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Abstract 

In this paper, the evolution of the plastic anisotropy of stainless steel 316L samples is 

investigated under proportional loading paths using a customized cruciform specimen. 

The determination of a novel cruciform specimen by a design of experiments approach 

integrated with finite element simulations is described. The mechanical properties of the 

material are characterized under uniaxial tension applied in every 15o from the rolling 

direction and equibiaxial tension from hydraulic bulge experiments. The results reveal that 

the plastic anisotropy shown in stress and strain significantly evolves with respect to the 

plastic work. Based on the experiments, the material behavior is modeled using a non-

quadratic anisotropic yield function, Yld2004-18p, with parameters modeled as a function 

of the equivalent plastic strain assuming plastic work equivalence and with constant 

parameters for comparison. The Hockett-Sherby model is also used for the strain 

hardening behavior to extrapolate the results to higher strain values. The models are 

implemented into a user material subroutine for finite element simulations. To validate the 

model, in-plane biaxial tension experiments are performed, using a customized specimen, 

to achieve greater deformation than previous designs by introducing double-sided 

pockets for thickness reduction and notches in the corner areas. The results are 

compared with finite element simulations implemented with the plasticity models.  

 

 

Keywords: Plastic anisotropy, constitutive modeling, mechanical testing, design of 
experiment, finite element simulation 
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1. Introduction 

Building accurate material models often involves the consideration of various 

aspects of material behavior, one of which is differences with respect to the material 

orientation, so called plastic anisotropy, of sheet metals. In terms of mechanical behavior, 

plastic anisotropy is often defined by ratios in stress and strain with respect to a reference. 

The values are not unity, i.e., non-isotropic, in general and can be varied with the material 

orientation. Their numerical formulations, so called anisotropic yield functions, have been 

published in the past 75 years starting with Hill and Orowan [1], who published a yield 

function for orthotropic materials based on the isotropic von Mises yield function in 1948. 

Several years later, Hosford [2] derived a generalized yield function based on the isotropic 

yield function from Hershey [3]. Barlat and Lian [4] modified Hosford’s yield function to 

incorporate the effect of shear stress. In the decades since, increasingly advanced yield 

functions, e.g., Karafillis and Boyce [5], Barlat family functions [6–9], Cazacu and Barlat 

[10,11], Bron and Besson [12], and Banabic, Balan, and Comsa (BBC) family functions 

[13,14], have been developed to improve plastic anisotropy predictions, some of which 

are summarized in the reviews by Banabic et al. [15] and Barlat and Kuwabara [16]. 

These recent developments have proven successful in their ability to simulate 

forming processes for a material of consistent plastic anisotropy during deformation [17–

21], i.e., relatively constant stress ratios and r-values with respect to plastic work. 

However, for some materials, a clear distinction is observed in the plastic anisotropy at 

different levels of plastic work under non-proportional [22–24] or proportional loading 

[18,25]. The former often presents strong evolutions in the anisotropy, especially upon 

the loading path change, with respect to plastic work. Thus, it is modeled in conjunction 
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with kinematic [26–28] or distortional hardening models [29–31], which can capture 

Bauschinger effect, permanent softening, latent hardening effect, etc., depending on the 

material. In contrast, the latter presents relatively minor plastic anisotropy changes 

primarily caused by the texture evolution during deformation [25]. To model this, as an 

example, Kuwabara et al. [25] calibrated an exponential function, using data at several 

strain levels, for each parameter of Yld2000-2d [8]. When choosing a yield function, 

specific types of metals, e.g., steel [30,32,33], aluminum [21,34–37], titanium [38–40], 

magnesium [41,42] alloys, etc., and their textures can be considered to provide an 

adequate description of plastic anisotropy. Simultaneously, the computational expense in 

numerical simulations, which results from the complexity of the model necessitated by the 

desired level of accuracy, must be balanced. 

These advanced plasticity models often require the identification of more 

parameters, and thus basic material characterization experiments, e.g., uniaxial tension, 

are insufficient, especially for modeling forming processes. These modeling efforts may 

be further complicated by the inclusion of stress superposition [43], varying deformation 

paths [27,44–47], and ductile damage and fracture analysis [48,49]. In 1967, Shiratori 

and Ikegami [50] designed four potential cruciform specimen geometries and conducted 

biaxial tension experiments to study more complex deformations. Later, Kuwabara et al. 

[51] proposed a cruciform specimen with straight arms and investigated the work 

hardening in cold-rolled steel under biaxial tension. In the decades since, many cruciform 

geometries have been proposed, one of which is designated as ISO standard 16842 [52] 

(see more information in [51,53–55]), but an ASTM standard does not exist.  



 5 

In Banerjee et al. [56], the criteria cited most often for designing cruciform biaxial 

specimens are uniformity of strain fields, minimization of shear strains, failure behavior in 

the gauge area, and reduced stress concentrations outside the major deformation region. 

Common strategies for achieving these objectives include creating notches at the corners 

[57,58], reducing or increasing the thickness in specific regions [59–61], machining slots 

in the arms [51,52,59], or some combination thereof [62]. Deng et al. [59] proposed a 

modified design with a reduced thickness area that does not require inverse numerical 

calibration and presented the yield locus of a dual-phase steel, DP590, determined 

experimentally using the specimen. Murakoso and Kuwabara [63] used cruciform 

specimens to analyze ultra-thin stainless steel sheets under biaxial tension. Despite 

numerous specimen designs already available in the literature [64], additional variations 

are still being generated to tailor the achievable results and place emphasis on certain 

design specifications according to the authors’ intended applications. For example, the 

predecessors to the geometry described in this work required a sufficiently large gauge 

area for material characterization, such as strain measurement and microstructure 

imaging [65,66].  

For material modeling purposes, the addition of in-plane biaxial cruciform 

experiments is beneficial for parameter identification or validation of models calibrated 

using conventional experiments, such as uniaxial tension in different orientations. 

Although the available testing conditions of in-plane biaxial experiments are mostly limited 

to the biaxial tension stress states, compression combined with tension [67] can be 

applied with additional equipment, e.g., an anti-buckling device. Alternatively, shear 

combined with tension [68] or plane strain tension [69] can be investigated with custom 
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geometries. A custom device with hinged fixtures and knife-edges has also been 

developed for off-axes testing [70]. These experiments can improve specific aspects of 

the material models required by numerical analyses. In Steglich et al. [41], AZ31 

magnesium alloy biaxial deformation experiments were used to validate a visco-plastic 

self-consistent model. In Kuwabara et al. [25], 6016-O and 6016-T4 aluminum alloys were 

compared experimentally and numerically using cruciform specimens to determine the 

effects of heat treatment on the plastic anisotropy. In addition to plasticity modeling, 

Leotoing et al. [71,72] performed in-plane biaxial experiments to investigate the non-linear 

prestraining effect and construct numerical forming limit models. Ha et al. [36] used a 

specialized cruciform specimen, in conjunction with center-hole and shear specimens, to 

characterize the ductile fracture of a heat treated aluminum alloy, AA6111, using the 

experimental-numerical hybrid method. Kuwabara et al. [73] used the ISO standard 

cruciform geometry in comparison to uniaxial compression experiments to characterize 

the strength differential effect in a low carbon steel. Additionally, a 0.8 mm-thick mild steel 

cruciform specimen using the ISO standard geometry was measured up to a plastic strain 

level of 0.234 in non-linear stress path experiments to validate the material model [74]. 

In this paper, the evolution of plastic anisotropy in stainless steel 316L (SS316L) 

under proportional loading is investigated using a newly designed cruciform specimen 

and advanced material modeling for the numerical simulation. The plasticity 

characterization is presented in Section 2 with the experimental results of uniaxial and 

equibiaxial tensions. Based on the experiments, the material is modeled in Section 3 

using a non-quadratic anisotropic yield function with equivalent plastic strain dependent 

parameters, i.e., Yld2004-18p (ε̅) , and Hockett-Sherby strain hardening. Section 4 
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describes the optimization of the cruciform geometry based on six design goals and the 

in-plane biaxial experiments using the determined cruciform specimen under four 

proportional loading conditions. In Section 5, finite element (FE) simulations of the 

cruciform experiments are performed, using Yld2004-18p(ε̅), Yld2004-18p with constant 

parameters, and von Mises yield functions, and compared to experimental results to 

validate the implemented models under the given loading conditions. The work is 

summarized with conclusions in Section 6. 

 

2. Plasticity characterization 

For the material characterization of SS316L sheet of 1.2 mm thickness, uniaxial 

and equibiaxial tension experiments were performed. From these experimental results, 

the strain ratios and normalized stresses are calculated at seven plastic work levels to 

evaluate the plastic anisotropy evolution. Refer to Table 1 for a summary of the material 

characterization results. 

 

2.1. Uniaxial tension experiment 

Seven uniaxial tension experiments were conducted using the ASTM E8 standard 

sheet-type specimen [75] oriented every 15° from the rolling direction (RD) to the 

transverse direction (TD) at room temperature in displacement control (5 mm/min), which 

corresponds to a static strain rate (𝜀̇ ≈10-3 /s) in the plastic range, using an MTS universal 

testing machine with a 250 kN load cell. Three specimens were tested for each condition 

 
1 Certain commercial instruments and software are identified to specify the 

experimental study adequately. This does not imply endorsement by NIST or that the 
instruments and software are the best available for the purpose. 
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to ensure repeatability of the results. Strain data were obtained using a 2D-Digital Image 

Correlation (2D-DIC) system (Correlated Solutions, Inc.) with a 5.0-megapixel camera 

(FLIR Grasshopper2) and 17 mm lens (Schneider). The specimens were prepared with a 

base coat of white paint with a black paint overspray pattern for the DIC imaging. The DIC 

parameters used in the analyses (VIC-2D software) were 19 pixels, 4 pixels, and 5 for the 

subset, step, and filter sizes, respectively. 

Figure 1 shows the experimental setup with the 2D-DIC system and specimen geometry 

from ASTM E8.  
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Figure 2 contains the true-stress strain curves during uniform elongation for seven 

uniaxial tension experiments (one for each orientation from the RD) and the 
corresponding instantaneous r-values, i.e., the ratio of width to thickness strain increment 

or 𝑟 = 𝑑𝜀𝑤
𝑝 𝑑𝜀 𝑡

𝑝⁄ , with respect to equivalent plastic work. The instantaneous r-values are 

calculated using a constant plastic strain increment of 0.05. The thickness strain is 

inferred based on volume conservation. The equivalent plastic strain ( 𝜀̅ ≡ ∫ 𝑑𝜀̅ ), 
calculated by the work equivalence principle (𝑑𝑤 = 𝝈:𝒅𝜺𝒑 = 𝜎 ∙ 𝑑𝜀)̅, is plotted in the upper 
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x-axis. In 

 
Figure 2a, the RD and TD orientations show similar hardening behavior, and the 

true stress-strain curve for 45° falls slightly below the six other orientations as shown in 

the inset. Compared to the minor anisotropy in the flow stress seen in the stress-strain 

curves, the r-values present much clearer anisotropy, varying between 0.4 and 1.55, and 

even evolve as the plastic work increases. Young’s modulus is calculated from the 



 11 

experimental data, and Poisson’s ratio is assumed to be the textbook value. The values 

are summarized in Table 1. 

 

Figure 1. Uniaxial tension experiment: (a) test setup for MTS machine with 2D-DIC 

system and (b) ASTM E8 specimen geometry. 
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Figure 2. Experimental results of uniaxial tension in every 15o from the RD:  

(a) true stress-strain curves and (b) instantaneous r-values with respect to the plastic 

work and equivalent plastic strain. 
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2.2. Hydraulic bulge experiment 

A hydraulic bulge experiment was performed using a servo-hydraulic formability 

tester (R&B RB316FT) with a 1000 kN (100 tonf) load cell and maximum hydraulic power 

unit flow rate of 0.757 L/s (12 gal/min) at the Korea Institute of Industrial Technology 

(KITECH). Square blanks of 200 mm x 200 mm size and 1.2 mm thickness were used 

with the holding force between 897 kN and 996 kN (90 tonf and 100 tonf). The strain field 

was measured using a stereo-DIC (surface 3D) system (GOM Inc.) with two 5.0-

megapixel cameras (FLIR Grasshopper2) and 75 mm lenses (Schneider). The DIC 

analysis parameters used for the post-processing (ARAMIS Professional) were subset 

and step sizes of 19 pixels and 16 pixels, respectively. The experimental setup with the 

3D-DIC system is shown in  

Figure 3.  

According to ISO 16808 [52], in the bulge test, the stress-strain relationship is 

represented by the approximately equibiaxial, or membrane [76,77] stress and the 

thickness strain at the pole, which is determined by plastic incompressibility and the major 

and minor surface strains, i.e., 𝜀1 and 𝜀2, measured by the DIC system. The membrane 

stress, 𝜎𝑏, is defined as 𝑝𝑅/(2𝑡) where 𝑝 is the pressure recorded by the machine, 𝑅 is 



 14 

the radius of curvature of the outer surface, and 𝑡 is the thickness of the specimen. The 

instantaneous thickness is calculated by 𝑡0 exp 𝜀𝑡, where 𝑡0 is the initial sheet thickness 

and 𝜀𝑡 is the true thickness strain determined by assuming incompressibility, i.e., 𝜀𝑡 =

−𝜀1 − 𝜀2. The radius of curvature of the outer surface is determined by 2/(
1

𝑅1
+

1

𝑅2
), where 

𝑅1 and 𝑅2 are the radii of major and minor curvatures of the outer surface at the pole 

obtained by the DIC system.  

The experiment was performed five times to confirm test repeatability, and three 

of the results are shown in  
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Figure 4a. The measured maximum strain for the bulge test, as commonly is seen, 
is higher than the maximum strain of uniaxial tension (also shown in 

 
Figure 4a), but the flow stresses are higher due to the plastic anisotropy and its 

evolution. This is characterized by normalizing the flow stress of equibiaxial tension with 
respect to the equivalent stress, which is uniaxial tension in the RD in this study, i.e., 
𝜎𝑏 𝜎⁄ . The values at seven plastic work levels are summarized in Table 1. Similarly, the 

plastic anisotropy in strain is evaluated by the strain ratio in the RD and TD, i.e., 𝑟𝑏 =

𝑑𝜀𝑇𝐷
𝑝 𝑑𝜀𝑅𝐷

𝑝⁄  [8], as shown in  

Figure 4b. Like in the plastic anisotropy observed in uniaxial tension, that of nearly 
equibiaxial tension also evolves during the deformation. It should be noted that the noise 
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in the stress-strain curve causes an even greater noise level in the 𝑟𝑏  values of 

 
Figure 4b, but an evolution trend in the three experiments shown is captured. A 

previous study [78] found that the hydraulic bulge test does achieve a stress state that is 

perfectly equibiaxial tension. However, the amount of deviation reported is 1-5% for a 

steel material with an original thickness to diameter ratio between 0.01 and 0.001, which 

applies to the current work with a ratio of 0.004. 
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Figure 3. Hydraulic bulge test experimental setup (R&B RB316FT machine). 
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Figure 4. Experimental results of hydraulic bulge experiment: (a) true stress-strain curves 

of bulge test with comparison to uniaxial tension (UT) in the RD, and (b) 𝑟𝑏 value with 

respect to the plastic work and equivalent plastic strain. 
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Table 1. Summary of mechanical properties at seven plastic work levels for SS316L. 

Young’s modulus 𝐸 = 193.8±0.4 GPa Poisson’s ratio 𝜐 = 0.33 

Plastic anisotropy at seven plastic work levels Wp 

(MJ/m3) 10 25 50 75 100 125 150 

Normalized stress (𝜎 𝜎⁄ ) 

U
n
ia

x
ia

l 
te

n
s
io

n
 

RD 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

15 1.023 1.016 1.014 1.011 1.010 1.009 1.009 

30 1.024 1.008 1.001 1.001 1.000 0.998 0.998 

45 0.998 0.978 0.972 0.970 0.970 0.969 0.969 

60 1.041 1.010 0.995 0.994 0.993 0.992 0.992 

75 1.056 1.021 1.007 0.999 0.998 0.997 0.997 

TD 1.036 1.006 0.990 0.985 0.985 0.984 0.984 

Bulge 1.062 1.065 1.069 1.075 1.082 1.082 1.082 

Strain ratio (r-value and 𝑟𝑏) 

U
n
ia

x
ia

l 
te

n
s
io

n
 

RD 0.458 0.531 0.552 0.622 0.628 0.642 0.784 

15 0.564 0.604 0.696 0.696 0.746 0.821 0.839 

30 0.710 0.887 0.900 0.915 0.921 0.940 0.982 

45 1.004 1.124 1.156 1.180 1.203 1.262 1.279 

60 1.295 1.266 1.306 1.317 1.306 1.406 1.299 

75 1.322 1.276 1.355 1.306 1.333 1.341 1.421 

TD 1.335 1.315 1.313 1.261 1.227 1.242 1.252 

Bulge 0.969 0.940 0.900 0.872 0.865 0.865 0.865 

*Determined normalized stresses typically had uncertainties ±0.003 and strain ratios 

typically had uncertainties ±0.0002 based on one standard deviation. 
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3. Constitutive modeling 

In the following section, the modeling of the material behavior is discussed and is based 

on the experiments from the previous section. Yld2004-18p( ε̅ ), a non-quadratic 

anisotropic yield function with equivalent plastic strain dependent parameters is used. 

Additionally, the Hockett-Sherby model is used to describe the strain hardening behavior. 

 

3.1. Strain hardening 

The strain hardening behavior is described by the Hockett-Sherby model [79]:  

 

 

where 𝜎 is the equivalent stress, ε̅ is the equivalent plastic strain, and 𝜎0 is the initial yield 

stress measured using the 0.2% offset method. 𝐻,𝑁,  and 𝑚  are material fitting 

parameters to the stress-strain curve of uniaxial tension in the RD as seen in Figure 5. 

One representative stress-strain curve of uniaxial tension in the RD is chosen for the 

fitting, and the identified values are summarized in Table 2.  

 

Table 2. Material parameters for Hockett-Sherby strain hardening model. 

𝜎0 (MPa) 𝐻 (MPa) 𝑁 𝑚 

339.48 1445.44 1.81 0.89 

 

𝜎 = 𝐻 − (𝐻 − 𝜎0) ∙ exp(−𝑁 ∙ ε̅𝑚) (1) 
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Figure 5. Extrapolation of stress-strain curve for uniaxial tension in the RD (symbols) 

using Hockett-Sherby model (dashed line). 

 

 To validate the extrapolation at larger levels of plastic strain, i.e., beyond the 

plastic strain range achieved by the uniaxial experiment, the stress-strain curve for 

Hockett-Sherby is also plotted for comparison with the equivalent stress-strain curve 

obtained from the bulge test experimental data using Hill 79 [80,81] (see Figure A1). 

 

3.2. Yield function for plastic anisotropy and evolution 

To model the plastic anisotropy and its evolutionary behavior with respect to plastic 

work, a non-quadratic anisotropic yield function, i.e., Yld2004-18p [9], is used: 

 

𝜙 = 𝜙(𝐒̃′, 𝐒̃′′) = |𝑆̃1
′ − 𝑆̃1

′′|
𝑎

+ |𝑆̃1
′ − 𝑆̃2

′′|
𝑎

+ |𝑆̃1
′ − 𝑆̃3

′′|
𝑎

 

(2) 
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                                           +|𝑆̃2
′ − 𝑆̃1

′′|
𝑎

+ |𝑆̃2
′ − 𝑆̃2

′′|
𝑎

+ |𝑆̃2
′ − 𝑆̃3

′′|
𝑎

 

                                           +|𝑆̃3
′ − 𝑆̃1

′′|
𝑎

+ |𝑆̃3
′ − 𝑆̃2

′′|
𝑎

+ |𝑆̃3
′ − 𝑆̃3

′′|
𝑎

= 4𝜎𝑎 

 

where 𝑆̃𝑖
′  and 𝑆̃𝑗

′′  are the principal values of the stress tensors, 𝐒̃′ and 𝐒̃′′ , which are 

linearly transformed deviatoric stresses by two operators, 𝐂̃′ and 𝐂̃′′, respectively. 

 

 

where 𝛔 denotes the Cauchy stress tensor, 𝐬 is its deviator, and 𝐓 is the transformation 

tensor between them. The two transformation matrices, 𝐂̃′  and 𝐂̃′′ , are composed of 

eighteen parameters, i.e., 𝛼𝑖=1−18 = c12
′ , c13

′ , c21
′ , c23

′ , c31
′ , c32

′ , c44
′ , c55

′ , c66
′ , c12

′′ , c13
′′ , c21

′′ , c23
′′ ,

c31
′′ , c32

′′ , c44
′′ , c55

′′ , c66
′′ , where the subscripts denote the orientation with respect to the RD, 

given by: 

 

𝐒̃′ = 𝐂̃′ ∙ 𝐬 = 𝐂̃′ ∙ 𝐓 ∙ 𝛔 = 𝐋̃′ ∙ 𝛔 

𝐒̃′′ = 𝐂̃′′ ∙ 𝐬 = 𝐂̃′′ ∙ 𝐓 ∙ 𝛔 = 𝐋̃′′ ∙ 𝛔 
(3) 

𝐂 =

[
 
 
 
 
 

0 −𝑐12 −𝑐13 0 0 0
−𝑐21 0 −𝑐23 0 0 0
−𝑐31 −𝑐32 0 0 0 0

0 0 0 𝑐44 0 0
0 0 0 0 𝑐55 0
0 0 0 0 0 𝑐66]

 
 
 
 
 

 

 

(4) 
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The exponent 𝑎 is related to the crystal structure, i.e., 6 for body-centered cubic 

(BCC) and 8 for face-centered cubic (FCC) [82,83]. The material used in the study is 

austenitic stainless steel (SS316L) with zero martensite in its as-received condition. 

Previous works by the authors [84,85] utilizing the same SS316L material confirm that the 

as-received material is fully austenitic and that minimal phase transformation occurs at 

room temperature. Thus, 𝑎 = 8 is used for Yld2004-18p modeling in this study. 

The plastic anisotropy, characterized by the strain ratios and normalized stresses 

from the uniaxial tension and hydraulic bulge experiments (Table 1), is used to determine 

the parameters of the yield function. For Yld2004-18p with constant parameters, the strain 

ratios and normalized stresses are averaged between plastic work levels of 10 and 150 

MJ/m3 to determine the constant parameter set (Table 3). For Yld2004-18p( ε̅ ), the 

individual sets of parameters at seven plastic work levels, i.e., Wp from 10 to 150 MJ/m3, 

equivalent to 𝜀 ̅ from 0.027 to 0.252, are determined separately, using the least squares 

method, to capture the evolution in the plastic anisotropy during the deformation. These 

are shown as the symbols in Figure 6.  

 

  

𝐓 =
1

3

[
 
 
 
 
 

2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3]

 
 
 
 
 

 
(5) 
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Table 3. Summary of Yld2004-18p parameters: 

𝛼𝑖 𝐴𝑖 

1 1.076 

2 1.183 

3 1.170 

4 1.265 

5 0.757 

6 1.163 

7 0.934 

8 0.917 

9 1.185 

10 0.960 

11 0.692 

12 0.880 

13 0.717 

14 1.109 

15 0.827 

16 1.195 

17 1.220 

18 0.971 

 

 

Next, each parameter, 𝛼𝑖 , is approximated using an exponential function with 

respect to the equivalent plastic strain, ε̅, which is a simplified expression of Kuwabara et 

al. [25] as,  

 

𝛼𝑖,1−18(ε̅) = 𝐴𝑖 − 𝐵𝑖 ∙ exp(−𝐷𝑖 ∙ ε̅) 
(6) 
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where 𝐴𝑖 , 𝐵𝑖, and 𝐷𝑖 are calibration constants for each 𝛼𝑖. The exponential fits are shown 

as lines with respect to plastic work and equivalent plastic strain in Figure 6. The 

corresponding calibration constants, i.e., the fitting parameters for each Yld2004-18p(ε̅) 

parameter, determined for SS316L are shown in Table 4. 
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Figure 6. Equivalent plastic strain dependent parameters of Yld2004-18p(ε̅), i.e., 𝛼𝑖(ε̅) (a) 

𝛼1 − 𝛼9 and (b) 𝛼10 − 𝛼18, at seven levels of plastic work to capture the evolution of plastic 

anisotropy of SS316L. The parameters are fit (solid lines) with the exponential function in 

Equation 6 and the constants in Table 4.    
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Table 4. Summary of Yld2004-18p(ε̅) parameters: 𝛼𝑖(ε̅) = 𝐴𝑖 − 𝐵𝑖 ∙ exp (−𝐷𝑖 ∙ ε̅). 

𝛼𝑖 𝐴𝑖 𝐵𝑖 𝐷𝑖 

1 0.93 -0.06 10 

2 0.56 -0.10 27 

3 0.71 0.06 45 

4 0.80 -0.13 25 

5 0.88 -0.03 35 

6 0.89 0.11 8 

7 1.22 -0.01 30 

8 1.23 -0.03 5 

9 0.99 0.18 20 

10 1.40 0.12 4 

11 1.40 -0.03 3 

12 1.22 0.21 17 

13 1.25 0.07 20 

14 1.12 0.03 20 

15 1.11 -0.03 27 

16 0.89 -0.02 3 

17 0.88 -0.01 20 

18 1.20 -0.10 30 

*Determined 𝛼𝑖 parameters typically had variances ±0.004 from identified values. 

 

Figure 7 shows a comparison of the experimental (symbol) and predicted (dashed 

line) normalized stress and r-value of uniaxial tension from the RD to TD at seven plastic 

work levels. Stronger plastic anisotropy evolution is apparent in the r-value, i.e., the 

numerical values change significantly, e.g., from 0.458 to 0.784 in RD and from 1.004 to 

1.279 at 45°, in the specified range, as the plastic work increases compared to the flow 
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stress in uniaxial tension. The calibrated parameters of Yld2004-18p( ε̅) capture the 

experiments reasonably well. During the calibration, a greater emphasis is placed on 

achieving better predictions at higher levels of plastic work, e.g., >50 MJ/m3, than the 

lower levels, e.g., 10 MJ/m3, assuming that the values saturate.  
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Figure 7. Parameter calibration of Yld2004-18p(ε̅) for uniaxial tension at seven plastic 

work levels (shown in legend symbols and colors): (a) normalized stress with respect to 

the flow stress of uniaxial tension in the RD and (b) r-value. Symbols denote the 

experiments, dashed lines denote Yld2004-18p(ε̅), and solid lines denote von Mises. 
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The yield locus evolution predicted by the determined material parameters is 

shown in Figure 8. Near the equibiaxial state, the yield locus is expanding as the plastic 

work increases, with a particularly significant increase between 10 MJ/m3 and 25 MJ/m3, 

as observable in the inset in Figure 8. Correspondingly, the yield locus appears to be 

contracting near the uniaxial tension in the TD state. The yield function, including the 

evolution of the 𝛼𝑖 parameters, is implemented into a user material (UMAT) subroutine, 

for FE simulations using Abaqus/Standard 2019 [86]. The stress integration scheme used 

in the UMAT is the predictor-corrector method, proposed by Wilkins [87]. During the 

plastic correction, a semi-explicit method, i.e., General convex Cutting Plane Method 

(GCPM), proposed by Simo and Oritz [88], is used to update the stress states satisfying 

the consistency condition through iterations, projecting the stress onto the yield surface. 

GCPM is relatively simple to implement compared to a fully implicit method and still 

performs efficiently but requires careful time step control to guarantee numerical stability 

[89]. 
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Figure 8. Evolution of Yld2004-18p(ε̅) yield locus at seven plastic work levels with insets 

highlighting shrinkage near plane strain and expansion near equibiaxial tension. 

 

4. In-plane biaxial tension using cruciform specimen 

Cruciform biaxial experiments using a custom designed cruciform specimen were 

performed to validate the ability of the implemented plasticity models, i.e., Yld2004-18p(ε̅) 

combined with the Hockett-Sherby model, to capture the plastic anisotropy evolution 

during the in-plane biaxial deformation. This section describes the optimization of a 

cruciform geometry based on six design goals and the experiments using the determined 

specimen under four proportional loading conditions. 

 

4.1. Design of customized cruciform specimen 

A design of experiments (DOE) approach was taken to generate a cruciform 

geometry suitable for the biaxial machine at the University of New Hampshire (UNH). The 
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previous iteration of this geometry is found in [65], which was a scaled version of the 

geometry developed in [44]. The design goals in this work were (1) maximized strains in 

the gauge section, (2) nearly linear strain paths, (3) moderate strain uniformity in the 

gauge area, i.e., ±2.5 % of the mean strain value, (4) sufficient gauge area for material 

characterization, e.g., DIC, magnetic induction, and microstructure image scans, (5) a 

machinable final geometry, and (6) a suitable design for the UNH apparatus, e.g., grip 

widths, force capacity, displacement, and thickness. 

The key geometric features for the design (as shown in Figure 9) were the radius 

of the pocket flat area (Rgauge), fillet in the pocket (Fpocket), thickness of the flat area within 

the pocket (Tpocket), corner notch radius (Rnotch), and arm width (Warm). It should be noted 

that Tpocket was set to 0.6 mm, corresponding to a 50 % thickness reduction, since this 

parameter will always trend to the smallest value allowed in the design space to achieve 

the design goals, especially maximizing strain in the gauge area. The lower and upper 

bound values of Rgauge were selected to allow sufficient surface area for measurement, 

e.g., DIC, magnetic induction, etc. The lower bound of Fpocket was set to 0.25 mm, which 

is approximated as the machinability limit of standard end mills. Geometric requirements 

dictate that the minimum Warm is a function of Fpocket and Rgauge (see Appendix A.2). 

Further based on literature and prior experience, Rnotch was selected to be Warm/6. Rpocket 

is the radius of the pocket, as depicted in Figure 9, and is geometrically derived from 

Fpocket and Rgauge (see Appendix A.2). The overall width of the specimen Wspecimen was set 

to 180 mm to allow for sufficient gripping in the UNH biaxial machine. The constraints on 

the design parameters are shown in Table 5. 
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Figure 9. Novel cruciform specimen geometry with a reduced thickness pocket area and 

corner notch features in variable terms. 

 

Table 5. Lower bound, upper bound, and optimized values for key design parameters. 

Design parameter (mm) Lower bound  Upper bound  Optimized 

Radius of pocket flat area (Rgauge) 4 15 5.65 

Fillet in pocket (Fpocket) 0.25 4 1.50 

Arm width (Warm) 6.50 30 30 

Thickness of pocket (Tpocket) 0.6 0.6 

Corner notch radius (Rnotch) Warm/6 5 

 

For the specimen optimization, a two-level DOE approach was implemented in a 

commercial optimization software, Isight [90], which is a plug-in for Abaqus, as seen in 

Figure 10. Orange “process component” and green “application component” boxes, per 
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Isight nomenclature, are noted in the figure. In the first level DOE, DOE1 module, 32 

unique pairs of Fpocket and Rgauge were selected within the limits listed in Table 5 using the 

Optimum Latin Hypercube method. Then, the Wlogic Calculation module determined the 

minimum values of Warm based on the equations in Appendix A.2 and passed them to the 

next level. In the second level DOE, DOE2 module, 32 unique values of Warm were 

identified again using the Optimum Latin Hypercube method. Through the DOE1 and 

DOE2 modules, 32 x 32 (1024) combinations of the three design parameters (Fpocket, 

Rgauge, and Warm) were produced. For each of the 1024 combinations in turn, the Rnotch 

Calculation module determined Rnotch. Then, the variables for each of the 1024 

combinations were used in the parameterized FE model (presented in detail in Section 

5), and the analysis was run with the same displacement boundary conditions as the 

experiments. Isotropic hardening and von Mises yield function were assumed in the DOE 

FE simulations to reduce the computation time. 
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Figure 10. Schematic of process flow in DOE study for cruciform specimen geometry with 

orange “process component”, green “Java application component”, and blue "FE model 

application component" boxes per Isight nomenclature noted. 

 

Each run was assessed in the Objective Function & Constraint Calculation module 

using an objective function and constraint selected to maximize the average effective 

strain in the center 3 mm radius of the pocket. This is assumed to be a sufficient area for 

material characterization instruments within Rgauge, provided that the required uniformity 

of equivalent plastic strain is also achieved. These are formulated as, 

 

 

with a constraint of ±2.5 % variation,  

 

 

where, ε̅  is the equivalent plastic strain, 𝑥𝑖  and 𝑦𝑖  are the x and y coordinates, 

respectively, of the nodes in the undeformed configuration, and R is the radius from the 

central point of the pocket. The value of the objective function was then passed to the 

DOE2 module and evaluated for the constraint conditions. This process continued for all 

(ε̅)R≤3 =
1

𝑛
∑[ε̅ (√xi

2 + yi
2 ≤ 3)]

n

i=1

 

Maximize [(ε̅)R≤3] 

(7) 

While [0.975(ε̅)R≤3 ≤ (ε̅ (√xi
2 + yi

2 ≤ 3)) ≤ 1.025(ε̅)R≤3] (8) 
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1024 FE analyses. To ensure the applicability of the optimized design to different 

deformation modes, the DOE process was performed separately for three boundary 

conditions, i.e., 𝛿𝑥: 𝛿𝑦= 1:1, 2:1, and 4:1 covering from equibiaxial to plane-strain, where 

𝛿𝑥 and 𝛿𝑦 are displacements in each direction. The final dimensions for the geometric 

parameters are shown in Table 5. 

 

4.2. In-plane biaxial tension experiment 

The in-plane biaxial tension experiments were performed using the cruciform 

specimen optimized in Section 4.1. The cruciform specimens were fabricated at UNH by 

the following steps. First, the specimen outline of the cruciform shape was waterjet cut 

from as-received 1.2 mm thick (T0) SS316L sheets. The perimeters were then lightly 

sanded to remove any rough edges. Next, the pockets on both sides of the specimen 

were milled to reduce the thickness, using a custom fixture to prevent bending during the 

milling operation, and finally polished to reduce the surface roughness using a series of 

diamond pastes in conjunction with wool bobs attached to a rotary tool. 

The in-plane biaxial tension experiments were conducted using a custom loading 

frame at UNH, that is described in [59,91,92] and shown in Figure 11. The 3D-printed 

alignment fixture was utilized to center the specimens prior to gripping, and the 

pantograph ensured that the motion along each axis was symmetrical about the center. 

The biaxial machine recorded voltages corresponding to force and displacement values 

during experiments in synchronization with the stereo-DIC (3D surface DIC from 

Correlated Solutions, Inc.). The strain data were extracted in the center of the pocket in 
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the post-processing software (VIC-3D) with the following parameters: 21 pixels, 5 pixels, 

and 5 for the subset, step, and filter sizes, respectively.  

 

 

Figure 11. In-plane biaxial tension experimental setup (custom machine at UNH). 

 

The specimens were subjected to four loading conditions, programmed as the 

displacement paths in x- and y-axis (aligned with the material orientation, RD and TD, 

respectively), i.e., 𝛿𝑥: 𝛿𝑦 = 1:1, 2:1, 8:1, and 1:free (unconstrained in y-axis), by driving 

the four hydraulic cylinders. The experimental displacement paths are shown in Figure 

12. The order of displacement ratios 𝛿𝑥: 𝛿𝑦=1:1, 2:1, 8:1, 1:free result in deformation close 

to equibiaxial, through plane strain, to a near uniaxial strain path in the gauge section. 

The corresponding experimental results are given in Section 5 with the simulation results. 
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Figure 12. Biaxial tension experimental displacement paths along x-axis (RD) and y-axis 

(TD). 

 

5. FE simulation for in-plane biaxial tension  

To validate the material model from the previous section, finite element simulations are 

detailed in the following section. A summary of the finite element model is given. 

Comparisons of the anisotropic plasticity model with experiments and von Mises are also 

presented.   

 

5.1. FE model details 

An FE model of the cruciform specimen for in-plane biaxial tension was created in 

Abaqus/Standard 2019. A one-eighth model was used, due to three planes of symmetry, 

with a shortened arm length in comparison to the physical specimens, i.e., 65 mm 
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specimen half-length instead of 90 mm, to exclude the clamped portion of the specimen 

arm. The model was meshed using linear brick elements with reduced integration 

(C3D8R) and consisted of approximately 22,000 elements in total, with finer meshing in 

the center pocket region and three elements through the half-thickness as shown in 

Figure 13. Note that a coarser mesh was used for the optimization described in Section 

4.1 to reduce the computational expense. 

The plasticity models implemented as a UMAT subroutine in Abaqus/Standard 

2019 were used for the FE simulations, which include a non-quadratic anisotropic yield 

function with the equivalent plastic strain dependent parameters, i.e., Yld2004-18p(ε̅), to 

capture the plastic anisotropy evolution and Hockett-Sherby model to describe the strain 

hardening behavior, as explained in Section 3. A quadratic isotropic yield function, i.e., 

von Mises, combined with the same strain hardening description, is compared with the 

implemented plasticity models.  

The displacement boundary conditions were applied to two reference points, which 

were kinematically coupled to the thickness surfaces at the end of the specimen arms in 

the x- and y-axis. Force and displacement data were extracted from these reference 

points, and strain data was extracted from the center of the pocket surface as marked in 

Figure 13 (red dot labeled ε in the through-thickness section insert).  
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Figure 13. 1/8th symmetry cruciform FE model and mesh design with C3D8R elements 

(not to scale).  

 

5.2. Anisotropic plasticity model validation 

The force-displacement curves extracted from the experiments and simulations 

are compared in Figure 14. For consistency in Figure 14 and all subsequent figures, the 

simulation curves are truncated at the maximum displacement achieved by the 

experiments, i.e., the fracture displacement. Note that the von Mises prediction for the 

𝛿𝑥: 𝛿𝑦 =1:1 loading condition is an exception and is truncated at a slightly smaller 

displacement than the experiments due to early localization predicted in the simulation.  

Under all four loading conditions, Yld2004-18p(ε̅) predicts the experimental force-

displacement curves well while von Mises overpredicts the force value for nearly the 

entire displacement range. This is likely due to the quadratic feature and isotropic nature 

of the von Mises model, which are demonstrated in the material characterization in 

Section 2. Yld2004-18p tends to overpredict or underpredict the force value for the four 

cases shown. Considering that complicated, non-uniform deformation fields can be 
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developed in this cruciform specimen, the accuracy of the material description for a wide 

range of plastic deformation modes can affect the prediction.  

Furthermore, the local strain paths extracted from the surface at the center of the 

pocket (red dot in Figure 13), were compared for four loading conditions as shown in 

Figure 15. Only local strains in the RD (𝜀𝑅𝐷) and TD (𝜀𝑇𝐷), i.e., x- and y-axis, respectively, 

were considered in the strain path plot. The symbols in Figure 15 represent the 

experimental data from the same location and show the higher maximum achievable 

strain using the customized cruciform specimen compared to specimens used in past 

research [59]. The result indicates that the considered specimen design goals, i.e., (1) 

greater deformation compared to the standard specimen and (2) linear strain paths, are 

successfully achieved in the experiment. 

Overall, in Figure 15, the strain predictions by Yld2004-18p(ε̅), Yld2004-18p, and 

von Mises models agree reasonably well with the experiments. Still, Yld2004-18p(ε̅) 

captures the strain paths, especially near plane strain given by 𝛿𝑥: 𝛿𝑦= 8:1 and 2:1, more 

accurately than von Mises. The final strain levels, i.e., the end point in the curves shown 

in Figure 15, selected at the same final displacements as experiments, are also 

consistently overpredicted by von Mises. This seems to be caused by the isotropic 

assumption ignoring the plastic anisotropy developed by complicated, non-uniform plastic 

deformations in the surrounding area as shown in  
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Figure 16. Comparing Yld2004-18p and Yld2004-18p(ε̅), Yld2004-18p(ε̅) shows 

better agreement with the experimental data. 
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Figure 14. Force-displacement curves comparing Yld2004-18p(ε̅) (solid lines), Yld2004-

18p (dotted lines), von Mises (dashed lines with end points denoted by plus signs), and 

experimental (square and triangle symbols) results for proportional loading paths: 𝛿𝑥: 𝛿𝑦= 

(a) 1:1, (b) 2:1, (c) 8:1, and (d) 1:free. RD and TD are aligned along the x-axis (red) and 

y-axis (blue), respectively. 
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Figure 15. Strain path comparison between Yld2004-18p(ε̅) (solid lines), Yld2004-18p 

(dotted lines), von Mises (dashed lines), and experimental (symbols) results for 

𝛿𝑥: 𝛿𝑦=1:1, 2:1, 8:1, and 1:free. 
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Figure 16 shows close-ups of the strain fields in the pocket and the surrounding 

area, including the notches, just prior to fracture and at the same instance as the force-

displacement (Figure 14) and strain paths (Figure 15) for the simulations. Commonly in 

all loading conditions, the highest maximum principal strain is observed near the notches, 

which eventually leads to fracture in the specimen. As observed in the comparison of the 

strain paths, the predictions of the strain contours in the pocket region from Yld2004-

18p(ε̅) show better agreement with experiments than those of Yld2004-18p and von 

Mises. The predictions of Yld2004-18p match the experimental strain contours better than 

the predictions of von Mises, but both are unable to capture some of the subtle strain 

gradients evident in the DIC experimental images, e.g., the minimum principal strain 

variation in the radial direction in the specimen pocket for the 𝛿𝑥: 𝛿𝑦= 1:1 and 1:free 

experiments. 
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Figure 16. Comparison of principal strain contours captured at the same fracture 

displacement as the experiment to Yld2004-18p( ε̅ ) and von Mises models with 

proportional loading: 𝛿𝑥: 𝛿𝑦= (a) 1:1, (b) 2:1, (c) 8:1, and (d) 1:free. 

 

To evaluate the deformation uniformity in the gauge area, the equivalent stress 

and strain in the thickness (RD-ND plane) and the face (RD-TD plane) of the pocket are 

examined based on the numerical predictions (see Figure 17). Note that, for simplicity, 

the predictions of Yld2004-18p are not shown in Figure 17. In the reduced thickness 

region, the stress and strain are nearly constant through the specimen thickness and 

along the radial direction on the face. Overall, these predictions indicate that relatively 

uniform fields for the equivalent stress and strain are achieved over a large volume, which 

is desirable for material characterization measurements, e.g., DIC, magnetic induction.  
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Figure 17. Comparison of equivalent (a) stress and (b) plastic strain along the thickness 

direction (RD-ND plane) and the face (RD-TD plane) of the pocket.  

 

6. Summary and conclusions 

In this work, the plastic anisotropy of SS316L and its evolutionary behavior were 

investigated under proportional loading paths using a cruciform specimen customized for 

in-plane biaxial experiments. The plastic behavior, characterized by uniaxial and 

equibiaxial tension experiments, were modeled by a non-quadratic anisotropic yield 

function with equivalent plastic strain dependent material parameters, Yld2004-18p(ε̅), to 

capture the strong evolutionary behavior in the plastic anisotropy and Hockett-Sherby 

model to describe the strain hardening. For the in-plane biaxial tension, a cruciform 



 51 

specimen was newly designed to satisfy six design goals and improve the specimen 

performance in experiments. Four loading paths were applied to the specimen, imposing 

strain paths near uniaxial, plane-strain, and equibiaxial tension. The experiments were 

performed using the in-plane biaxial machine at UNH, and the results were compared 

with FE simulations using the implemented models in a UMAT for Abaqus/Standard. 

Overall, the Yld2004-18p(ε̅) predictions show good agreement with the experimental 

results for both the force-displacement curves and the strain fields in the gauge region 

compared to the constant parameter and isotropic yield functions. This validates that the 

implemented plasticity modeling can accurately describe the plastic anisotropy developed 

in both stress and strain fields.   
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Appendix 
A.1. Comparison of Effective Stress-Strain Curves for Bulge Test 

A comparison of the strain hardening behavior at large, i.e., close to 1, strain levels 

is shown in Figure A1 to further validate the chosen material model. To simplify the 

calculations, instead of using Yld2004-18p, the equivalent stress-strain curve of bulge 

test is obtained by the Hill 79 non-quadratic anisotropic yield function (Eq. A1.1) [80]. The 

equations for the equivalent stresses and strains for a balanced biaxial stress state [81] 

are given in Eq. A1.2, where 𝜎𝑚 is the membrane stress, 𝜀𝑡 is the absolute value of the 

thickness strain, 𝑎′ is calculated by equating the equivalent stress and strain from an 

uniaxial tension and bulge tests at an uniform strain, i.e., 𝑎′=1.9, and 𝑟̅ is the normal 

anisotropy obtained by 𝑟̅ = (𝑟0 + 2𝑟45 + 𝑟90)/4 , i.e., 𝑟̅ =1.149. The Hill 79 equivalent 

stress-strain curve for the bulge test (red circles) is plotted with the extrapolated Hockett-

Sherby stress-strain curve. Overall, the Hill 79 stress-strain curve matches well with the 

Hockett-Sherby stress-strain curve over the entire strain range shown.  

 

 

2(1 + 𝑟̅)𝜎̅𝑎′ = (1 + 2𝑟̅)|𝜎1 − 𝜎2|
𝑎′ + |𝜎1 + 𝜎2|

𝑎′ (A1.1) 

 

𝜎 =
2𝜎𝑚

[2(1 + 𝑟̅)]1/𝑎′
      ;       𝜀 ̅ = 𝜀𝑡 2⁄ [2(1 + 𝑟̅)]1/𝑎′    

(A1.2) 
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Figure A1. Comparison of extrapolated Hockett-Sherby (black dashed line) stress-strain 

curve and equivalent stress-strain curve for the hydraulic bulge test using Hill 79 (red 

circles). For completeness, the bulge test (red open circles) and uniaxial tension (black 

open circles) experimental true stress-strain curves are overlaid. 

 

The bulge test (red open circles) and uniaxial tension (black open circles) 

experimental data stress-strain curves are also included in Figure A1. Note that the bulge 

test experimental data is plotted in terms of true stress and strain, not equivalent stress 

and strain. The material anisotropy is evident by the difference in the hardening behavior 

between these experimental true stress-strain curves.   

 

A.2. Cruciform Specimen Geometric Relationships 

Through thickness geometric relationship (see Figure 9) for the flat gauge region 

results in, 
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and 

 

See Figure A2a for more clarification on Eq. A2.2. Based on the authors’ prior experience, 

𝑅notch is determined by the following relationship with 𝑊arm, 

 

 

Based on the geometric relationship in Figure 9a and Figure A2b, 

 

 

where 𝐿N2P  is the shortest distance from the notch to the pocket along the diagonal 

direction. Substituting Eq. A2.3 into Eq. A2.4 and solving for 𝑊arm, 

 

 

𝑇cut =
(𝑇sample − 𝑇pocket)

2
 

(A2.1) 

𝑅pocket = {

(𝑅gauge + 𝐹pocket), if 𝐹pocket ≤ 𝑇cut

 

[𝑅gauge + √𝐹pocket
2 − (𝐹pocket − 𝑇cut)2] , if 𝐹pocket > 𝑇cut 

 

(A2.2) 

𝑅notch =
𝑊arm

6
 (A2.3) 

𝑊arm

√2

2
= 𝑅pocket + 𝐿N2P + 𝑅notch (A2.4) 

𝑊arm = (𝑅pocket + 𝐿N2P) (
6

3√2 − 1
) (A2.5) 
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Assuming that proper triaxial strain is obtained in the corner reinforcement by constraining 

a relative dimension of in-plane geometry and the sample thickness, 

 

 

and therefore, the minimum of 𝑊arm can be determined by the following equation. 

 

 

 

Figure A2. Relationship between the key geometric features for the design (a) plane 

view and (b) section A-A. 

 

  

𝐿N2P ≥ 𝑇sample (A2.6) 

𝑊arm ≥ (𝑅pocket + 𝑇sample) (
6

3√2 − 1
) (A2.7) 
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