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Abstract—Mobile edge computing (MEC) integrates computing resources in wireless access networks to process computational 

tasks in close proximity to mobile users with low latency. This paper investigates the task assignment problem for cooperative 

MEC networks in which a set of geographically distributed heterogeneous edge servers not only cooperate with remote cloud 

data centers but also help each other to jointly process user tasks. We introduce a novel stochastic MEC cooperation framework 

to model the edge-to-edge horizontal cooperation and the edge-to-cloud vertical cooperation. The task assignment optimization 

problem is formulated by taking into consideration dynamic network states, uncertain node computing capabilities and task 

arrivals, as well as the heterogeneity of the involved entities. We then develop and compare three task assignment algorithms, 

based on different deep reinforcement learning (DRL) approaches, value-based, policy-based, and hybrid approaches. In addition, 

to reduce the search space and computation complexity of the algorithms, we propose decomposition and function approximation 

techniques by leveraging the structure of the underlying problem. The evaluation results show that the proposed DRL-based task 

assignment schemes outperform the existing algorithms, and the hybrid actor-critic scheme performs the best under dynamic 

MEC network environments.    

 

Index Tems—Mobile edge computing (MEC), edge server cooperation, task assignment, stochastic optimization, deep 

reinforcement learning

1 INTRODUCTION 

Cloud computing has been widely adopted as a cost-
effective platform to provide powerful computing 
capabilities and storage resources for computation-intensive 
applications. However, many emerging mobile applications 
such as intelligent transportation, smart cities, industrial 
robotics, and augmented/virtual reality (AR/VR) require not 
only intensive data processing and high network bandwidth 
but also very low latency. Cloud data centers are centralized 
and often located far away from the mobile users over the 
Internet. Thus, they are difficult to satisfy the low-latency 
requirements of these interactive applications and/or to adapt 
data processing to the local wireless network context. In 
addition, the proliferation of Internet of Things (IoT) devices 
generates a large amount of data at the network edge that 
needs to be efficiently handled and processed. It is highly 
inefficient to move large volumes of data collected from many 
edge sources, e.g. video sensors, to a centralized data center 
and perform remote computations. Mobile edge computing 
(MEC) is an emerging paradigm that provides computing 
services at the edge of the mobile radio access network (RAN), 
addressing the shortcomings of cloud data centers [1–6]. MEC 

edge servers, also called edge nodes, with computing, storage, 
and communication capabilities are co-located or integrated 
with base stations (BSs), routers, and gateways in a wireless 
access network, allowing the execution of applications in 
close proximity to mobile users. Mobile devices with 
excessive computing resources can also join the MEC network 
and offer services to other devices and applications. MEC can 
reduce transmission latency, alleviate network congestion, 
and provide real-time local context-aware services required by 
emerging mobile applications. It also allows network 
operators to provide additional value-added services and bring 
a better quality of experience to mobile users. MEC 
technology has attracted a lot of attentions in academia and 
industry, and it is considered as an important component of 
next-generation (5G and beyond) mobile networks. The 
standardization effort on the MEC technology is ongoing in 
the European Telecommunications Standards Institute (ETSI) 
[7] and 3GPP [8]. An industry consortium has also been 
created to promote open edge computing technology [40]. 

In spite of the fact that MEC can address the drawbacks of 
cloud computing, it is challenging to manage edge servers due 
to geographically distributed deployment of these edge 
servers and their heterogeneous computing resources [9, 10]. 
Unlike cloud computing, user requests for MEC 
computational tasks may arrive at any edge server, instead of 
a gateway or a master node. The computational tasks may be 
queued with a long delay because of insufficient processing 
resources at the edge server, and bounded buffer sizes may 
cause task queue overflows. Furthermore, the workload 
received by edge servers exhibits temporal and spatial 
fluctuations due to user mobility, the bursty nature of mobile 
applications, and unexpected events, e.g., a traffic accident. 
The limited resources of individual edge servers can be over 
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or under-utilized over time. Based on these observations, a 
cooperative MEC network can be considered to tackle the 
problems, where edge servers without enough resources can 
forward their partial tasks to other nearby edge servers and/or 
remote cloud data centers for execution. By exploiting the 
horizontal cooperation among  geographically distributed 
heterogeneous edge servers as well as the vertical cooperation 
between edge servers and cloud data centers to jointly process 
computational tasks, MEC system performance can be 
significantly improved. However, there are non-trivial 
challenges to assign the tasks to be executed at different edge 
servers and the cloud for a cooperative MEC network to 
achieve optimal performance: a) the edge-to-edge horizontal 
cooperation and the edge-to-cloud vertical cooperation should 
be considered. A framework is needed to model the complex 
interactions and heterogeneity of the involved entities as well 
as the shipping cost of the tasks from multiple edge servers to 
multiple edge servers or the cloud. b) The fluctuation in 
computing demands as well as the computation resource 
availability at different edge servers and network 
communication delay between the servers should be taken into 
consideration. c) The user task arrivals, available computing 
resources, and network conditions are non-stationary and 
unknown beforehand in many MEC scenarios. Thus, a 
stochastic framework, instead of a deterministic one, is 
necessary in order to fully capture the underlying dynamics 
and explore the synergy among the MEC entities for the 
optimal performance of joint task processing.  

Although considerable work has been done to design MEC 
systems and algorithms, most research efforts have focused on 
the problem of offloading tasks from mobile devices to edge 
servers [11-15] or the vertical cooperation where MEC edge 
servers help cloud data centers process delay-sensitive user 
tasks for improved quality of service (QoS) [16-19]. Less 
research attention has been given to investigate the horizontal 
cooperation among MEC edge servers for joint task 
processing. The authors in [41] proposed a scheme that allows 
an edge server to forward its tasks to other edge servers to 
balance the workload. However, they made many assumptions 
in assigning the tasks to the edge servers, such as a fixed task 
arrival rate at each edge server as well as a pre-known task 
processing time of each edge server and pre-known 
transmission delay between the edge servers. Their task 
assignment algorithm utilizes the classical convex 
optimization method based on these assumptions under a 
static MEC environment. Such existing schemes are too 
idealized for real deployment scenarios and fail to characterize 
system dynamics and impacts of the performance. 

In this paper, we investigate the task assignment and 
scheduling for cooperative mobile edge computing networks 
under varying task arrival statistics, node computing 
capabilities, and network states. We cast the task assignment 
as a dynamic and stochastic optimization problem and develop 
new deep reinforcement learning (DRL)-based algorithms 
which are able to dynamically assign the tasks requested 
without presuming the state of the network and the ability of 
the servers to be known. The assignment considers edge-to-
edge cooperation and edge-to-cloud cooperation, and takes the 
heterogeneity of edge servers and the fluctuation of the 
network into account. Our contributions include, 
(1) A novel stochastic framework is proposed to model the 

horizontal cooperation of edge servers as well as the 
vertical cooperation between edge servers and cloud data 
centers, in which the time-varying computation resources 
and network communication delays are considered. The 

stochastic task assignment problem is formulated as a 
Markov decision process (MDP).  

(2) We derive and compare three new task assignment 
algorithms by seeking different deep reinforcement 
learning (DRL) approaches (value-based, policy-based, 
and hybrid), which can learn the optimal policy for the 
task assignment matrix to the edge servers and cloud data 
center without requirement for prior knowledge of task 
arrival statistics, node computation capabilities, and 
network dynamics. 

(3) In order to deal with the state/action explosion and to 
improve the learning algorithm efficiency, we introduce 
decomposition and function approximation techniques by 
leveraging the structure of the underlying problem. 

(4) Numerical results show that all three of our proposed 
online DRL-based task assignment schemes improve the 
MEC QoS performance, compared to the existing 
representative algorithms, and the hybrid scheme 
achieves the best performance under dynamic MEC 
environments. 

To the best knowledge of the authors, this is the first work 
to solve the task assignment optimization problem with edge-
to-edge horizontal cooperation and edge-to-cloud vertical 
cooperation under stochastic and dynamic MEC network 
environments by employing a deep reinforcement learning 
approach. 

 The remainder of the paper is organized as follows: 
Section 2 describes the system model. Section 3 formulates 
the problem of stochastic task assignment optimization. In 
Section 4, we simplify the problem and derive the deep 
reinforcement learning-based algorithms in detail. Section 5 
provides the numerical experimental results under various 
settings. Section 6 reviews the related work. Finally, the 
conclusions are given in Section 7.    

2 SYSTEM MODEL 

Fig. 1 illustrates the system model under consideration in 
this paper. A MEC network consists of geographically 
distributed edge servers (note that we use edge servers and 
edge nodes interchangeably in the paper), deployed in a radio 
access network (RAN) covering a certain area. The edge 
servers are equipped with computing resources and are co-
located or integrated with base stations or Wi-Fi access points. 
They receive the computing tasks from their associated mobile 
users over the wireless network. These edge servers connect 
to the cloud data centers through Internet. In this paper, we 
model a data center as a special node with powerful resources 
but far away from a RAN in terms of network transmission 

Fig. 1. System model. 
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distance and consider it as an extension of the MEC network. 
We use the term “MEC system” or “MEC network” to refer to 
the networked system that includes the MEC edge servers and 
remote cloud data centers, unless otherwise stated. Note that 
some user devices may, opportunistically, become MEC edge 
servers and be part of a MEC system by contributing their 
computing resources to help execute the tasks.   

Mobile users/smart devices/sensors connect to nearby 
MEC edge servers to submit their computational tasks to be 
processed. A user task is a computational job request along 
with associated data, for example, recognizing an image 
captured by a mobile device or analyzing the data captured by 
a sensor. The MEC nodes (edge servers and a cloud data 
center) help each other to jointly process the computational 
tasks. As an example, shown in Fig. 2, an edge server receives 
the tasks from its associated devices, it may process them 
locally, or forward part or all of its unprocessed tasks to other 
edge servers and/or the cloud data center for processing to 
optimize the QoS, which is based on the task assignment 
decision. We consider a software-defined MEC network with 
a centralized control plane and a distributed data plane [21, 
22]. Software-defined networks (SDNs) have attracted a lot of 
interest from network service providers because they can be 
flexibly controlled and programmed. In an SDN-based MEC 
network, a control plane connects the edge servers to a 
software-defined programmable MEC controller that 
coordinates the task assignment decisions by taking into 
consideration the dynamic workload and network conditions. 
The edge servers will forward, receive, and execute the tasks 
on the data plane based on the task assignment decisions 
received on the control plane from the controller. The MEC 
controller resides in the RAN and could be one of the edge 
servers with dedicated control plane connectivity, thus the 
control latency is minimal.   

It is assumed that the computational tasks from the 
associated devices arrive at MEC edge servers randomly, and 
the distribution is not known beforehand. The network delay 
between two nodes is time-varying and unknown in advance 
due to dynamic network conditions, traffic load, and many 
other uncertain factors. In addition, the task processing 
capability of a node is also time-varying because the CPU 
cycles may be adjusted based on the environments such as 
heat and power status, and the task complexity varies.  

Consider a MEC network that consists of N edge servers 
in the area of consideration, labeled as 𝒩 = {1, 2, …, N} and 
a remote cloud data center modeled as a special node 𝑛𝑐 that 
has very powerful capability to process the tasks but incurs a 
high network delay. Note that this model can be easily 
extended to multiple data centers. We assume that the system 
operates over discrete scheduling slots of equal time duration, 

and the task scheduling decision is performed every time slot. 

The values of a task assignment matrix 𝚽𝑡 =  [𝜙𝑛,𝑗
𝑡 : 𝑛, 𝑗 ∈

𝒩 ∪ 𝑛𝑐} should be determined at the beginning of each time 

slot t, where 𝜙𝑛,𝑗
𝑡  specifies the number of tasks that edge 

server n will send to edge server j or cloud data center 𝑛𝑐 for 
processing in slot t, and 𝜙𝑛,𝑛

𝑡  is the number of tasks that edge 

server n will buffer for processing by itself. 𝝓𝑛
𝑡 =

 [𝜙𝑛,𝑗
𝑡 , 𝜙𝑗,𝑛

𝑡 ∶  𝑗 ∈ 𝒩 ∪ 𝑛𝑐}  represents the task assignment 

vector regarding edge server n. An edge server may either 
have extra computing resources to help other nodes to process 
the tasks or may need to forward its tasks to other nodes for 
processing due to overload. We assume that the data center 
𝑛𝑐  will process all the received tasks by itself, not forwarding 

them to the edge servers, i.e., 𝜙𝑛𝑐,𝑗
𝑡 = 0, 𝑗 ∈ 𝒩.  We also 

assume that there is no dynamic joining or quitting of the edge 
servers, whose impacts will be part of our future study. For 
convenience, Table I summarizes the major notations used in 
this paper. 

TABLE I. LIST OF MAJOR NOTATIONS 

Symbol Definition 

𝒩 The set of edge servers 

𝑛𝑐 Cloud data center 

t Time slot 

𝜙𝑛,𝑗
𝑡  # of tasks that node n will forward to node j in slot t 

𝚽𝑡 Task assignment matrix, 𝚽𝑡 =  [𝜙𝑛,𝑗
𝑡 : 𝑛, 𝑗 ∈ 𝒩 ∪

𝑛𝑐} 

𝝓𝑛
𝑡   Task assignment vector for node n,  𝜙𝑛

𝑡 =
 [𝜙𝑛,𝑗

𝑡 , 𝜙𝑗,𝑛
𝑡 ∶  𝑗 ∈ 𝒩 ∪ 𝑛𝑐} 

𝓅𝑛,𝑗
𝑡  Probability that node n will forward its tasks to node 

j in slot t 

𝓟𝑡 Task assignment probability matrix, 𝓟𝑡 =
 [𝓅𝑛,𝑗

𝑡 : 𝑛, 𝑗 ∈ 𝒩 ∪ 𝑛𝑐} 

𝓹𝑛
𝑡  Task assignment vector for node n,  𝓹𝑛

𝑡 =
 [𝓅𝑛,𝑗

𝑡 , 𝓅𝑗,𝑛
𝑡 ∶  𝑗 ∈ 𝒩 ∪ 𝑛𝑐} 

Α𝑛
𝑡  Task arrivals of node n in slot t 

𝑨𝒕 Task arrival matrix, 𝑨𝒕= {𝐴𝑛
𝑡 ∶ 𝑛 ∈ 𝒩} 

𝑞𝑛
𝑡  Queue size of node n at the beginning of slot t 

𝒒𝒕 Queue state, 𝒒𝒕= {𝑞𝑛
𝑡 ∶ 𝑛 ∈ 𝒩 ∪ 𝑛𝑐}, 

𝑞𝑛
(𝑚𝑎𝑥)

 Maximum queue length of node n 

𝑠𝑛
𝑡  Task processing capability of node n (max number 

of tasks that node n can process) in slot t 

𝑺𝒕 Task processing capability vector, 𝑺𝒕 =  {𝑠𝑛
𝑡 ∶ 𝑛 ∈

𝒩 ∪ 𝑛𝑐} 

𝑐𝑛,𝑗
𝑡  Network communication delay for shipping a task 

from node n to node j. 

𝒄𝑛
𝑡  Network communication delay vector for node n, 

𝒄𝑛
𝑡 = (𝑐𝑛,𝑗

𝑡 , 𝑐𝑗,𝑛
𝑡 ∶  𝑗 ∈ 𝒩 ∪ 𝑛𝑐) 

𝑪𝒕 Network communication delay matrix, 𝑪𝒕 =  {𝒄𝑛
𝑡 ∶

𝑛 ∈ 𝒩 ∪ 𝑛𝑐} 

𝝌𝑛
𝑡  Local network state of node n, 𝝌𝑛

𝑡 = (𝑄𝑛
𝑡 , 𝑠𝑛,

𝑡 𝒄𝑛
𝑡 ) at 

the beginning of time slot t 

𝝌𝒕 Global MEC network state, 𝝌𝒕 = ( 𝝌𝑛
𝑡 :  𝑛 ∈ 𝒩 ∪

𝑛𝑐) = (𝑸𝒕, 𝑺𝒕, 𝑪𝒕) 

𝑑𝑛 Service delay of node n, including network delay and 

queuing delay  

𝑑(max) Maximum tolerance threshold of the service delay 

𝑜𝑛 Task queue overflow rate (number of tasks over the 

maximum queue size during a time slot) for node n 

𝑜(max) Maximum tolerance threshold of the task queue 

overflow rate 

Fig. 2. An example of task processing and edge server cooperation. 
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Symbol Definition 

𝑈𝑛
(𝑑)

(∙) Quality satisfaction related to service delay for node 

n 

𝑈𝑛
(𝑜)

(∙) Quality satisfaction related to task queue overflow 

rate for node n 

𝑈(∙) Utility function related to service delay and task 

queue overflow rate.  

𝑤𝑑 , 𝑤𝑜 Weight factors in the utility function related to 

service delay and task queue overflow rate, 

respectively 

𝑉(𝝌, 𝚽) Expected discounted long-term utility (state value 

function) 

γ, 𝛼 Parameters in state value function, γ is a discount 

factor, and  𝛼 = (1 − γ) 

𝚽∗ Optimal task assignment policy 

𝑉∗(𝝌) Optimal state value function 

�̃�𝑛 , �̃�𝑛 , �̃�𝑛  Post-decision states of queue, task processing 

capability, and network delay, respectively, for node 

n 

�̃�, �̃�, �̃� Post-decision states of queue, task processing 

capability, and network delay, respectively, for 

MEC network 

�̃� Post-decision state of MEC network, �̃� =  (�̃�, �̃�, �̃�) 

�̃�∗(�̃�) Optimal post-decision state value function 

𝜀𝑡 Learning rate 

 

3 PROBLEM FORMULATION 

 In this section, we first formulate the problem of stochastic 
task assignment optimization and then discuss the approaches 
to solve the optimization problem. Let Α𝑛

𝑡  be the number of 
the new tasks randomly arrived at edge server n, 𝑛 ∈ 𝒩 from 
its associated users in time slot t, and 𝑨𝒕= {𝐴𝑛

𝑡 ∶ 𝑛 ∈ 𝒩}. The 
distribution of 𝛢𝑛

𝑡  is not known beforehand. 𝒬𝑛
𝑡  represents the 

task queue length of node n at the beginning of time slot t. Let 
𝑠𝑛

𝑡  be the task processing capability of node n in slot t,  which 
is defined as the number of tasks that node n can serve/process 
in slot t. Different tasks may consume different amount of 
resource such as CPU clock cycle. In other words, a node may 
have different rates to process different types of tasks. A node 
may receive different type of tasks. Thus, 𝑠𝑛

𝑡  varies in time 
and is unknown in advance. We modeled 𝑠𝑛

𝑡  as a Markov 
model with multiple states. Each state represents a type of 
tasks. In this way, a node does not have to know what types 
of tasks will arrive at it. It can learn its process capability for 
the type of the tasks arrived based on the Markov model. The 
queue evolution of node n can be written as  𝑞𝑛

𝑡+1 =

max {0, min[𝑞𝑛
𝑡 + Α𝑛

𝑡 + ∑  (𝜙𝑖,𝑛
𝑡 −  𝜙𝑛,𝑖

𝑡 )𝑖∈ℯ𝑛
− 𝑠𝑛,

𝑡  𝑄𝑛
(𝑚𝑎𝑥)

]}, 

where ∑ 𝜙𝑛,𝑖
𝑡

𝑖∈ℯ𝑛
 with 𝑒𝑛 = {𝒩 ∪ 𝑛𝑐}\{𝑛}  represents the 

number of tasks that edge server n offloads to other edge 
servers and the cloud, and ∑ 𝜙𝑖,𝑛

𝑡
𝑖∈ℯ𝑛

 is the number of tasks 

that edge server n receives from other edge servers in slot t. 

𝑄𝑛
(𝑚𝑎𝑥)

 is the maximum buffer size at node n. 
The local state of a node is characterized by its task queue 

size, its task processing capability, and its network delay to 
other nodes. For a node n, 𝑛 ∈ 𝒩 ∪ 𝑛𝑐, at the beginning of 
time slot t, we measure its local state as 𝝌𝑛

𝑡 =
(𝑄𝑛

𝑡 , 𝑠𝑛,
𝑡 𝒄𝑛

𝑡 ) where 𝒄𝑛
𝑡 = (𝑐𝑛,𝑗

𝑡 , 𝑐𝑗,𝑛
𝑡 ∶  𝑗 ∈ 𝒩 ∪ 𝑛𝑐)  with 𝑐𝑛,𝑗

𝑡  

being the network delay for shipping a task from node n to 

node j, 𝑐𝑗,𝑛
𝑡  being to the network delay for shipping a task from 

node j to node n, and 𝑐𝑛,𝑛
𝑡 = 0. As the network delay between 

two nodes is related to the network bandwidth, transmission 

distance (the number of hops along the path between the two 
nodes), traffic conditions in the network, and many other 
unpredicted factors, it varies in time and its distribution is 
unknown as well. Thus, at the beginning of each scheduling 
time slot t, the global MEC network state is represented 𝝌𝒕= 
(𝝌𝑛

𝑡 : 𝑛 ∈ 𝒩 ∪ 𝑛𝑐) = (𝑸𝒕, 𝑺𝒕, 𝑪𝒕) ∈ 𝑋, where 𝑸𝒕= {𝑄𝑛
𝑡 ∶ 𝑛 ∈

𝒩 ∪ 𝑛𝑐 }, 𝑺𝒕 =  {𝑠𝑛
𝑡 ∶ 𝑛 ∈ 𝒩 ∪ 𝑛𝑐} , and 𝑪𝒕 =  {𝒄𝑛

𝑡 ∶ 𝑛 ∈
𝒩 ∪ 𝑛𝑐}. 𝑋  represents the whole MEC system state space. 
Note that we model the cloud data center 𝑛𝑐 as a special node 
and its state can then be represented in the same way as an 
edge server, except that its task processing capability 𝑠𝑛𝑐

𝑡  is 

assumed to be large. 
For a given MEC network state 𝝌𝒕 at the beginning of a 

time slot t, a task assignment 𝚽𝑡 = 𝚽(𝝌𝒕) =
{𝜙𝑛,𝑗(𝝌𝒕): 𝑛, 𝑗 ∈ 𝒩 ∪ 𝑛𝑐}  is made, and the MEC network 

achieves an instantaneous utility that is related to the QoS. We 
consider delay-sensitive applications, where the QoS is 
measured by the task service delay and the task queue 
overflow rate. The task service delay is defined as the period 
from the time that a task arrives at an edge server to the time 
that the task has been served in the unit of scheduling slot 
duration. For an edge server n,  𝑛 ∈ 𝒩, the service delay dn 
depends on the delay incurred by the queue Qn if the edge 
server n processes the task locally or consists of the network 

delay 𝑐𝑛,𝑗
𝑡  and the queueing delay due to the queue Qj at the 

service provider j if a task is sent from node n to node j for 

processing. The task queue overflow rate on is defined as the 
number of tasks overflowed per time slot due to the limited 
buffer size. 

The instantaneous MEC network utility under the state 𝝌𝒕 
and task assignment decision 𝚽(𝝌𝒕) at time slot t is defined 
as,  

𝑈(𝝌𝒕, 𝚽(𝝌𝒕)) =  ∑ [𝑤𝑑𝑈𝑛
(𝑑)

(𝝌𝒕

𝑛∈𝒩
, 𝚽(𝝌𝒕))

+ 𝑤𝑜𝑈𝑛
(𝑜)

(𝝌𝒕, 𝚽(𝝌𝒕))], 

(1) 

where 𝑈𝑛
(𝑑)

(. )  and 𝑈𝑛
(𝑜)

(. )  measure the satisfactions of the 
service delay and task queue overflow rate, respectively. 𝑤𝑑 

and 𝑤𝑜  are the weight factors indicating the importance of 
delay and task queue overflow in the utility function of the 
MEC system, respectively. For an edge server, we consider 

there is a maximal tolerance threshold, 𝑑(max) for the service 

delay, i.e. 𝑑𝑛 ≤ 𝑑(max) . Correspondingly, let 𝑜(max)  be the 
maximal tolerance threshold for the task queue overflow rate, 

i.e. 𝑜𝑛 ≤ 𝑜(max). In addition, we choose the utility function to 

be the exponential functions, namely 𝑈𝑛
(𝑑)

= exp (−𝑑𝑛/

𝑑(max)) and 𝑈𝑛
(𝑜)

= exp (−𝑜𝑛/𝑜(max)) [23, 38]. 
Stochastic user task arrivals and dynamic MEC system 

states present challenges and make naive one-shot 
optimization schemes unstable and unable to achieve the 
optimal network performance on a longer timescale. 
Therefore, we want to develop a stochastic optimization 
framework for the cooperative task assignment, which 
maximizes the expected long-term utility of a MEC system 
while guaranteeing the service delay and task queue overflow 
rate are within their respective acceptable thresholds.   

The task assignment matrix 𝚽(𝝌𝒕)  is determined 
according to the control policy 𝚽 after observing the network 
state 𝝌𝒕  at the beginning of a time slot t, which induces a 
probability distribution over the set of possible global MEC 

network states in the following time slot 𝝌𝒕+𝟏, and hence a 
probability distribution over the set of per-slot utility 
𝑈(𝝌𝒕, 𝚽(𝝌𝒕)).  For simplicity, we assume that the task 
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processing capability of a node and the network delay each 
can be modelled as a finite-state discrete-time Markov chain 
across the time slots, i.e. the probability of a state in the 
subsequent slot depends only on the state attained in the 
present slot. Given a control policy 𝚽, the random process 𝝌𝒕 
is thus a controlled Markov chain [24, 25] with the following 
state transition probability,  

Pr{𝝌𝒕+𝟏|𝝌𝒕, 𝚽(𝝌𝒕) } =
Pr{𝑸𝒕+𝟏|𝝌𝒕, 𝚽(𝝌𝒕)} Pr{𝑺𝒕+𝟏| 𝑺𝒕} Pr{𝑪𝒕+𝟏| 𝑪𝒕},              (2) 
 

where Pr{. } denotes the probability of an event. We assume 
that the task processing capability and the network 
communication delay are independent. For a controlled 
Markov chain, the transition probability from a present state 

𝝌𝒕 to the next state 𝝌𝒕+𝟏 depends only on the present state 𝝌𝒕 

and the control policy 𝚽(𝝌𝒕) acted on the present state. Take 
discounted expectation with respect to the per-slot utilities 
𝑈(𝝌𝒕, 𝚽(𝝌𝒕))  over a sequence of network states 𝝌𝒕 , the 

discounted expected value of the long-term utility of a MEC 
network can be defined as [25, 26], 

𝑉(𝝌, 𝚽) =  E [𝛼 ∙ ∑ γ𝑡−1𝑈(𝝌𝒕, 𝚽(𝝌𝒕))| 𝝌𝟏
∞

𝑡=1
], 

(3) 

where 𝛼, γ ∈  [0, 1) are the parameters. γ is a discount factor 
that discounts the utility rewards received in the future, and 
(γ)t−1 denotes the discount to the (t −1)-th power.  𝝌𝟏 is the 
initial network state. 𝑉(𝝌, 𝚽) is also termed as the state value 
function of the MEC network in state 𝝌 under task assignment 
policy 𝚽. α is multiplied only for analysis convenience. We 
let 𝛼 = 1 − γ, the expected undiscounted long-term average 

utility, �̅�(𝝌, 𝚽) = E [ lim
𝑇→∞

1

𝑇
∙ ∑ γ𝑡−1𝑈(𝝌𝒕, 𝚽(𝝌𝒕))| 𝝌𝟏∞

𝑡=1 ] can be 

considered as a special case of (3) when γ approaches 1 and 
𝛼 = (1 − γ) approaches 0 [25]. On the other hand, if γ is set 

to be 0, then 𝑉(𝝌, 𝚽) = 𝑈(𝝌𝟏, 𝚽(𝝌𝟏)) , that is, only the 
immediate utility performance is considered. We therefore 
consider the expected discounted long-term utility 
performance in (3) as a general QoS indicator in this paper. 
 The objective is to design an optimal task assignment 
control policy 𝚽∗  that maximizes the expected discounted 
long-term utility performance, that is,    

𝚽∗ = 𝑎𝑟𝑔 max
𝚽

(𝑉(𝝌, 𝚽))                    (4) 

𝑉∗(𝝌) = 𝑉(𝝌, 𝚽∗) is the optimal state value function. The 
stochastic task assignment optimization in (4) can be 
considered as a MDP with the discounted utility criterion as 
the network states follow a controlled Markov process [26]. 
The optimal task assignment control policy achieving the 
maximal state value function can thus be obtained by solving 
the following Bellman’s optimality equation [26,27], 

𝑉∗(𝝌) =  max
𝚽

{(1 − γ) 𝑈(𝝌, 𝚽(𝝌))

+ γ ∑ Pr{𝝌′|𝝌, 𝚽(𝝌)}
𝝌′

𝑉∗(𝝌′)}, 

(5) 

where 𝝌′ = {𝑸′, 𝑺′, 𝑪′}  is the MEC network state in the 
subsequent time slot, and Pr{𝝌′|𝝌, 𝚽(𝝌)} represents the state 
transition probability that making the task assignment 𝚽(𝝌) 
in state 𝝌  will produce the next state 𝝌′ . 𝑸′ = {𝑄′𝑛 : 𝑛 ∈
𝒩 ∪ 𝑛𝑐} , 𝑺′ =  {𝑠′𝑛 : 𝑛 ∈ 𝒩 ∪ 𝑛𝑐} , and 𝑪′ =  {𝒄′𝑛 : 𝑛 ∈
𝒩 ∪ 𝑛𝑐}  are the queue, task processing capability, and 
network delay states in the subsequent time slot. 

Solving (5) is generally a challenging problem. Traditional 
approaches are based on value iteration, policy iteration, and 
dynamic programming [27, 28], but these methods require full 
knowledge of the network state transition probabilities and 
task arrival statistics, which for our problem, cannot be 
obtained in advance. Thus, we seek the online reinforcement 
learning techniques to solve the problem which does not have 
such requirements. Conventional Q-learning [29, 30] defines 
an evaluation function, called Q function, 𝑄(𝝌, 𝚽) = (1 −
γ) 𝑈(𝝌, 𝚽) + γ ∑ Pr{𝝌′|𝝌, 𝚽}𝝌′ 𝑄(𝝌′, 𝚽)  and learns an 

optimal state-action value table in a recursive way to decide 
the optimal task assignment control policy for each time slot. 
However, for the cooperative MEC network, the task 
assignment decision-making for a node depends on not only 
its own resource availability and queue state, but also is 
affected by the resource availability and queue states of other 
nodes as well as the network delay between the nodes. The 
system state space and control action space will grow rapidly 
as the number of involved nodes increases. The conventional 
Q-learning process will search and update a large state-action 
value table, which incurs high memory usage and computation 
complexity and cannot handle the large state space well. Deep 
reinforcement learning incorporates reinforcement learning 
with deep neural networks (DNNs) to address the state and 
action space explosion issues of the conventional Q-learning 
[29, 31]. We will design DRL-based task assignment 
algorithms below.  

4 PROBLEM SIMPLIFICATION AND DEEP 

REINFORCEMENT LEARNING ALGORITHMS  

In this section, we focus on developing efficient 
algorithms to achieve the optimal task assignment policy with 
no assumption for prior knowledge of the statistical 
information about the network state transitions and task 
arrivals based on recent advances in deep reinforcement 
learning. There are three categories of the state-of-the-art DRL 
techniques, including value-based, policy-based, and hybrid 
approaches. Specifically, we design three sets of novel 
algorithms leveraging the underlying structure of our task 
assignment optimization problem and the three DRL 
approaches to tackle the aforementioned challenges and to 
maximize the long-term MEC network utility. We will 
evaluate the advantages and disadvantages of the designed 
algorithms and gain insights to each DRL approach for our 
problem in the next section. In addition, it can be observed that 
the MEC network utility function is additive, which motivates 
us to linearly decompose the state value function, and 
incorporate the decomposition technique into the DRL-based 
algorithms to lower the complexity.  

Fig. 3. DDQN-based cooperative MEC task assignment. 
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4.1 Value-based DRL Task Assignment Algorithm 

For the value-based DRL approach, an agent learns the 

state value function, and the optimal policy is determined 

according to the learned value function. Double deep Q 

networks (double DQN or DDQN) utilize double Q-learning 

with two deep neural networks [32, 33], which can reduce the 

overestimation errors of traditional Q-learning by separating 

the action selection and action evaluation. Unfortunately, the 

conventional DDQN algorithms cannot be directly applied to 

solve our problem because it outputs the Q values 

corresponding to the state-action pairs and selects the action 

with the maximum Q value that depends on the total tasks 

received in the current time slot. However, we do not know 

the number of the new task arrivals in a time slot at the 

beginning of the time slot. To solve the problem, we modified 

the standard DDQN to output a probability matrix, which 

indicates the probabilities that an edge server forwards its 

tasks to other edge servers for processing in a time slot, i.e., 

the portion of the tasks shipped from one edge server to the 

others in the time slot. We further truncate the probabilities 

to a discrete set of values to reduce the action space and 

simplify the learning model. 

The modified DDQN is used to approach the optimal state 

value function in (5) and select the best action. Fig. 3 

illustrates the proposed DDQN-based reinforcement learning 

scheme for the collaborative MEC task assignment. The 

system consists of two DNNs, Q evaluation network (Q-eval) 

and Q target network (Q-tar), to learn the optimal state value 

function and decide the optimal action. The Q-eval is used to 

select the task assignment matrix 𝚽𝒕(𝝌𝒕, 𝜃) based on the 

collected network states 𝝌𝒕 at the time slot t, and the Q-tar is 

used to estimate the value of the current task assignment 

policy and decide the target task assignment matrix 

�̅�𝒕+𝟏(𝝌𝒕+𝟏, �̅�)  for the following scheduling slot. The 

parameters θ and θ̅ are updated iteratively. We redefine the 

state value function (5) to be (6) as shown at the bottom of 

this page, where  𝓟(𝝌𝒕, θ𝑡)  and 𝓟′(𝝌𝒕+𝟏, θ̅𝑡)  are the 

probability matrices calculated by Q-eval and Q-tar networks, 

respectively. In the conventional DDQN algorithm, the state 

value will be updated in each time slot and used to determine 

the optimal action. To simplify the updates, in our 

implementation, the state value obtained from (6) is stored in 

a replay memory for training and updating θ  and θ̅  in the 

learning process so that the Q-eval and Q-tar can select the 

optimal task assignment probability matrices directly and 

accurately. The loss function for updating the parameters θ 

of Q-eval is defined in (7) at the bottom of this page. The 

parameters θ̅ will be updated by copying θ after a predefined 

number of steps.  
Specifically, at the beginning of each time slot t, the MEC 

controller determines the task assignment matrix 

𝚽𝒕(𝝌𝒕) based on the observed network states and informs the 

edge servers of the task assignment decision. The task 

assignment matrix 𝚽𝑡 =  [𝜙𝑛,𝑗
𝑡 : 𝑛, 𝑗 ∈ 𝒩 ∪ 𝑛𝑐}  at the 

beginning of scheduling slot t is determined as,  

𝚽𝑡 = 𝓟𝑡(𝝌𝒕; θ𝑡)  (8) 

An edge server then offloads the tasks to other nodes or 

receives tasks from other nodes and processes these tasks 

based on the task assignment decision. The new task arrivals 

𝜜𝒕 will be counted at the end of the time slot t and the new 

network state is collected and updated to 𝝌𝒕+𝟏  by the 

controller. The MEC network receives a utility 𝑼𝑡 =
 𝑈(𝝌𝒕,  𝚽𝒕(𝝌𝒕, 𝓟(𝝌𝒕; θ𝑡))) by performing the task processing. 

The Q-tar network is used to calculate 𝚽𝒕+𝟏. As shown in Fig. 

5, the DDQN includes a replay memory that is used to store 

a pool of the most recent M transition experiences, Ω =
{𝓶𝑡−𝑀+1, … , 𝓶𝑡  } , where each experience 𝓶𝒕 =
(𝝌𝒕, 𝚽𝒕, 𝑼𝒕, 𝝌𝒕+𝟏, 𝚽𝒕+𝟏) is occurred at the transition of two 

consecutive slots t and t + 1 during the learning process. At a 

slot t, the k previous experiences are randomly sampled as a 

batch from the memory pool Ω to train the DDQN online. 

The approximated overall state value for each experience in 

the batch is calculated and the parameters θ is updated with a 

goal to minimize the loss function (7). Once the state value 

function is converged, we can obtain the optimal parameters 

θ∗ for Q-eval. The optimal policy will thus be, 

 𝚽∗ = 𝓟∗(𝝌; θ∗)   (9) 

The MEC network utility in (1) is the summation of the 

service delay and task queue overflow rate satisfactions of the 

edge servers. The task arrival statistics and task processing 

capabilities of the edge servers are independent each other. 

We can then decompose (6) into per server utility and 

separate the satisfactions regarding the service delay and the 

task queue overflows [34]. We first rewrite (8) as 

𝚽𝑡 = {𝝓𝑛
𝑡 (𝝌𝑛

𝑡 ): 𝑛 ∈ 𝒩} = {𝓟𝑛
𝑡 (𝜒𝒏

𝒕 ; θ𝑛
𝑡 ): 𝑛 ∈ 𝒩}. (10) 

where 𝓟𝑛(. )  is the task assignment probability related to 

server 𝑛. 𝑛 agents 𝑛 ∈ 𝒩 can be employed and each agent 

learns the respective optimal state value function through a 

per server sub-DDQN. The optimal joint task assignment 

decision is thus made to maximize the aggregated state value 

function from all the agents. The state value function in (6) 

can be decomposed and expressed as in (11) and (12)   

 𝑉𝑡(𝝌𝒕) =  ∑ 𝑉𝑛
𝑡(𝑞𝑛

𝑡 , 𝑠𝑛
𝑡 , 𝒄𝑛

𝑡 )𝑛∈𝒩 ,  (11) 

𝑉𝑛
𝑡(𝝌𝑛

𝑡 ) =  (1 − γ𝑡)𝑈 (𝝌𝑛
𝑡 ,  𝚽𝑡(𝝌𝑛

𝑡 ,  𝓟𝑛(𝝌𝑛
𝑡 ; θ𝑛

𝑡 ))) +

γ𝑡[Pr{𝝌𝑛
𝑡+1|𝝌𝑛

𝑡 ,  𝚽𝑡(𝝌𝑛
𝑡 ,  𝓟𝑛(𝝌𝑛

𝑡 ; θ𝑛
𝑡 ))}  

𝑈 (𝝌𝑛
𝑡+1, Φ𝑡+1(𝝌𝑛

𝑡+1, 𝓟𝑛
′ (𝝌𝑛

𝑡+1; θ𝑛

𝑡
)))]              (12) 

With the linear decomposition, the problem to solve a 
complex Bellman’s optimality equation (6) is broken into 
simpler MDPs and the computation complexity is lowered. In 
order to derive a task assignment policy based on the global 
MEC network state, 𝝌 = (𝝌𝑛: 𝑛 ∈ 𝒩 ∪ 𝑛𝑐)  with 𝝌𝑛 =
(𝑞𝑛, 𝑠𝑛 , 𝒄𝑛)  and 𝒄𝑛 = (𝑐𝑛,𝑗 , 𝑐𝑗,𝑛 ∶  𝑗 ∈ 𝒩 ∪ 𝑛𝑐),  at least 

∏ ∏ (𝑗∈𝒩∪𝑛𝑐
|𝑞𝑛|𝑛∈𝒩∪𝑛𝑐

|𝑠𝑛||𝑐𝑛,𝑗||𝑐𝑗,𝑛|)  states should be 

trained. Using linear decomposition, only (𝑁 +
1) |𝑞𝑛||𝑠𝑛|  ∏ (|𝑐𝑛,𝑗||𝑐𝑗,𝑛|)𝑗∈𝒩∪𝑛𝑐

 states need to be trained, 

significantly reducing the number of training states and 
resulting in much simplified task assignment decision 

𝑉𝑡(𝝌𝒕) =  max
𝚽

{(1 − γ𝑡)𝑈(𝝌𝒕,  𝚽𝒕(𝝌𝒕, 𝓟(𝝌𝒕; θ𝑡))) + γ𝑡[Pr {𝝌𝒕+𝟏|𝝌𝒕,  𝚽𝒕(𝝌𝒕, 𝓟(𝝌𝒕; θ𝑡))}𝑈(𝝌𝒕+𝟏, 𝚽𝒕+𝟏(𝝌𝒕+𝟏, 𝓟′(𝝌𝒕+𝟏; θ̅𝑡)))]} (6) 

𝕃(θ) =  𝐸 [((1 − γ)𝑈(𝝌, 𝚽(𝝌, 𝓟(𝝌; θ))) + γ[𝑈(𝝌′, 𝚽′(𝝌′, 𝓟′(𝝌′; θ̅)))] −  𝑉(𝝌))
2

] (7) 
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makings especially when the number of MEC servers 𝒩 is 
large. The online DDQN-based algorithm to estimate the 
optimal state value function and determine the optimal task 
assignment policy is summarized in Algorithm 1.  

Algorithm 1.  Online DDQN-based Cooperative MEC 

Task Assignment 

1. Initialize the Q-eval and Q-tar with two sets of 𝜃𝑡 and 

�̅�𝑡 random parameters for t = 1; allocate the replay 

memory Ω for experience replay. 

2. At the beginning of scheduling slot t, the MEC 

controller observes the network state, 𝝌𝑡 = {𝝌𝑛
𝑡 : 𝑛 ∈

𝒩}  with 𝝌𝑛
𝑡 =  (𝑞𝑛

𝑡 , 𝑠𝑛
𝑡 , 𝒄𝑛

𝑡 ) , and the Q-eval with 

parameters 𝜃𝑡 , and then determines the task 

assignment matrix, 𝚽𝑡 =  [𝝓𝑛
𝑡 : 𝑛 ∈ 𝒩]. 

3. The edge servers offload and process the tasks 

according to the above task assignment decision, and 

the new tasks 𝑨𝑡 =  {𝐴𝑛
𝑡 ∶ 𝑛 ∈ 𝒩} will be counted at 

the end of slot t. 

4. The controller determines the MEC network utility 

𝑈𝑡 and calculates the state value 𝑉𝑡 according to (11) 

and (12) 

5. The network state transits to 𝝌𝑡+1 = {𝝌𝑛
𝑡+1: 𝑛 ∈ 𝒩} 

where 𝝌𝑛
𝑡+1 =  (𝑞𝑛

𝑡 + 𝐴𝑛
𝑡 , 𝑠𝑛

𝑡+1,  𝒄𝑛
𝑡+1) , which is 

taken as input to the Q-tar with parameter �̅�𝑡  to 

estimate the value of the current task assignment 

policy and decide the target task assignment matrix 

 �̅�𝑡+1 = {�̅�𝑛
𝑡+1, 𝑛 ∈ 𝒩} for the following scheduling 

slot 𝑡+1. 

6. The replay memory Ω is updated with most recent 

transition 𝓶𝑡(𝝌𝒕,  𝚽𝒕, 𝑼𝒕,  �̅�𝒕+𝟏, 𝝌𝒕+𝟏). 

7. Once the replay memory collects 𝑀 transitions, the 

controller updates the Q-eval parameter 𝜃𝑡  with a 

randomly sampled batch of transitions to minimize 

the loss function (7). 

8. The target DQN parameter �̅�𝑡 are reset every k time 

slots, and otherwise �̅�𝑡 = �̅�𝑡−1 

9. The scheduling slot index is updated by 𝑡 ← 𝑡 + 1. 

10. Repeat from step 2 to 9. 

   

4.2 Policy-based DRL Task Assignment Algorithm 

For the value-based DRL, it obtains the optimal policy 

and make the action decision by calculating and solving the 

state value function with the maximal Q-value. This approach 

is not well applicable to problems with continuous or large 

action space [35]. On the other hand, policy-based DRL 

algorithms are designed to tackle this issue by searching 

directly in the action space. In this section, we investigate the 

feasibility of solving the task assignment problem by 

designing a policy-based DRL algorithm, which uses a DNN 

to directly approximate the optimal policy and makes the 

decision. Motivated by [36], we adopt a stochastic policy 

gradient (PG) method to design our policy-based DRL task 

assignment algorithm, which finds the optimal policy by 

adjusting the possibility of trajectory with the highest 

accumulative rewards of an episode.  

Fig. 4 depicted the PG-based DRL scheme for the 

collaborative MEC task assignment, which consists of a fully 

connected neural network, called Q-network, assigned with a 

set of parameters θ  that is updated episodically for the 

decision making. The Q-network directly outputs the task 

assignment probability matrix 𝓟𝒈.  

Specifically, the controller observes the network states 

𝝌𝑡 = {𝝌𝑛
𝑡 : 𝑛 ∈ 𝒩} and derive the task assignment probability 

matrix 𝚽𝒕(𝝌𝒕) = 𝓟𝑔
𝑡 (𝝌𝒕; θ𝑡)  by the Q-network at the 

beginning of each time slot t, and the edge servers will 

process tasks according to its task assignment probability 

decisions, 𝓟𝑔
𝑡 = {𝓟𝑔,𝑛

𝑡 : 𝑛 ∈ 𝒩}. At the end of the time slot, 

the new task arrivals 𝑨𝑡  will be counted and the MEC 

network utility for the time slot Ut =

 𝑈(𝝌𝒕,  𝚽𝒕(𝝌𝒕, 𝓟𝑔
𝑡 (𝝌𝒕; θ𝑡)))  is calculated. The network state 

then transits from 𝝌𝑡  to 𝝌𝑡+1 . Similarly, the PG algorithm 

also includes a transition storage that is used to store a pool 

of the most recent �̅�  transition experiences, ℧ =
 {𝓣𝑡−𝑀+1, … , 𝓣𝑡  }, where each experience 𝓣𝒕(𝝌𝒕,  𝚽𝒕, Ut) is 

occurred at the transition of two consecutive slots t and t + 1 

during the learning process. k experiences are randomly 

sampled as a batch from the memory pool ℧ to train the PG 

algorithm online by using the learned utility at each time slot 

to update the Q-network parameters, which changes the 

possibility of the actions. Different from the DDQN-based 

algorithm, the loss function used for the parameter updating 

is as follows, which approaches a policy with the minimal 

regret.  

𝕃(θ, 𝓣) =  𝐸 [(log 𝓟𝒈(𝝌; θ)U )
2

], (13) 

The online policy-gradient DRL task assignment algorithm is 
summarized in Algorithm 2. 

Algorithm 2.  Online Policy-Gradient-based DRL 

Cooperative MEC Task Assignment 

1. Initialize 𝜃𝑡 of Q-network with random parameters 

for t = 1 and allocate the transition storage ℧.   

2. At the beginning of scheduling slot t, the MEC 

controller observes the network state, 𝝌𝑡 = {𝝌𝑛
𝑡 : 𝑛 ∈

𝒩} with 𝝌𝑛
𝑡 =  (𝑄𝑛

𝑡 , 𝑠𝑛
𝑡 , 𝒄𝑛

𝑡 ), which is taken as input 

to the Q-network with parameter 𝜃𝑡 to select the task 

assignment matrix  𝚽𝑡 = {𝝓𝑛
𝑡 , 𝑛 ∈ 𝒩}. 

3. After offloading and processing the tasks according 

to the above task assignment decision, the new tasks 

𝑨𝑡 =  {𝐴𝑛
𝑡 ∶ 𝑛 ∈ 𝒩} is counted at the end of slot t.  

Fig. 4. Policy-Gradient-based cooperative MEC task assignment. 
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4. The controller calculates the utility Ut and the 

network state transits to 𝝌𝑡+1 = {𝝌𝑛
𝑡+1: 𝑛 ∈ 𝒩} 

where 𝝌𝑛
𝑡+1 =  (𝑞𝑛

𝑡 + 𝐴𝑛
𝑡 , 𝑠𝑛

𝑡+1,  𝒄𝑛
𝑡+1) 

6. The new transition 𝓣𝒕(𝝌𝒕,  𝚽𝒕, Ut)  is added to the 

transition storage ℧. 

7. Once the transition storage collects 𝒯 transitions, 

the Q-network parameter 𝜃𝑡  is updated with a batch 

of transitions to minimize the loss function (13) 

8. The scheduling slot index is updated by 𝑡 ← 𝑡 + 1. 

9. Repeat from step 2 to 8. 

 

4.3 Hybrid  DRL Task Assignment Algorithm 

The two proposed algorithms, valued-based and policy-
based DRL algorithms, have their own benefits, but also incur 
some shortcomings under different scenarios. The value-
based DRL method can address the state space explosion 
problem, but it may overestimate the action as the state space 
is huge. The policy-based DRL method performs efficiently 
in continuous or large action space but may suffer from a large 
variance in action and stagnate prematurely at local optima 
[35]. Actor-critic (AC) DRL methods [37] recently attracted 
research interests in the machine learning community, which 
adopt a hybrid value and policy learning approach. They 
typically consist of two DNNs, an actor network to select 
actions and a critic network to estimate the state value function 
and criticize the actions made by the actor. The critic learns 
about and critiques whatever policy is currently being 
followed by the actor with a temporal difference (TD) error to 
drive the learning in both actor and critic for achieving the 
optimal policy.   

Fig. 5 illustrates the AC-based task assignment algorithm. 
The MEC controller observes the network states 𝝌𝒕and runs 
the actor to select the task assignment probability matrix 

𝚽𝒕(𝝌𝒕; 𝜃𝐴), and the edge servers then offload and process the 
tasks according to the task assignment probability. The new 
task arrivals 𝑨𝑡 will be counted at the end of the time slot, and 
the network states transits from 𝝌𝑡 to 𝝌𝑡+1. On the other hand, 
the task assignment decision is evaluated by the critic. To 
approximate the state value and perform temporal difference 
error learning to update the parameters 𝜃𝐶 of the critic, the 
critic will first take the network state 𝝌𝑡 as the input to 
approximate the state value 𝑄(𝝌𝑡)  of time slot t. Once it 

receives the utility Ut and the network state 𝝌𝑡+1 at time slot 
t+1, TD learning is performed according to the loss function 
as defined in (14) at the bottom of this page. Finally, the actor 
updates its parameters θ𝑎  in the same way as the policy 
gradient algorithm except that the utility is replaced with TD 
error we calculated in the critic, by (15). The algorithm is 
summarized in Algorithm 3.  

 

Algorithm 3.  Online Actor-Critic-based DRL 

Cooperative MEC Task Assignment 

1. Initialize the Actor and the Critic networks with two 

sets of 𝜃𝐴
𝑡  and 𝜃𝐶

𝑡  random parameters for t = 1. 

2. At the beginning of scheduling slot t, the MEC 

controller observes the network state, 𝝌𝑡 = {𝝌𝑛
𝑡 : 𝑛 ∈

𝒩}  where 𝝌𝑛
𝑡 =  (𝑞𝑛

𝑡 , 𝑠𝑛
𝑡 , 𝒄𝑛

𝑡 ) , and the Actor with 

parameters 𝜃𝐴
𝑡  determines the task assignment 

probability matrix, 𝚽𝑡 =  [𝝓𝑛
𝑡 : 𝑛 ∈ 𝒩]. 

3. After offloading and processing the tasks according 

to the above task assignment decision, the new tasks 

𝑨𝑡 =  {𝐴𝑛
𝑡 ∶ 𝑛 ∈ 𝒩} are counted at the end of slot t.  

4. The MEC network utility U𝑡  is calculated. The 

network state transits to 𝝌𝑡+1 = {𝝌𝑛
𝑡+1: 𝑛 ∈ 𝒩} 

where 𝝌𝑛
𝑡+1 =  (𝑞𝑛

𝑡 + 𝐴𝑛
𝑡 , 𝑠𝑛

𝑡+1,  𝒄𝑛
𝑡+1). 

5. The Critic calculates TD error with 𝑄(𝝌) and 𝑄(𝝌′) 

6. The Critic network updates the parameters 𝜃𝐶
𝑡  to 

minimize the loss function (14). 

7. The Actor network updates the parameters 𝜃𝐴
𝑡  to 

minimize the loss function (15) 

8. The scheduling slot index is updated by 𝑡 ← 𝑡 + 1. 

9. Repeat from step 2 to 9. 

 

5 EVALUATION 

In this section, we evaluate the stochastic task assignment 

performance achieved by our three derived deep 

reinforcement learning schemes and compare them with each 

other and with several other baseline algorithms to gain 

insights.  

5.1 General Setup 

We compare the performance of the proposed DRL-based 

schemes with the following baselines: 

1) Edge Server Self-Processing: An edge server processes 

all the tasks it receives from the associated users by itself. 

There is no task offloading. 

2) Cloud Execution: An edge server offloads all its received 

tasks to the cloud data center for processing. 

3) Subgradient with Dual Decomposition: task assignment 

optimization based on subgradient with dual 

decomposition as proposed in [41]. 

4) Q-learning: task assignment optimization based on 

conventional Q-learning. 

𝕃𝐴(θ𝐴) =  𝐸 [((1 − γ)𝑄(𝝌, 𝚽(𝝌; θ𝐴)) + γ[𝑄(𝝌′, 𝚽(𝝌′; θ𝐴))] − 𝑄(𝝌, 𝚽(𝝌; θ𝐴)))
2

] (14) 

𝕃𝐶(θ𝐶) =  𝐸 [(((1 − γ)𝑄(𝝌, 𝚽(𝝌; θ𝐴)) + γ[𝑄(𝝌′, 𝚽(𝝌′; θ𝐴))] − 𝑄(𝝌, 𝚽(𝝌; θ𝐴))) ∗  (log 𝓟(𝝌; θ𝐴)))
2

] (15) 

Fig. 5. Actor-Critic-based cooperative MEC task assignment. 
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We simulated multiple MEC network scenarios with 
different numbers of edge servers, various task arrival rates, 
node processing, network delay, and other system parameters. 
Due to the page limit, we present the results for several typical 
settings. In the simulations, we assume the slot duration is 20 
ms for the following considerations. First, we consider real-
time edge computing applications, such as 3D scene 
reconstruction, AR/VR and others, with an end-to-end service 
delay at an order of 10s-100s ms [49]. A scheduling slot 
duration of 20 ms will be reasonable to capture the bursty 
traffic demands and queue delay states. Another motivation to 
choose 20 ms slot duration is the underlying networks. 5G new 
radio defines a frame to be 10 ms in duration and the minimal 
round-trip time at the application layer can be around 20 ms. 
Further, the slot is used as the time unit in our evaluation, and 
the delay is measured by the number of time slots and the 
actual value of the time slot duration can be changed. The 
processing capabilities of edge servers are modeled with two 
states characterizing the high and low with {4, 1} tasks per 
slot to reflect the edge servers with different available 
resources and heterogeneous, fluctuating capabilities. The 
processing states 𝑠𝑛

𝑡 , ∀𝑛 ∈ 𝒩  of different edge servers are 
independent of each other and evolve according to a Markov 
chain. Similarly, the network delay between two edge servers, 

𝑐𝑛𝑗
𝑡 , ∀𝑛, 𝑗 ∈ 𝒩 , is modeled as a Markov chain with three 

states, {1, 0.5, 0.2} time slots. The network delay between the 
edge server and the cloud 𝑐𝑛𝑛𝑐

𝑡 , ∀𝑛 ∈ 𝒩 is assumed to be a 

large value, 15 slots due to the transmission over the Internet. 
In addition, we assume the maximal size of the queue buffer 
at an edge server is 30 tasks. We consider that task queue 
overflow impacts QoS more significantly than that of service 
delay, thus, the weight factors in the utility function, 𝑤𝑑 and 
𝑤𝑜 are set to be 1 and 10, respectively.  

The parameters of the proposed DRL schemes are set 
according to the needs and through our simulation 
experiments to achieve good learning accuracy and reasonable  
convergency time. For the DDQN-based task assignment 
scheme (Algorthim 1), the neural networks of Q-tar and Q-
eval in each subagent have a single hidden layer with 10 
neurons each. We employ the ReLU (Rectified Linear Unit) 
function as the activation function of the hidden layer because 
ReLU reduces the vanishing gradient problem [32] and is 
simple to implement. The softmax function is used as the 
activation function of the output layer to output the possibility 
matrix for action selection because it can calculate a vector of 
real numbers into a vector of probability values that ranges 
between 0 and 1 with the sum of the probabilities being equal 
to 1 [32, 37]. The number of iterations for updating parameters 
of Q-tar is set to be 20, and the memory replay size and the 
batch size are set to be 40 because they yield a good balance 
between the convergence time and learning accuracy through 
our simulation experiments. The training and learning process 
is triggered when the system collects enough samples and it 
will pull out all the samples to train. 

For the proposed PG-based scheme (Algorthim 2), the Q-
network has a single hidden layer with 35 neurons. A larger 
number of neurons are used in the hidden layer for the PG-
based scheme because the action policy is directly determined 
without decomposition and more neurons are needed to handle 
the large network states. Similar to the DDQN-based scheme, 
we employ ReLU as the activation function of the hidden layer 
and Softmax for the output layer to output the possibility 
matrices for the action selection. The number of iterations for 
updating parameters of Q-network is set to be 20, and the 
memory replay size and the batch size are set to be 40 because 

they yield good convergence time and learning accuracy in our 
simulation experiments. 

  For the proposed hyrbid AC-based scheme (Algorithm 3), 
the actor is built with a neural network that includes one 
hidden layer with 35 neurons. The tanh function is employed 
as the activation function of the hidden layer because it 
produces a zero-centered output, thereby easily supporting the 
TD-based learning process [35, 36]. The softmax is used as 
the activation function for the output layer. The critic is 
constructed by a 50-neuron network with a hidden layer using 
tanh as the activation function but no activation function for 
the output layer.    

5.2 Convergence Performacne  

 We first investigate the convergence property of the 
proposed DRL-based algorithms under dynamic stochastic 
MEC network environments. Figs. 6(a), 6(b) and 6(c) 
illustrate the convergence of the state value function for 
DDQN, PG, and AC-based task assignment algorithms, 
respectively. Three edge servers and one cloud data center are 
used in the simulations and the number of tasks arriving at 
each of the edge servers follows an independent Poisson 
arrival process with an average arrival rate of 4 tasks per slot. 
We can observe that each of the three algorithms spends a 
short time-period to learn and then converges to a stable state 
in a reasonable time, specifically few hundreds of decision 
slots.  

Fig. 7 illustrates the convergence of the proposed three 
DRL-based task assignment algorithms versus the network 
size. DRL learns the parameterized value function or policy 
with DNNs [32, 35, 36], instead of all action values in all 
states separately as in traditional Q learning. When the 
network size increases, the value function or policy will be 
more complex, it takes more time to capture the function 
parameters. The algorithms thus take more time to converge 
with the increased network size.  

 

Fig. 6. Convergence of the proposed DRL-based task assignment schemes in 
the learning process; (a) DDQN-based scheme; (b) PG-based scheme; (c) 
AC-based scheme.  

(a) (b) (c) 

Fig. 7. Convergence of the proposed DRL-based task assignment 
schemes versus the network size. 
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5.3 Performance Comparision of Different Algorithms 

In this section, we compare the performance of the 

proposed DRL-based task assignment algorithms with 

baselines. We first investigate the effect of edge servers’ task 

arrival rates on the performance. Figs 8 and 9 show the 

average task service delay and the average task queue 

overflow rate (the average number of overflowed tasks per 

slot), respectively, for different algorithms. The edge servers 

and the cloud data center cooperate to jointly process the 

tasks. The task arrivals at the edge servers follow independent 

Poisson arrival process. One edge server, node 1, changes its 

average task arrival rate (the average number of task arrivals 

per slot) in the experiment while the average task arrival rates 

of the other nodes are fixed. The service delay includes the 

network delay and queuing delay, and the queueing delay is 

the time a task waits in the buffer for being processed and the 

time it is processed, i.e., the sojourn time of a task in the 

system, as described in Section 3.  The unit for the delay is 

time slot duration.  

The proposed learning-based schemes outperform the 

subgradient-based algorithm and other baselines in terms of 

service delay, especially when the workload is high. This is 

because the learning-based schemes can capture the dynamic 

MEC network state transitions and determine the optimal task 

assignment matrix by taking into consideration the effects of 

time-varying stochastic task arrivals and network conditions 

on the expected long-term performance. On the other hand, 

the subgradient optimization algorithm makes task 

assignment decisions based on the current average task 

arrivals and network conditions without considering the 

underlying dynamics and randomness as well as their impacts 

to the long-term QoS. This thus may cause a lot of tasks to be 

shipped to the cloud data center for processing so that it leads 

to a large network delay and a large task service delay.  

 The traditional Q-learning algorithm can achieve the 

same or slightly better task service delay performance when 

the task arrival rate is low. The reason is that the queue state 

space is relatively small under the low workload and the 

optimal solution can be achieved by the traditional value-

based tabular Q-learning method. However, the average task 

service delay of the traditional Q-learning scheme quickly 

increases as the task arrival rate become high. This is because 

the traditional Q-learning may overestimate the control 

policy in the large state and action space [32] and makes 

inaccurate task assignment decisions so that a node may 

choose to process the tasks locally even it does not have 

sufficient resources or may cause shipping the tasks to the 

cloud for processing when it is capable to handle them. The 

proposed DDQN-based algorithm addresses the large state 

space problem of the traditional Q-learning scheme by using 

two value-based Q-learning neural networks and it performs 

relatively well when the workload is high. However, it may 

still cause overestimation of the control policy when the task 

arrival rate is high and the state-action space is huge.  

The massive state-action space problem is handled much 

better in the policy-based and hybrid actor-critic approaches.   

The PG-based algorithm can prevent the overestimation by 

periodically amending the task assignment action probability 

matrix that outputs the optimal decision and improves the 

system performance. However, with the PG-based algorithm, 

the perdition process of the action probability may result in 

premature stagnation at local optima [35], which degrades the 

performance. The proposed AC-based task assignment 

scheme offers the best performance in terms of the task 

service delay and queue overflow as it combines the policy-

based approach in the decision-making to avoid the 

overestimation and the value-based approach to determine 

the optimal task assignment matrix with the precise utility 

related to the performance at each time slot.  

For the cloud execution scheme, a large value of network 

delay is always incurred to ship the tasks to the cloud data 

center over the Internet. The edge server self-processing 

scheme performs well when the workload is very low because 

an edge server can process the tasks by itself. However, as the 

task arrival rate becomes high, the edge server does not have 

enough resources to process all the tasks so that the service 

delay rapidly increases, and more tasks are overflowed from 

the queue. In Fig. 9, we present the task queue overflow rates 

for different algorithms. The overflow rates for the learning-

based and subgradient-based task assignment algorithms are 

close to zero because the algorithms give the task queue 

overflow minimization a high weight and the edge servers 

will forward the tasks to the cloud data center when their 

buffers become full. We will thus focus on the task service 

Fig. 10. Memory usage versus the average task arrivals per slot for 

different learning algorithms. 

Fig. 8. The average task service delay versus the average task arrivals 

per slot for different algorithms. 

Fig. 9. The average queue overflow rate versus the average task arrivals 

per slot for different algorithms.  
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delay performance of the DRL-based schemes under different 

scenarios in the following sections as their task queue 

overflow is always close to zero.    

5.4 Memory Usage of Differenent Algorithms 

Next, we evaluate the memory usage of the proposed 

DRL-based algorithms and traditional Q-learning algorithm 

during the learning process. As illustrated in Fig. 10, the 

traditional tabular Q-learning consumes much higher 

memory resources than the DRL-based schemes and cannot 

scale well due to the explosion in state and action spaces, 

making it unviable for the scenarios such as very high task 

arrival rates or very large networks. On the other hand, the 

memory usage by the DRL-based task assignment schemes 

scale well as the task arrival rate and the state/action space 

increases.    

5.5 Performance of Horizontal Cooperation  

In this subsection, we evaluate the impact of the 

horizontal cooperation of the edge servers to the system 

performance. Fig. 11 shows the average task service delay of 

the proposed AC-based scheme with and without the edge 

server cooperation for task processing. We change the task 

arrival rate of one edge server, node 1, and fix the task arrival 

rate of the other edge servers. It can be observed that with the 

cooperation of the edge servers, the growing speed of the task 

service delay is decreased as the task arrival rate of edge 

server 1 increases, compared to the case without edge server 

cooperation. This is because edge server 1 can offload its 

tasks to other edge servers with the horizontal cooperation to 

jointly process the tasks when its workload is high. Without 

the horizontal cooperation, the edge server can only offload 

its tasks to the cloud so that it incurs a large network delay. 

In addition, with more edge servers, the MEC computation 

capability increases so that the average task service delay 

reduces. We only show the results of the AC-based scheme 

here due to the page limit, and the same conclusions can be 

obtained for the DDQN and PG-based schemes.    

In Fig. 12, we investigate the average utilization rate of 

the edge servers. The utilization rate of an edge server is 

defined as the ratio of the actual task process rate to the task 

process capability of the edge server. We again fix the task 

arrival rate of all the edge servers except edge server 1. 

Compared to the case without the edge-to-edge cooperation, 

the cooperation of edge servers can increase the average 

utilization rate. This is because that the workload of different 

edge servers can be balanced through cooperation, more 

specifically, an edge server may process the tasks for others 

when its own workload is low and will forward part of its 

tasks to others when its own workload is high. In addition, we 

can observe that the utilization rate initially increases and 

then approaches to a fixed value as the task arrival rate grows 

to the total task processing capacity of the edge servers.  

5.6 Different Sizes of MEC Networks  

Fig. 13 illustrates the average task service delay of the 

proposed DRL-based schemes under different numbers of 

edge servers in the MEC network. In the experiment, the task 

arrivals at each of the edge servers are random with a total 

average arrival rate of 20. We can observe again that the 

proposed AC-based algorithm performs the best, especially 

with edge server cooperation. Although the PG-based 

algorithms can perform efficiently in continuous or large 

action space, they may suffer from a large variance in action 

and stagnate prematurely at local optima [35]. For the 

scenarios without cooperation, i.e., the edge servers do not 

cooperate to process the tasks, the PG algorithm may stagnate 

prematurely around 20 and 25 servers so that it makes a 

premature task assignment decision that the edge server will 

not be able to process certain tasks in time as the resources 

are limited. The edge server will offload these tasks to the 

remote cloud data center for task processing, which incurs a 

large network delay, given no cooperation with other edge 

servers. Further, the results demonstrate that the cooperation 

of edge servers can greatly enhance the overall system 

processing capabilities and reduce the average task service 

delay, compared to no edge server cooperation, which is 

consistent with Fig. 11. The system performance can be 

improved as the number of edge servers increases. This is 

because the total MEC computation capability increases with 

Fig. 11. The average task service delay versus the average task arrivals 
per slot with and without edge server cooperation. 

Fig. 12. The average server utilization rate versus the average task arrivals 
per slot with and without edge server cooperation. 

Fig. 13. The average task service delay versus the number of edge 

servers in the MEC network for the proposed DRL-based schemes.  
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more densely deployed edge servers and the proposed 

schemes can learn the optimal control policy and assign the 

tasks to the edge servers with sufficient resources for 

processing.  

Figs. 14 and 15 show the CPU and memory usages of the 

proposed DRL-based task assignment algorithms under 

different MEC network sizes. We observe that the memory 

and CPU usages slightly increase as the network size 

increases. This is because the memory and CPU usages of the 

DRL-based algorithms mainly depend on the size, structure, 

and parameter updates of deep neural networks used by the 

algorithms. The DNN update process in the decision 

inference of the DRL algorithms is not significantly affected 

by the MEC network size or the state space [31, 35]. The 

memory and CPU usages of the DRL-based algorithms are 

also not significantly affected by the MEC network size. The 

proposed algorithms can scale well in a relatively large 

network. 

6 RELATED WORK 

6.1 Task Offloading 

Significant research work has investigated computational 
task offloading from mobile devices to MEC edge servers. In 
[9], the authors formulated task offloading as a QoS 
optimization problem by assuming the network environments 
were deterministic, and they transformed the original problem 
into a convex problem of latency minimization to decompose 
and solve it. Similarly, the authors in [10] formulated the 
offloading as a convex optimization problem for minimizing 
the weighted sum of mobile energy consumption under the 
constraint of computation latency with infinite or finite edge 
computation capacity and proposed an optimal offloading 
policy according to users’ wireless channel gains and local 
computing energy consumption. In [11], a resource demand 
estimation and provisioning scheme is presented for an edge 

micro data center to support the requested services and 
maximize resource utilization. In [12], the problem of delay 
optimal task offloading was considered as a Markov decision 
process and a search algorithm was developed to find the 
optimal solution. In [13], the computation offloading policy 
for a MEC system with wireless energy harvesting-enabled 
mobile devices were investigated using a Lyapunov 
optimization technique and an approximate optimization 
solution was obtained. In [14], the authors formulated the task 
offloading problem as a one-to-many matching game to 
determine the best edge server to offload the tasks to while 
minimizing overall energy consumption. In [15], the 
advantages of offloading the tasks to distributed MEC edge 
servers have been demonstrated in terms of service delay and 
power efficiency, compared to traditional offloading to 
centralized cloud data centers.  

More recently, the authors in [42] proposed a Bayesian 
online learning algorithm for joint optimization of the service 
and wireless network parameters to process data streams 
offloaded from mobile devices in video analytics applications, 
which maximized the analytics accuracy in a cross-layer way. 
In [43], a reinforcement learning scheme was developed to 
learn varying demands and then reserve edge servers to 
support the computation tasks from connected vehicles. The 
authors in [44] jointly optimized task offloading and caching 
to minimize a composite metric of mobile device energy 
saving and task response latency by using an alternating 
minimization algorithm. In [45], a resource allocation and task 
scheduling optimization scheme based on service priority was 
proposed to minimize the total delay of the system and ensure 
the delay requirement of high priority services. The authors in 
[46] proposed a task offloading scheme for an air-ground 
integrated edge computing system according to information 
freshness, and the optimal offloading policy was obtained 
based on DRL without presuming the dynamic network states 
to be known. 

6.2 Edge Server Cooperation 

Vertical cooperation between the MEC edge layer and the 
remote cloud layer has been studied. In [16], an approximate 
algorithm for joint resource allocation of a MEC server and a 
cloud data center is designed to minimize carbon footprint for 
video streaming service. In [17], a resource provisioning 
scheme for an edge micro datacenter is presented, which 
conducts resource estimation and management while deciding 
what type of data is to be uploaded to the cloud based on 
fluctuating relinquish probability of a user, service type, and 
service price. In [18], the authors proposed a hierarchical 
game framework to model the interactions where the edge 
servers help the cloud data center operators process delay-
sensitive tasks from mobile users that originally target at the 
cloud data centers and to determine the edge server resource 
allocation, service price, and pairing of edge servers and data 
center operators with Stackelberg game and matching theory. 
In [19], a reinforcement learning-based resource management 
algorithm is developed, which obtains the optimal policy for 
dynamically offloading the tasks from energy-harvesting 
MEC edge servers to a centralized cloud data center and 
provisioning the edge servers to minimize the long-term 
system cost. The authors in [47] analyzed the delay in a cloud-
fog-edge computing system and proposed a computational 
resource allocation method to maximize a social welfare 
metric, constrained to specific QoS requirements. In [48], a 
task offloading scheme in integrated edge-fog-cloud 

Fig. 14. CPU usage versus the number of edge servers in the MEC 

network for the proposed DRL-based schemes. 

Fig. 15. Memory usage versus the number of edge servers in the MEC 

network for the proposed DRL-based schemes. 

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3270242

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on August 25,2023 at 18:48:25 UTC from IEEE Xplore.  Restrictions apply. 



computing environments was proposed and the performance 
was analyzed, where a device offloaded its generated tasks to 
a layer for computation, a task was only accepted if the queue 
size was below the pre-defined threshold, otherwise, it would 
be offloaded to the next layer. These previous works mainly 
consider a hierarchical network architecture and focus on the 
vertical interaction among users, MEC edge servers and cloud 
data centers, but they either abstract the MEC layer as a single 
edge server or assume that the edge servers are independent of 
each other and there is no cooperation among them. 

Recently, exploring the cooperation of geographically 
distributed edge servers for jointly processing the tasks has 
received some research attention. In [39], the benefits of edge 
server cooperation were demonstrated through several 
application scenarios, however the algorithms for such 
cooperation were not presented. The authors in [20, 41] 
addressed the task assignment problem when an edge server 
can forward its tasks to the neighboring edge servers for 
processing. However, they formulated the task assignment as 
a classic convex optimization problem based on a much-
simplified network model where the task arrival rate, the 
queueing delay, and the network delay are all deterministic 
and known beforehand. Such a deterministic model not only 
contrasts many practical MEC scenarios (where networks are 
dynamic and stochastic, and the network state and task arrival 
statistics are unknown in advance) but also fails to capture the 
broad range of network parameters and ignores the effects of 
various dynamics so that the task assignment depends only on 
one-shot optimization given a static MEC network state, 
irrespective of the underlying non-stationary process. 

In our previous work [30], we proposed a machine 
learning based stochastic optimization approach for task 
assignment, which can achieve optimal performance with no 
assumptions on knowing the dynamic network state and task 
arrival statistics. We also showed that the machine learning-
based task assignment approach outperforms the model-based 
deterministic task assignment optimization. However, the 
algorithm used in [30] is based on conventional tubular Q-
learning, which is subject to scalability limitation due to the 
state space explosion and high memory consumption. In [33], 
we proposed a double deep Q network-based learning 
algorithm for task assignment in dynamic MEC networks, 
which addressed the state space explosion problem. This 
paper significantly extends our previous work with new DRL-
based schemes and performance comparison of value-based, 
policy-based, and hybrid DRL algorithms. 

7 CONCLUSIONS AND FUTURE WORK 

In many MEC scenarios, the user task arrival statistics, 
task processing rates at edge servers, and network delay 
between edge servers are time-varying and unknown 
beforehand. Therefore, it is more reasonable and compelling 
to cast task assignment as a stochastic and dynamic 
optimization problem, instead of model-based deterministic 
optimization.  In this paper, we proposed and investigated a 
stochastic cooperative framework, which enables cooperation 
among the various entities of a MEC system, including the 
horizontal cooperation among geographically distributed 
MEC edge servers and the vertical cooperation between edge 
servers and cloud data centers, to jointly process user tasks to 
balance the varying workload on heterogeneous edge servers 
and improve the QoS in dynamic MEC networks. The task 
assignment optimization problem is formulated as a Markov 
decision process by taking into consideration the interaction 

of the involved entities. Particularly, we proposed three online 
deep reinforcement learning algorithms, value-based,  policy-
based, and a hybrid approach, which all perform sequential 
task assignment decisions in a series of time slots for the edge 
servers to help each other process tasks according to an 
assignment matrix that optimizes a long-term expected QoS-
aware utility function in terms of task service delay and queue 
overflow. A function decomposition technique was 
introduced to simplify the problem in the learning process. 
The proposed online DRL-based algorithms can learn the 
optimal task assignment matrix with no assumption on prior 
knowledge of task arrival statistics and network state 
transitions. Their convergence was validated. We compared 
the performance of the proposed DRL-based task assignment 
schemes with each other and with several existing baseline 
algorithms. The evaluation results show the proposed DRL-
based schemes significantly reduce the task service delay and 
task queue overflow rate, especially in high workload, 
compared to the baselines. The AC-based hybrid scheme 
performs the best. In addition, the DRL-based schemes require 
much less memory than the conventional Q-learning based 
algorithm. They can scale well in the dense deployment and 
handle a relatively large MEC network with 40 edge servers. 
We also demonstrated that the service delay of user tasks can 
be significantly reduced by allowing edge servers to cooperate 
and offload the tasks to each other. 

Reinforcement learning models take time to converge and 
the time cost of retraining a reinforcement learning model to 
adapt to the changing system states and new configurations is 
high if the real-world system is highly dynamic. There is 
recent advancement in machine learning techniques that trains 
an ensemble of DRL models, each for a different system 
environment, and employs a high-level meta policy to choose 
or combine the results of ensemble members based on the 
system environment states [50, 51] so that the algorithm can 
adapt to the changing system environments with few-shot 
retraining. As part of our future work, we will exploit 
ensemble or meta reinforcement learning to design fast 
adaptive task scheduling algorithms for cooperative MEC in 
highly dynamic system environments.  
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