classically a manual, subjective, and spec-
ulative process that relies on the cognitive and internal knowl-
edge of the product designer. To combat this, multi-disciplinary
design teams have been introduced to supplement the knowledge
needed to successfully design products within the current com-
plex global socioeconomic system. Other knowledge supple-
mentation solutions include data-driven product design methods.
However, these methods are limited by product data availabil-
ity. Often data-driven product design literature uses mined text
data, simulation data, or purposely curated data to validate the
method. Transitions to the CE require solving the data-disparity
challenges that inhibit robust data-driven product design sys-
tems. In addition to data translation, research is needed towards
designer-in-the-loop design systems that allow dynamic product
design activities stimulated by real-time data from all areas of the
product life cycles. Lastly, design-for-the-CE is likely an amal-
gamation of many DfX terms. As such, we need to identify the

critical DfX areas that apply to CE. The set of challenges needed
to be met to adapt consumer product design to the CE are:

1. Consolidation and identification of DfX areas critical to the
CE

2. Realization of a digital thread to the design activities
3. Incorporation of designer-in-the-loop and AI design agents
4. Introduction of CE data-driven design methods
5. Development of CE design standards

In Figure 4, we introduce a circular product design conver-
gence model that shows a CE product design system that solves
the last four challenges. First, a digital twin is created which
takes in life cycle and digital thread data to create a temporal rep-
resentation of a product in various product life cycle stages. The
real-time data allows the digital twin to express changes to engi-
neering specification targets and thus allows a designer to make
dynamic design changes. Second, Machine learning methods can
be leveraged to extract meaningful knowledge from the product
life cycle that is then reflected in the product digital twin, aid
in generating product design concepts, and help designers eval-
uate concepts for dynamic decision making in reaction to real-
time data. Finally, designer-in-the-loop AI design agents are in-

9 Copyright © 2022 by ASME



troduced to integrate subjective aspects of product design with
the machine learnings. The AI design agent can interpret hu-
man designer input that can be used to modify machine learning
systems, guide feasibility of design decisions, and help finalize
design changes.

The circular product design convergence model presented
is visionary and achieving its scope is non-trivial. The CPDC
model does not evaluate nor consider the tremendous work
needed to realize a digital thread to product design. Furthermore,
the model does not prioritize the importance of individual data
sources within the design process. Addressing challenge 1 (con-
solidation and identification of DfX areas critical to the CE) will
provide guidance for the model to weight data in accordance to
most crucial DfX goals. This can be especially important in mak-
ing design changes that affect DfX correlated engineering spec-
ifications, especially those that result in adversarial interactions
between engineering specifications. These adversarial interac-
tions must be considered.

The challenges, in this manuscript, present an expansive op-
portunity to explore and solve the adaptive changes needed for
product design applied for the CE. In future work, we can look
at defining the DfX characteristics of Design for the Circular
Economy, and developing a framework for measuring and bal-
ancing the importance of each sub DfX area. From there, we can
define life cycle data sources for each DfX area. We can also
seek to define measurement methods and standards as a means
to transmit the identified CE DfX data to product design activi-
ties, thereby expanding the digital thread of product data to other
life cycle stages. This work can continue the standardization of
such data representations to maintain transferability and interop-
erability between life cycle areas. Finally, we can explore the
introduction of a digital twin, machine learning, and AI design
agent systems that can use life cycle data in applied CE product
design approaches such as the one theorized in the CPDC model.
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