

Deep Reinforcement Learning-based Task

Assignment for Cooperative Mobile Edge

Computing

Li-Tse Hsieh, Hang Liu, Senior Member, IEEE, Yang Guo, Robert Gazda, Member, IEEE

Abstract—Mobile edge computing (MEC) integrates computing resources in wireless access networks to process computational

tasks in close proximity to mobile users with low latency. This paper investigates the task assignment problem for cooperative

MEC networks in which a set of geographically distributed heterogeneous edge servers not only cooperate with remote cloud

data centers but also help each other to jointly process user tasks. We introduce a novel stochastic MEC cooperation framework

to model the edge-to-edge horizontal cooperation and the edge-to-cloud vertical cooperation. The task assignment optimization

problem is formulated by taking into consideration dynamic network states, uncertain node computing capabilities and task

arrivals, as well as the heterogeneity of the involved entities. We then develop and compare three task assignment algorithms,

based on different deep reinforcement learning (DRL) approaches, value-based, policy-based, and hybrid approaches. In addition,

to reduce the search space and computation complexity of the algorithms, we propose decomposition and function approximation

techniques by leveraging the structure of the underlying problem. The evaluation results show that the proposed DRL-based task

assignment schemes outperform the existing algorithms, and the hybrid actor-critic scheme performs the best under dynamic

MEC network environments.

Index Tems—Mobile edge computing (MEC), edge server cooperation, task assignment, stochastic optimization, deep

reinforcement learning

1 INTRODUCTION

Cloud computing has been widely adopted as a cost-
effective platform to provide powerful computing
capabilities and storage resources for computation-intensive
applications. However, many emerging mobile applications
such as intelligent transportation, smart cities, industrial
robotics, and augmented/virtual reality (AR/VR) require not
only intensive data processing and high network bandwidth
but also very low latency. Cloud data centers are centralized
and often located far away from the mobile users over the
Internet. Thus, they are difficult to satisfy the low-latency
requirements of these interactive applications and/or to adapt
data processing to the local wireless network context. In
addition, the proliferation of Internet of Things (IoT) devices
generates a large amount of data at the network edge that
needs to be efficiently handled and processed. It is highly
inefficient to move large volumes of data collected from many
edge sources, e.g. video sensors, to a centralized data center
and perform remote computations. Mobile edge computing
(MEC) is an emerging paradigm that provides computing
services at the edge of the mobile radio access network (RAN),
addressing the shortcomings of cloud data centers [1–6]. MEC

edge servers, also called edge nodes, with computing, storage,
and communication capabilities are co-located or integrated
with base stations (BSs), routers, and gateways in a wireless
access network, allowing the execution of applications in
close proximity to mobile users. Mobile devices with
excessive computing resources can also join the MEC network
and offer services to other devices and applications. MEC can
reduce transmission latency, alleviate network congestion,
and provide real-time local context-aware services required by
emerging mobile applications. It also allows network
operators to provide additional value-added services and bring
a better quality of experience to mobile users. MEC
technology has attracted a lot of attentions in academia and
industry, and it is considered as an important component of
next-generation (5G and beyond) mobile networks. The
standardization effort on the MEC technology is ongoing in
the European Telecommunications Standards Institute (ETSI)
[7] and 3GPP [8]. An industry consortium has also been
created to promote open edge computing technology [40].

In spite of the fact that MEC can address the drawbacks of
cloud computing, it is challenging to manage edge servers due
to geographically distributed deployment of these edge
servers and their heterogeneous computing resources [9, 10].
Unlike cloud computing, user requests for MEC
computational tasks may arrive at any edge server, instead of
a gateway or a master node. The computational tasks may be
queued with a long delay because of insufficient processing
resources at the edge server, and bounded buffer sizes may
cause task queue overflows. Furthermore, the workload
received by edge servers exhibits temporal and spatial
fluctuations due to user mobility, the bursty nature of mobile
applications, and unexpected events, e.g., a traffic accident.
The limited resources of individual edge servers can be over

L. Hsieh and H. Liu are with the Department of Electrical Engineering and

Computer Science, the Catholic University of America, Washington, DC
20064, USA.

Y. Guo is with the National Institute of Standards and Technology,

Gaithersburg, MD 20878, USA.
R. Gazda is with InterDigital Communications, Inc., Conshohocken, PA

19428, USA.

This work is partially supported by the National Science Foundation under
Grants CNS-1910348 and CNS-1822087, and InterDigital

Communications, Inc.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3270242

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on August 25,2023 at 18:48:25 UTC from IEEE Xplore. Restrictions apply.

or under-utilized over time. Based on these observations, a
cooperative MEC network can be considered to tackle the
problems, where edge servers without enough resources can
forward their partial tasks to other nearby edge servers and/or
remote cloud data centers for execution. By exploiting the
horizontal cooperation among geographically distributed
heterogeneous edge servers as well as the vertical cooperation
between edge servers and cloud data centers to jointly process
computational tasks, MEC system performance can be
significantly improved. However, there are non-trivial
challenges to assign the tasks to be executed at different edge
servers and the cloud for a cooperative MEC network to
achieve optimal performance: a) the edge-to-edge horizontal
cooperation and the edge-to-cloud vertical cooperation should
be considered. A framework is needed to model the complex
interactions and heterogeneity of the involved entities as well
as the shipping cost of the tasks from multiple edge servers to
multiple edge servers or the cloud. b) The fluctuation in
computing demands as well as the computation resource
availability at different edge servers and network
communication delay between the servers should be taken into
consideration. c) The user task arrivals, available computing
resources, and network conditions are non-stationary and
unknown beforehand in many MEC scenarios. Thus, a
stochastic framework, instead of a deterministic one, is
necessary in order to fully capture the underlying dynamics
and explore the synergy among the MEC entities for the
optimal performance of joint task processing.

Although considerable work has been done to design MEC
systems and algorithms, most research efforts have focused on
the problem of offloading tasks from mobile devices to edge
servers [11-15] or the vertical cooperation where MEC edge
servers help cloud data centers process delay-sensitive user
tasks for improved quality of service (QoS) [16-19]. Less
research attention has been given to investigate the horizontal
cooperation among MEC edge servers for joint task
processing. The authors in [41] proposed a scheme that allows
an edge server to forward its tasks to other edge servers to
balance the workload. However, they made many assumptions
in assigning the tasks to the edge servers, such as a fixed task
arrival rate at each edge server as well as a pre-known task
processing time of each edge server and pre-known
transmission delay between the edge servers. Their task
assignment algorithm utilizes the classical convex
optimization method based on these assumptions under a
static MEC environment. Such existing schemes are too
idealized for real deployment scenarios and fail to characterize
system dynamics and impacts of the performance.

In this paper, we investigate the task assignment and
scheduling for cooperative mobile edge computing networks
under varying task arrival statistics, node computing
capabilities, and network states. We cast the task assignment
as a dynamic and stochastic optimization problem and develop
new deep reinforcement learning (DRL)-based algorithms
which are able to dynamically assign the tasks requested
without presuming the state of the network and the ability of
the servers to be known. The assignment considers edge-to-
edge cooperation and edge-to-cloud cooperation, and takes the
heterogeneity of edge servers and the fluctuation of the
network into account. Our contributions include,
(1) A novel stochastic framework is proposed to model the

horizontal cooperation of edge servers as well as the
vertical cooperation between edge servers and cloud data
centers, in which the time-varying computation resources
and network communication delays are considered. The

stochastic task assignment problem is formulated as a
Markov decision process (MDP).

(2) We derive and compare three new task assignment
algorithms by seeking different deep reinforcement
learning (DRL) approaches (value-based, policy-based,
and hybrid), which can learn the optimal policy for the
task assignment matrix to the edge servers and cloud data
center without requirement for prior knowledge of task
arrival statistics, node computation capabilities, and
network dynamics.

(3) In order to deal with the state/action explosion and to
improve the learning algorithm efficiency, we introduce
decomposition and function approximation techniques by
leveraging the structure of the underlying problem.

(4) Numerical results show that all three of our proposed
online DRL-based task assignment schemes improve the
MEC QoS performance, compared to the existing
representative algorithms, and the hybrid scheme
achieves the best performance under dynamic MEC
environments.

To the best knowledge of the authors, this is the first work
to solve the task assignment optimization problem with edge-
to-edge horizontal cooperation and edge-to-cloud vertical
cooperation under stochastic and dynamic MEC network
environments by employing a deep reinforcement learning
approach.

 The remainder of the paper is organized as follows:
Section 2 describes the system model. Section 3 formulates
the problem of stochastic task assignment optimization. In
Section 4, we simplify the problem and derive the deep
reinforcement learning-based algorithms in detail. Section 5
provides the numerical experimental results under various
settings. Section 6 reviews the related work. Finally, the
conclusions are given in Section 7.

2 SYSTEM MODEL

Fig. 1 illustrates the system model under consideration in
this paper. A MEC network consists of geographically
distributed edge servers (note that we use edge servers and
edge nodes interchangeably in the paper), deployed in a radio
access network (RAN) covering a certain area. The edge
servers are equipped with computing resources and are co-
located or integrated with base stations or Wi-Fi access points.
They receive the computing tasks from their associated mobile
users over the wireless network. These edge servers connect
to the cloud data centers through Internet. In this paper, we
model a data center as a special node with powerful resources
but far away from a RAN in terms of network transmission

Fig. 1. System model.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3270242

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on August 25,2023 at 18:48:25 UTC from IEEE Xplore. Restrictions apply.

distance and consider it as an extension of the MEC network.
We use the term “MEC system” or “MEC network” to refer to
the networked system that includes the MEC edge servers and
remote cloud data centers, unless otherwise stated. Note that
some user devices may, opportunistically, become MEC edge
servers and be part of a MEC system by contributing their
computing resources to help execute the tasks.

Mobile users/smart devices/sensors connect to nearby
MEC edge servers to submit their computational tasks to be
processed. A user task is a computational job request along
with associated data, for example, recognizing an image
captured by a mobile device or analyzing the data captured by
a sensor. The MEC nodes (edge servers and a cloud data
center) help each other to jointly process the computational
tasks. As an example, shown in Fig. 2, an edge server receives
the tasks from its associated devices, it may process them
locally, or forward part or all of its unprocessed tasks to other
edge servers and/or the cloud data center for processing to
optimize the QoS, which is based on the task assignment
decision. We consider a software-defined MEC network with
a centralized control plane and a distributed data plane [21,
22]. Software-defined networks (SDNs) have attracted a lot of
interest from network service providers because they can be
flexibly controlled and programmed. In an SDN-based MEC
network, a control plane connects the edge servers to a
software-defined programmable MEC controller that
coordinates the task assignment decisions by taking into
consideration the dynamic workload and network conditions.
The edge servers will forward, receive, and execute the tasks
on the data plane based on the task assignment decisions
received on the control plane from the controller. The MEC
controller resides in the RAN and could be one of the edge
servers with dedicated control plane connectivity, thus the
control latency is minimal.

It is assumed that the computational tasks from the
associated devices arrive at MEC edge servers randomly, and
the distribution is not known beforehand. The network delay
between two nodes is time-varying and unknown in advance
due to dynamic network conditions, traffic load, and many
other uncertain factors. In addition, the task processing
capability of a node is also time-varying because the CPU
cycles may be adjusted based on the environments such as
heat and power status, and the task complexity varies.

Consider a MEC network that consists of N edge servers
in the area of consideration, labeled as 𝒩 = {1, 2, …, N} and
a remote cloud data center modeled as a special node 𝑛𝑐 that
has very powerful capability to process the tasks but incurs a
high network delay. Note that this model can be easily
extended to multiple data centers. We assume that the system
operates over discrete scheduling slots of equal time duration,

and the task scheduling decision is performed every time slot.

The values of a task assignment matrix 𝚽𝑡 = [𝜙𝑛,𝑗
𝑡 : 𝑛, 𝑗 ∈

𝒩 ∪ 𝑛𝑐} should be determined at the beginning of each time

slot t, where 𝜙𝑛,𝑗
𝑡 specifies the number of tasks that edge

server n will send to edge server j or cloud data center 𝑛𝑐 for
processing in slot t, and 𝜙𝑛,𝑛

𝑡 is the number of tasks that edge

server n will buffer for processing by itself. 𝝓𝑛
𝑡 =

 [𝜙𝑛,𝑗
𝑡 , 𝜙𝑗,𝑛

𝑡 ∶ 𝑗 ∈ 𝒩 ∪ 𝑛𝑐} represents the task assignment

vector regarding edge server n. An edge server may either
have extra computing resources to help other nodes to process
the tasks or may need to forward its tasks to other nodes for
processing due to overload. We assume that the data center
𝑛𝑐 will process all the received tasks by itself, not forwarding

them to the edge servers, i.e., 𝜙𝑛𝑐,𝑗
𝑡 = 0, 𝑗 ∈ 𝒩. We also

assume that there is no dynamic joining or quitting of the edge
servers, whose impacts will be part of our future study. For
convenience, Table I summarizes the major notations used in
this paper.

TABLE I. LIST OF MAJOR NOTATIONS

Symbol Definition

𝒩 The set of edge servers

𝑛𝑐 Cloud data center

t Time slot

𝜙𝑛,𝑗
𝑡 # of tasks that node n will forward to node j in slot t

𝚽𝑡 Task assignment matrix, 𝚽𝑡 = [𝜙𝑛,𝑗
𝑡 : 𝑛, 𝑗 ∈ 𝒩 ∪

𝑛𝑐}

𝝓𝑛
𝑡 Task assignment vector for node n, 𝜙𝑛

𝑡 =
 [𝜙𝑛,𝑗

𝑡 , 𝜙𝑗,𝑛
𝑡 ∶ 𝑗 ∈ 𝒩 ∪ 𝑛𝑐}

𝓅𝑛,𝑗
𝑡 Probability that node n will forward its tasks to node

j in slot t

𝓟𝑡 Task assignment probability matrix, 𝓟𝑡 =
 [𝓅𝑛,𝑗

𝑡 : 𝑛, 𝑗 ∈ 𝒩 ∪ 𝑛𝑐}

𝓹𝑛
𝑡 Task assignment vector for node n, 𝓹𝑛

𝑡 =
 [𝓅𝑛,𝑗

𝑡 , 𝓅𝑗,𝑛
𝑡 ∶ 𝑗 ∈ 𝒩 ∪ 𝑛𝑐}

Α𝑛
𝑡 Task arrivals of node n in slot t

𝑨𝒕 Task arrival matrix, 𝑨𝒕= {𝐴𝑛
𝑡 ∶ 𝑛 ∈ 𝒩}

𝑞𝑛
𝑡 Queue size of node n at the beginning of slot t

𝒒𝒕 Queue state, 𝒒𝒕= {𝑞𝑛
𝑡 ∶ 𝑛 ∈ 𝒩 ∪ 𝑛𝑐},

𝑞𝑛
(𝑚𝑎𝑥)

 Maximum queue length of node n

𝑠𝑛
𝑡 Task processing capability of node n (max number

of tasks that node n can process) in slot t

𝑺𝒕 Task processing capability vector, 𝑺𝒕 = {𝑠𝑛
𝑡 ∶ 𝑛 ∈

𝒩 ∪ 𝑛𝑐}

𝑐𝑛,𝑗
𝑡 Network communication delay for shipping a task

from node n to node j.

𝒄𝑛
𝑡 Network communication delay vector for node n,

𝒄𝑛
𝑡 = (𝑐𝑛,𝑗

𝑡 , 𝑐𝑗,𝑛
𝑡 ∶ 𝑗 ∈ 𝒩 ∪ 𝑛𝑐)

𝑪𝒕 Network communication delay matrix, 𝑪𝒕 = {𝒄𝑛
𝑡 ∶

𝑛 ∈ 𝒩 ∪ 𝑛𝑐}

𝝌𝑛
𝑡 Local network state of node n, 𝝌𝑛

𝑡 = (𝑄𝑛
𝑡 , 𝑠𝑛,

𝑡 𝒄𝑛
𝑡) at

the beginning of time slot t

𝝌𝒕 Global MEC network state, 𝝌𝒕 = (𝝌𝑛
𝑡 : 𝑛 ∈ 𝒩 ∪

𝑛𝑐) = (𝑸𝒕, 𝑺𝒕, 𝑪𝒕)

𝑑𝑛 Service delay of node n, including network delay and

queuing delay

𝑑(max) Maximum tolerance threshold of the service delay

𝑜𝑛 Task queue overflow rate (number of tasks over the

maximum queue size during a time slot) for node n

𝑜(max) Maximum tolerance threshold of the task queue

overflow rate

Fig. 2. An example of task processing and edge server cooperation.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3270242

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on August 25,2023 at 18:48:25 UTC from IEEE Xplore. Restrictions apply.

Symbol Definition

𝑈𝑛
(𝑑)

(∙) Quality satisfaction related to service delay for node

n

𝑈𝑛
(𝑜)

(∙) Quality satisfaction related to task queue overflow

rate for node n

𝑈(∙) Utility function related to service delay and task

queue overflow rate.

𝑤𝑑 , 𝑤𝑜 Weight factors in the utility function related to

service delay and task queue overflow rate,

respectively

𝑉(𝝌, 𝚽) Expected discounted long-term utility (state value

function)

γ, 𝛼 Parameters in state value function, γ is a discount

factor, and 𝛼 = (1 − γ)

𝚽∗ Optimal task assignment policy

𝑉∗(𝝌) Optimal state value function

𝑄̃𝑛 , 𝑠̃𝑛 , 𝒄̃𝑛 Post-decision states of queue, task processing

capability, and network delay, respectively, for node

n

𝑸̃, 𝑺̃, 𝑪̃ Post-decision states of queue, task processing

capability, and network delay, respectively, for

MEC network

𝝌̃ Post-decision state of MEC network, 𝝌̃ = (𝑸̃, 𝑺̃, 𝑪̃)

𝑉̃∗(𝝌̃) Optimal post-decision state value function

𝜀𝑡 Learning rate

3 PROBLEM FORMULATION

 In this section, we first formulate the problem of stochastic
task assignment optimization and then discuss the approaches
to solve the optimization problem. Let Α𝑛

𝑡 be the number of
the new tasks randomly arrived at edge server n, 𝑛 ∈ 𝒩 from
its associated users in time slot t, and 𝑨𝒕= {𝐴𝑛

𝑡 ∶ 𝑛 ∈ 𝒩}. The
distribution of 𝛢𝑛

𝑡 is not known beforehand. 𝒬𝑛
𝑡 represents the

task queue length of node n at the beginning of time slot t. Let
𝑠𝑛

𝑡 be the task processing capability of node n in slot t, which
is defined as the number of tasks that node n can serve/process
in slot t. Different tasks may consume different amount of
resource such as CPU clock cycle. In other words, a node may
have different rates to process different types of tasks. A node
may receive different type of tasks. Thus, 𝑠𝑛

𝑡 varies in time
and is unknown in advance. We modeled 𝑠𝑛

𝑡 as a Markov
model with multiple states. Each state represents a type of
tasks. In this way, a node does not have to know what types
of tasks will arrive at it. It can learn its process capability for
the type of the tasks arrived based on the Markov model. The
queue evolution of node n can be written as 𝑞𝑛

𝑡+1 =

max {0, min[𝑞𝑛
𝑡 + Α𝑛

𝑡 + ∑ (𝜙𝑖,𝑛
𝑡 − 𝜙𝑛,𝑖

𝑡)𝑖∈ℯ𝑛
− 𝑠𝑛,

𝑡 𝑄𝑛
(𝑚𝑎𝑥)

]},

where ∑ 𝜙𝑛,𝑖
𝑡

𝑖∈ℯ𝑛
 with 𝑒𝑛 = {𝒩 ∪ 𝑛𝑐}\{𝑛} represents the

number of tasks that edge server n offloads to other edge
servers and the cloud, and ∑ 𝜙𝑖,𝑛

𝑡
𝑖∈ℯ𝑛

 is the number of tasks

that edge server n receives from other edge servers in slot t.

𝑄𝑛
(𝑚𝑎𝑥)

 is the maximum buffer size at node n.
The local state of a node is characterized by its task queue

size, its task processing capability, and its network delay to
other nodes. For a node n, 𝑛 ∈ 𝒩 ∪ 𝑛𝑐, at the beginning of
time slot t, we measure its local state as 𝝌𝑛

𝑡 =
(𝑄𝑛

𝑡 , 𝑠𝑛,
𝑡 𝒄𝑛

𝑡) where 𝒄𝑛
𝑡 = (𝑐𝑛,𝑗

𝑡 , 𝑐𝑗,𝑛
𝑡 ∶ 𝑗 ∈ 𝒩 ∪ 𝑛𝑐) with 𝑐𝑛,𝑗

𝑡

being the network delay for shipping a task from node n to

node j, 𝑐𝑗,𝑛
𝑡 being to the network delay for shipping a task from

node j to node n, and 𝑐𝑛,𝑛
𝑡 = 0. As the network delay between

two nodes is related to the network bandwidth, transmission

distance (the number of hops along the path between the two
nodes), traffic conditions in the network, and many other
unpredicted factors, it varies in time and its distribution is
unknown as well. Thus, at the beginning of each scheduling
time slot t, the global MEC network state is represented 𝝌𝒕=
(𝝌𝑛

𝑡 : 𝑛 ∈ 𝒩 ∪ 𝑛𝑐) = (𝑸𝒕, 𝑺𝒕, 𝑪𝒕) ∈ 𝑋, where 𝑸𝒕= {𝑄𝑛
𝑡 ∶ 𝑛 ∈

𝒩 ∪ 𝑛𝑐 }, 𝑺𝒕 = {𝑠𝑛
𝑡 ∶ 𝑛 ∈ 𝒩 ∪ 𝑛𝑐} , and 𝑪𝒕 = {𝒄𝑛

𝑡 ∶ 𝑛 ∈
𝒩 ∪ 𝑛𝑐}. 𝑋 represents the whole MEC system state space.
Note that we model the cloud data center 𝑛𝑐 as a special node
and its state can then be represented in the same way as an
edge server, except that its task processing capability 𝑠𝑛𝑐

𝑡 is

assumed to be large.
For a given MEC network state 𝝌𝒕 at the beginning of a

time slot t, a task assignment 𝚽𝑡 = 𝚽(𝝌𝒕) =
{𝜙𝑛,𝑗(𝝌𝒕): 𝑛, 𝑗 ∈ 𝒩 ∪ 𝑛𝑐} is made, and the MEC network

achieves an instantaneous utility that is related to the QoS. We
consider delay-sensitive applications, where the QoS is
measured by the task service delay and the task queue
overflow rate. The task service delay is defined as the period
from the time that a task arrives at an edge server to the time
that the task has been served in the unit of scheduling slot
duration. For an edge server n, 𝑛 ∈ 𝒩, the service delay dn
depends on the delay incurred by the queue Qn if the edge
server n processes the task locally or consists of the network

delay 𝑐𝑛,𝑗
𝑡 and the queueing delay due to the queue Qj at the

service provider j if a task is sent from node n to node j for

processing. The task queue overflow rate on is defined as the
number of tasks overflowed per time slot due to the limited
buffer size.

The instantaneous MEC network utility under the state 𝝌𝒕
and task assignment decision 𝚽(𝝌𝒕) at time slot t is defined
as,

𝑈(𝝌𝒕, 𝚽(𝝌𝒕)) = ∑ [𝑤𝑑𝑈𝑛
(𝑑)

(𝝌𝒕

𝑛∈𝒩
, 𝚽(𝝌𝒕))

+ 𝑤𝑜𝑈𝑛
(𝑜)

(𝝌𝒕, 𝚽(𝝌𝒕))],

(1)

where 𝑈𝑛
(𝑑)

(.) and 𝑈𝑛
(𝑜)

(.) measure the satisfactions of the
service delay and task queue overflow rate, respectively. 𝑤𝑑

and 𝑤𝑜 are the weight factors indicating the importance of
delay and task queue overflow in the utility function of the
MEC system, respectively. For an edge server, we consider

there is a maximal tolerance threshold, 𝑑(max) for the service

delay, i.e. 𝑑𝑛 ≤ 𝑑(max) . Correspondingly, let 𝑜(max) be the
maximal tolerance threshold for the task queue overflow rate,

i.e. 𝑜𝑛 ≤ 𝑜(max). In addition, we choose the utility function to

be the exponential functions, namely 𝑈𝑛
(𝑑)

= exp (−𝑑𝑛/

𝑑(max)) and 𝑈𝑛
(𝑜)

= exp (−𝑜𝑛/𝑜(max)) [23, 38].
Stochastic user task arrivals and dynamic MEC system

states present challenges and make naive one-shot
optimization schemes unstable and unable to achieve the
optimal network performance on a longer timescale.
Therefore, we want to develop a stochastic optimization
framework for the cooperative task assignment, which
maximizes the expected long-term utility of a MEC system
while guaranteeing the service delay and task queue overflow
rate are within their respective acceptable thresholds.

The task assignment matrix 𝚽(𝝌𝒕) is determined
according to the control policy 𝚽 after observing the network
state 𝝌𝒕 at the beginning of a time slot t, which induces a
probability distribution over the set of possible global MEC

network states in the following time slot 𝝌𝒕+𝟏, and hence a
probability distribution over the set of per-slot utility
𝑈(𝝌𝒕, 𝚽(𝝌𝒕)). For simplicity, we assume that the task

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3270242

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on August 25,2023 at 18:48:25 UTC from IEEE Xplore. Restrictions apply.

processing capability of a node and the network delay each
can be modelled as a finite-state discrete-time Markov chain
across the time slots, i.e. the probability of a state in the
subsequent slot depends only on the state attained in the
present slot. Given a control policy 𝚽, the random process 𝝌𝒕
is thus a controlled Markov chain [24, 25] with the following
state transition probability,

Pr{𝝌𝒕+𝟏|𝝌𝒕, 𝚽(𝝌𝒕) } =
Pr{𝑸𝒕+𝟏|𝝌𝒕, 𝚽(𝝌𝒕)} Pr{𝑺𝒕+𝟏| 𝑺𝒕} Pr{𝑪𝒕+𝟏| 𝑪𝒕}, (2)

where Pr{. } denotes the probability of an event. We assume
that the task processing capability and the network
communication delay are independent. For a controlled
Markov chain, the transition probability from a present state

𝝌𝒕 to the next state 𝝌𝒕+𝟏 depends only on the present state 𝝌𝒕

and the control policy 𝚽(𝝌𝒕) acted on the present state. Take
discounted expectation with respect to the per-slot utilities
𝑈(𝝌𝒕, 𝚽(𝝌𝒕)) over a sequence of network states 𝝌𝒕 , the

discounted expected value of the long-term utility of a MEC
network can be defined as [25, 26],

𝑉(𝝌, 𝚽) = E [𝛼 ∙ ∑ γ𝑡−1𝑈(𝝌𝒕, 𝚽(𝝌𝒕))| 𝝌𝟏
∞

𝑡=1
],

(3)

where 𝛼, γ ∈ [0, 1) are the parameters. γ is a discount factor
that discounts the utility rewards received in the future, and
(γ)t−1 denotes the discount to the (t −1)-th power. 𝝌𝟏 is the
initial network state. 𝑉(𝝌, 𝚽) is also termed as the state value
function of the MEC network in state 𝝌 under task assignment
policy 𝚽. α is multiplied only for analysis convenience. We
let 𝛼 = 1 − γ, the expected undiscounted long-term average

utility, 𝑈̅(𝝌, 𝚽) = E [lim
𝑇→∞

1

𝑇
∙ ∑ γ𝑡−1𝑈(𝝌𝒕, 𝚽(𝝌𝒕))| 𝝌𝟏∞

𝑡=1] can be

considered as a special case of (3) when γ approaches 1 and
𝛼 = (1 − γ) approaches 0 [25]. On the other hand, if γ is set

to be 0, then 𝑉(𝝌, 𝚽) = 𝑈(𝝌𝟏, 𝚽(𝝌𝟏)) , that is, only the
immediate utility performance is considered. We therefore
consider the expected discounted long-term utility
performance in (3) as a general QoS indicator in this paper.
 The objective is to design an optimal task assignment
control policy 𝚽∗ that maximizes the expected discounted
long-term utility performance, that is,

𝚽∗ = 𝑎𝑟𝑔 max
𝚽

(𝑉(𝝌, 𝚽)) (4)

𝑉∗(𝝌) = 𝑉(𝝌, 𝚽∗) is the optimal state value function. The
stochastic task assignment optimization in (4) can be
considered as a MDP with the discounted utility criterion as
the network states follow a controlled Markov process [26].
The optimal task assignment control policy achieving the
maximal state value function can thus be obtained by solving
the following Bellman’s optimality equation [26,27],

𝑉∗(𝝌) = max
𝚽

{(1 − γ) 𝑈(𝝌, 𝚽(𝝌))

+ γ ∑ Pr{𝝌′|𝝌, 𝚽(𝝌)}
𝝌′

𝑉∗(𝝌′)},

(5)

where 𝝌′ = {𝑸′, 𝑺′, 𝑪′} is the MEC network state in the
subsequent time slot, and Pr{𝝌′|𝝌, 𝚽(𝝌)} represents the state
transition probability that making the task assignment 𝚽(𝝌)
in state 𝝌 will produce the next state 𝝌′ . 𝑸′ = {𝑄′𝑛 : 𝑛 ∈
𝒩 ∪ 𝑛𝑐} , 𝑺′ = {𝑠′𝑛 : 𝑛 ∈ 𝒩 ∪ 𝑛𝑐} , and 𝑪′ = {𝒄′𝑛 : 𝑛 ∈
𝒩 ∪ 𝑛𝑐} are the queue, task processing capability, and
network delay states in the subsequent time slot.

Solving (5) is generally a challenging problem. Traditional
approaches are based on value iteration, policy iteration, and
dynamic programming [27, 28], but these methods require full
knowledge of the network state transition probabilities and
task arrival statistics, which for our problem, cannot be
obtained in advance. Thus, we seek the online reinforcement
learning techniques to solve the problem which does not have
such requirements. Conventional Q-learning [29, 30] defines
an evaluation function, called Q function, 𝑄(𝝌, 𝚽) = (1 −
γ) 𝑈(𝝌, 𝚽) + γ ∑ Pr{𝝌′|𝝌, 𝚽}𝝌′ 𝑄(𝝌′, 𝚽) and learns an

optimal state-action value table in a recursive way to decide
the optimal task assignment control policy for each time slot.
However, for the cooperative MEC network, the task
assignment decision-making for a node depends on not only
its own resource availability and queue state, but also is
affected by the resource availability and queue states of other
nodes as well as the network delay between the nodes. The
system state space and control action space will grow rapidly
as the number of involved nodes increases. The conventional
Q-learning process will search and update a large state-action
value table, which incurs high memory usage and computation
complexity and cannot handle the large state space well. Deep
reinforcement learning incorporates reinforcement learning
with deep neural networks (DNNs) to address the state and
action space explosion issues of the conventional Q-learning
[29, 31]. We will design DRL-based task assignment
algorithms below.

4 PROBLEM SIMPLIFICATION AND DEEP

REINFORCEMENT LEARNING ALGORITHMS

In this section, we focus on developing efficient
algorithms to achieve the optimal task assignment policy with
no assumption for prior knowledge of the statistical
information about the network state transitions and task
arrivals based on recent advances in deep reinforcement
learning. There are three categories of the state-of-the-art DRL
techniques, including value-based, policy-based, and hybrid
approaches. Specifically, we design three sets of novel
algorithms leveraging the underlying structure of our task
assignment optimization problem and the three DRL
approaches to tackle the aforementioned challenges and to
maximize the long-term MEC network utility. We will
evaluate the advantages and disadvantages of the designed
algorithms and gain insights to each DRL approach for our
problem in the next section. In addition, it can be observed that
the MEC network utility function is additive, which motivates
us to linearly decompose the state value function, and
incorporate the decomposition technique into the DRL-based
algorithms to lower the complexity.

Fig. 3. DDQN-based cooperative MEC task assignment.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3270242

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on August 25,2023 at 18:48:25 UTC from IEEE Xplore. Restrictions apply.

4.1 Value-based DRL Task Assignment Algorithm

For the value-based DRL approach, an agent learns the

state value function, and the optimal policy is determined

according to the learned value function. Double deep Q

networks (double DQN or DDQN) utilize double Q-learning

with two deep neural networks [32, 33], which can reduce the

overestimation errors of traditional Q-learning by separating

the action selection and action evaluation. Unfortunately, the

conventional DDQN algorithms cannot be directly applied to

solve our problem because it outputs the Q values

corresponding to the state-action pairs and selects the action

with the maximum Q value that depends on the total tasks

received in the current time slot. However, we do not know

the number of the new task arrivals in a time slot at the

beginning of the time slot. To solve the problem, we modified

the standard DDQN to output a probability matrix, which

indicates the probabilities that an edge server forwards its

tasks to other edge servers for processing in a time slot, i.e.,

the portion of the tasks shipped from one edge server to the

others in the time slot. We further truncate the probabilities

to a discrete set of values to reduce the action space and

simplify the learning model.

The modified DDQN is used to approach the optimal state

value function in (5) and select the best action. Fig. 3

illustrates the proposed DDQN-based reinforcement learning

scheme for the collaborative MEC task assignment. The

system consists of two DNNs, Q evaluation network (Q-eval)

and Q target network (Q-tar), to learn the optimal state value

function and decide the optimal action. The Q-eval is used to

select the task assignment matrix 𝚽𝒕(𝝌𝒕, 𝜃) based on the

collected network states 𝝌𝒕 at the time slot t, and the Q-tar is

used to estimate the value of the current task assignment

policy and decide the target task assignment matrix

𝚽̅𝒕+𝟏(𝝌𝒕+𝟏, 𝜃̅) for the following scheduling slot. The

parameters θ and θ̅ are updated iteratively. We redefine the

state value function (5) to be (6) as shown at the bottom of

this page, where 𝓟(𝝌𝒕, θ𝑡) and 𝓟′(𝝌𝒕+𝟏, θ̅𝑡) are the

probability matrices calculated by Q-eval and Q-tar networks,

respectively. In the conventional DDQN algorithm, the state

value will be updated in each time slot and used to determine

the optimal action. To simplify the updates, in our

implementation, the state value obtained from (6) is stored in

a replay memory for training and updating θ and θ̅ in the

learning process so that the Q-eval and Q-tar can select the

optimal task assignment probability matrices directly and

accurately. The loss function for updating the parameters θ

of Q-eval is defined in (7) at the bottom of this page. The

parameters θ̅ will be updated by copying θ after a predefined

number of steps.
Specifically, at the beginning of each time slot t, the MEC

controller determines the task assignment matrix

𝚽𝒕(𝝌𝒕) based on the observed network states and informs the

edge servers of the task assignment decision. The task

assignment matrix 𝚽𝑡 = [𝜙𝑛,𝑗
𝑡 : 𝑛, 𝑗 ∈ 𝒩 ∪ 𝑛𝑐} at the

beginning of scheduling slot t is determined as,

𝚽𝑡 = 𝓟𝑡(𝝌𝒕; θ𝑡) (8)

An edge server then offloads the tasks to other nodes or

receives tasks from other nodes and processes these tasks

based on the task assignment decision. The new task arrivals

𝜜𝒕 will be counted at the end of the time slot t and the new

network state is collected and updated to 𝝌𝒕+𝟏 by the

controller. The MEC network receives a utility 𝑼𝑡 =
 𝑈(𝝌𝒕, 𝚽𝒕(𝝌𝒕, 𝓟(𝝌𝒕; θ𝑡))) by performing the task processing.

The Q-tar network is used to calculate 𝚽𝒕+𝟏. As shown in Fig.

5, the DDQN includes a replay memory that is used to store

a pool of the most recent M transition experiences, Ω =
{𝓶𝑡−𝑀+1, … , 𝓶𝑡 } , where each experience 𝓶𝒕 =
(𝝌𝒕, 𝚽𝒕, 𝑼𝒕, 𝝌𝒕+𝟏, 𝚽𝒕+𝟏) is occurred at the transition of two

consecutive slots t and t + 1 during the learning process. At a

slot t, the k previous experiences are randomly sampled as a

batch from the memory pool Ω to train the DDQN online.

The approximated overall state value for each experience in

the batch is calculated and the parameters θ is updated with a

goal to minimize the loss function (7). Once the state value

function is converged, we can obtain the optimal parameters

θ∗ for Q-eval. The optimal policy will thus be,

 𝚽∗ = 𝓟∗(𝝌; θ∗) (9)

The MEC network utility in (1) is the summation of the

service delay and task queue overflow rate satisfactions of the

edge servers. The task arrival statistics and task processing

capabilities of the edge servers are independent each other.

We can then decompose (6) into per server utility and

separate the satisfactions regarding the service delay and the

task queue overflows [34]. We first rewrite (8) as

𝚽𝑡 = {𝝓𝑛
𝑡 (𝝌𝑛

𝑡): 𝑛 ∈ 𝒩} = {𝓟𝑛
𝑡 (𝜒𝒏

𝒕 ; θ𝑛
𝑡): 𝑛 ∈ 𝒩}. (10)

where 𝓟𝑛(.) is the task assignment probability related to

server 𝑛. 𝑛 agents 𝑛 ∈ 𝒩 can be employed and each agent

learns the respective optimal state value function through a

per server sub-DDQN. The optimal joint task assignment

decision is thus made to maximize the aggregated state value

function from all the agents. The state value function in (6)

can be decomposed and expressed as in (11) and (12)

 𝑉𝑡(𝝌𝒕) = ∑ 𝑉𝑛
𝑡(𝑞𝑛

𝑡 , 𝑠𝑛
𝑡 , 𝒄𝑛

𝑡)𝑛∈𝒩 , (11)

𝑉𝑛
𝑡(𝝌𝑛

𝑡) = (1 − γ𝑡)𝑈 (𝝌𝑛
𝑡 , 𝚽𝑡(𝝌𝑛

𝑡 , 𝓟𝑛(𝝌𝑛
𝑡 ; θ𝑛

𝑡))) +

γ𝑡[Pr{𝝌𝑛
𝑡+1|𝝌𝑛

𝑡 , 𝚽𝑡(𝝌𝑛
𝑡 , 𝓟𝑛(𝝌𝑛

𝑡 ; θ𝑛
𝑡))}

𝑈 (𝝌𝑛
𝑡+1, Φ𝑡+1(𝝌𝑛

𝑡+1, 𝓟𝑛
′ (𝝌𝑛

𝑡+1; θ𝑛

𝑡
)))] (12)

With the linear decomposition, the problem to solve a
complex Bellman’s optimality equation (6) is broken into
simpler MDPs and the computation complexity is lowered. In
order to derive a task assignment policy based on the global
MEC network state, 𝝌 = (𝝌𝑛: 𝑛 ∈ 𝒩 ∪ 𝑛𝑐) with 𝝌𝑛 =
(𝑞𝑛, 𝑠𝑛 , 𝒄𝑛) and 𝒄𝑛 = (𝑐𝑛,𝑗 , 𝑐𝑗,𝑛 ∶ 𝑗 ∈ 𝒩 ∪ 𝑛𝑐), at least

∏ ∏ (𝑗∈𝒩∪𝑛𝑐
|𝑞𝑛|𝑛∈𝒩∪𝑛𝑐

|𝑠𝑛||𝑐𝑛,𝑗||𝑐𝑗,𝑛|) states should be

trained. Using linear decomposition, only (𝑁 +
1) |𝑞𝑛||𝑠𝑛| ∏ (|𝑐𝑛,𝑗||𝑐𝑗,𝑛|)𝑗∈𝒩∪𝑛𝑐

 states need to be trained,

significantly reducing the number of training states and
resulting in much simplified task assignment decision

𝑉𝑡(𝝌𝒕) = max
𝚽

{(1 − γ𝑡)𝑈(𝝌𝒕, 𝚽𝒕(𝝌𝒕, 𝓟(𝝌𝒕; θ𝑡))) + γ𝑡[Pr {𝝌𝒕+𝟏|𝝌𝒕, 𝚽𝒕(𝝌𝒕, 𝓟(𝝌𝒕; θ𝑡))}𝑈(𝝌𝒕+𝟏, 𝚽𝒕+𝟏(𝝌𝒕+𝟏, 𝓟′(𝝌𝒕+𝟏; θ̅𝑡)))]} (6)

𝕃(θ) = 𝐸 [((1 − γ)𝑈(𝝌, 𝚽(𝝌, 𝓟(𝝌; θ))) + γ[𝑈(𝝌′, 𝚽′(𝝌′, 𝓟′(𝝌′; θ̅)))] − 𝑉(𝝌))
2

] (7)

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3270242

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on August 25,2023 at 18:48:25 UTC from IEEE Xplore. Restrictions apply.

makings especially when the number of MEC servers 𝒩 is
large. The online DDQN-based algorithm to estimate the
optimal state value function and determine the optimal task
assignment policy is summarized in Algorithm 1.

Algorithm 1. Online DDQN-based Cooperative MEC

Task Assignment

1. Initialize the Q-eval and Q-tar with two sets of 𝜃𝑡 and

𝜃̅𝑡 random parameters for t = 1; allocate the replay

memory Ω for experience replay.

2. At the beginning of scheduling slot t, the MEC

controller observes the network state, 𝝌𝑡 = {𝝌𝑛
𝑡 : 𝑛 ∈

𝒩} with 𝝌𝑛
𝑡 = (𝑞𝑛

𝑡 , 𝑠𝑛
𝑡 , 𝒄𝑛

𝑡) , and the Q-eval with

parameters 𝜃𝑡 , and then determines the task

assignment matrix, 𝚽𝑡 = [𝝓𝑛
𝑡 : 𝑛 ∈ 𝒩].

3. The edge servers offload and process the tasks

according to the above task assignment decision, and

the new tasks 𝑨𝑡 = {𝐴𝑛
𝑡 ∶ 𝑛 ∈ 𝒩} will be counted at

the end of slot t.

4. The controller determines the MEC network utility

𝑈𝑡 and calculates the state value 𝑉𝑡 according to (11)

and (12)

5. The network state transits to 𝝌𝑡+1 = {𝝌𝑛
𝑡+1: 𝑛 ∈ 𝒩}

where 𝝌𝑛
𝑡+1 = (𝑞𝑛

𝑡 + 𝐴𝑛
𝑡 , 𝑠𝑛

𝑡+1, 𝒄𝑛
𝑡+1) , which is

taken as input to the Q-tar with parameter 𝜃̅𝑡 to

estimate the value of the current task assignment

policy and decide the target task assignment matrix

 𝚽̅𝑡+1 = {𝝓̅𝑛
𝑡+1, 𝑛 ∈ 𝒩} for the following scheduling

slot 𝑡+1.

6. The replay memory Ω is updated with most recent

transition 𝓶𝑡(𝝌𝒕, 𝚽𝒕, 𝑼𝒕, 𝚽̅𝒕+𝟏, 𝝌𝒕+𝟏).

7. Once the replay memory collects 𝑀 transitions, the

controller updates the Q-eval parameter 𝜃𝑡 with a

randomly sampled batch of transitions to minimize

the loss function (7).

8. The target DQN parameter 𝜃̅𝑡 are reset every k time

slots, and otherwise 𝜃̅𝑡 = 𝜃̅𝑡−1

9. The scheduling slot index is updated by 𝑡 ← 𝑡 + 1.

10. Repeat from step 2 to 9.

4.2 Policy-based DRL Task Assignment Algorithm

For the value-based DRL, it obtains the optimal policy

and make the action decision by calculating and solving the

state value function with the maximal Q-value. This approach

is not well applicable to problems with continuous or large

action space [35]. On the other hand, policy-based DRL

algorithms are designed to tackle this issue by searching

directly in the action space. In this section, we investigate the

feasibility of solving the task assignment problem by

designing a policy-based DRL algorithm, which uses a DNN

to directly approximate the optimal policy and makes the

decision. Motivated by [36], we adopt a stochastic policy

gradient (PG) method to design our policy-based DRL task

assignment algorithm, which finds the optimal policy by

adjusting the possibility of trajectory with the highest

accumulative rewards of an episode.

Fig. 4 depicted the PG-based DRL scheme for the

collaborative MEC task assignment, which consists of a fully

connected neural network, called Q-network, assigned with a

set of parameters θ that is updated episodically for the

decision making. The Q-network directly outputs the task

assignment probability matrix 𝓟𝒈.

Specifically, the controller observes the network states

𝝌𝑡 = {𝝌𝑛
𝑡 : 𝑛 ∈ 𝒩} and derive the task assignment probability

matrix 𝚽𝒕(𝝌𝒕) = 𝓟𝑔
𝑡 (𝝌𝒕; θ𝑡) by the Q-network at the

beginning of each time slot t, and the edge servers will

process tasks according to its task assignment probability

decisions, 𝓟𝑔
𝑡 = {𝓟𝑔,𝑛

𝑡 : 𝑛 ∈ 𝒩}. At the end of the time slot,

the new task arrivals 𝑨𝑡 will be counted and the MEC

network utility for the time slot Ut =

 𝑈(𝝌𝒕, 𝚽𝒕(𝝌𝒕, 𝓟𝑔
𝑡 (𝝌𝒕; θ𝑡))) is calculated. The network state

then transits from 𝝌𝑡 to 𝝌𝑡+1 . Similarly, the PG algorithm

also includes a transition storage that is used to store a pool

of the most recent 𝒯̅ transition experiences, ℧ =
 {𝓣𝑡−𝑀+1, … , 𝓣𝑡 }, where each experience 𝓣𝒕(𝝌𝒕, 𝚽𝒕, Ut) is

occurred at the transition of two consecutive slots t and t + 1

during the learning process. k experiences are randomly

sampled as a batch from the memory pool ℧ to train the PG

algorithm online by using the learned utility at each time slot

to update the Q-network parameters, which changes the

possibility of the actions. Different from the DDQN-based

algorithm, the loss function used for the parameter updating

is as follows, which approaches a policy with the minimal

regret.

𝕃(θ, 𝓣) = 𝐸 [(log 𝓟𝒈(𝝌; θ)U)
2

], (13)

The online policy-gradient DRL task assignment algorithm is
summarized in Algorithm 2.

Algorithm 2. Online Policy-Gradient-based DRL

Cooperative MEC Task Assignment

1. Initialize 𝜃𝑡 of Q-network with random parameters

for t = 1 and allocate the transition storage ℧.

2. At the beginning of scheduling slot t, the MEC

controller observes the network state, 𝝌𝑡 = {𝝌𝑛
𝑡 : 𝑛 ∈

𝒩} with 𝝌𝑛
𝑡 = (𝑄𝑛

𝑡 , 𝑠𝑛
𝑡 , 𝒄𝑛

𝑡), which is taken as input

to the Q-network with parameter 𝜃𝑡 to select the task

assignment matrix 𝚽𝑡 = {𝝓𝑛
𝑡 , 𝑛 ∈ 𝒩}.

3. After offloading and processing the tasks according

to the above task assignment decision, the new tasks

𝑨𝑡 = {𝐴𝑛
𝑡 ∶ 𝑛 ∈ 𝒩} is counted at the end of slot t.

Fig. 4. Policy-Gradient-based cooperative MEC task assignment.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3270242

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on August 25,2023 at 18:48:25 UTC from IEEE Xplore. Restrictions apply.

4. The controller calculates the utility Ut and the

network state transits to 𝝌𝑡+1 = {𝝌𝑛
𝑡+1: 𝑛 ∈ 𝒩}

where 𝝌𝑛
𝑡+1 = (𝑞𝑛

𝑡 + 𝐴𝑛
𝑡 , 𝑠𝑛

𝑡+1, 𝒄𝑛
𝑡+1)

6. The new transition 𝓣𝒕(𝝌𝒕, 𝚽𝒕, Ut) is added to the

transition storage ℧.

7. Once the transition storage collects 𝒯 transitions,

the Q-network parameter 𝜃𝑡 is updated with a batch

of transitions to minimize the loss function (13)

8. The scheduling slot index is updated by 𝑡 ← 𝑡 + 1.

9. Repeat from step 2 to 8.

4.3 Hybrid DRL Task Assignment Algorithm

The two proposed algorithms, valued-based and policy-
based DRL algorithms, have their own benefits, but also incur
some shortcomings under different scenarios. The value-
based DRL method can address the state space explosion
problem, but it may overestimate the action as the state space
is huge. The policy-based DRL method performs efficiently
in continuous or large action space but may suffer from a large
variance in action and stagnate prematurely at local optima
[35]. Actor-critic (AC) DRL methods [37] recently attracted
research interests in the machine learning community, which
adopt a hybrid value and policy learning approach. They
typically consist of two DNNs, an actor network to select
actions and a critic network to estimate the state value function
and criticize the actions made by the actor. The critic learns
about and critiques whatever policy is currently being
followed by the actor with a temporal difference (TD) error to
drive the learning in both actor and critic for achieving the
optimal policy.

Fig. 5 illustrates the AC-based task assignment algorithm.
The MEC controller observes the network states 𝝌𝒕and runs
the actor to select the task assignment probability matrix

𝚽𝒕(𝝌𝒕; 𝜃𝐴), and the edge servers then offload and process the
tasks according to the task assignment probability. The new
task arrivals 𝑨𝑡 will be counted at the end of the time slot, and
the network states transits from 𝝌𝑡 to 𝝌𝑡+1. On the other hand,
the task assignment decision is evaluated by the critic. To
approximate the state value and perform temporal difference
error learning to update the parameters 𝜃𝐶 of the critic, the
critic will first take the network state 𝝌𝑡 as the input to
approximate the state value 𝑄(𝝌𝑡) of time slot t. Once it

receives the utility Ut and the network state 𝝌𝑡+1 at time slot
t+1, TD learning is performed according to the loss function
as defined in (14) at the bottom of this page. Finally, the actor
updates its parameters θ𝑎 in the same way as the policy
gradient algorithm except that the utility is replaced with TD
error we calculated in the critic, by (15). The algorithm is
summarized in Algorithm 3.

Algorithm 3. Online Actor-Critic-based DRL

Cooperative MEC Task Assignment

1. Initialize the Actor and the Critic networks with two

sets of 𝜃𝐴
𝑡 and 𝜃𝐶

𝑡 random parameters for t = 1.

2. At the beginning of scheduling slot t, the MEC

controller observes the network state, 𝝌𝑡 = {𝝌𝑛
𝑡 : 𝑛 ∈

𝒩} where 𝝌𝑛
𝑡 = (𝑞𝑛

𝑡 , 𝑠𝑛
𝑡 , 𝒄𝑛

𝑡) , and the Actor with

parameters 𝜃𝐴
𝑡 determines the task assignment

probability matrix, 𝚽𝑡 = [𝝓𝑛
𝑡 : 𝑛 ∈ 𝒩].

3. After offloading and processing the tasks according

to the above task assignment decision, the new tasks

𝑨𝑡 = {𝐴𝑛
𝑡 ∶ 𝑛 ∈ 𝒩} are counted at the end of slot t.

4. The MEC network utility U𝑡 is calculated. The

network state transits to 𝝌𝑡+1 = {𝝌𝑛
𝑡+1: 𝑛 ∈ 𝒩}

where 𝝌𝑛
𝑡+1 = (𝑞𝑛

𝑡 + 𝐴𝑛
𝑡 , 𝑠𝑛

𝑡+1, 𝒄𝑛
𝑡+1).

5. The Critic calculates TD error with 𝑄(𝝌) and 𝑄(𝝌′)

6. The Critic network updates the parameters 𝜃𝐶
𝑡 to

minimize the loss function (14).

7. The Actor network updates the parameters 𝜃𝐴
𝑡 to

minimize the loss function (15)

8. The scheduling slot index is updated by 𝑡 ← 𝑡 + 1.

9. Repeat from step 2 to 9.

5 EVALUATION

In this section, we evaluate the stochastic task assignment

performance achieved by our three derived deep

reinforcement learning schemes and compare them with each

other and with several other baseline algorithms to gain

insights.

5.1 General Setup

We compare the performance of the proposed DRL-based

schemes with the following baselines:

1) Edge Server Self-Processing: An edge server processes

all the tasks it receives from the associated users by itself.

There is no task offloading.

2) Cloud Execution: An edge server offloads all its received

tasks to the cloud data center for processing.

3) Subgradient with Dual Decomposition: task assignment

optimization based on subgradient with dual

decomposition as proposed in [41].

4) Q-learning: task assignment optimization based on

conventional Q-learning.

𝕃𝐴(θ𝐴) = 𝐸 [((1 − γ)𝑄(𝝌, 𝚽(𝝌; θ𝐴)) + γ[𝑄(𝝌′, 𝚽(𝝌′; θ𝐴))] − 𝑄(𝝌, 𝚽(𝝌; θ𝐴)))
2

] (14)

𝕃𝐶(θ𝐶) = 𝐸 [(((1 − γ)𝑄(𝝌, 𝚽(𝝌; θ𝐴)) + γ[𝑄(𝝌′, 𝚽(𝝌′; θ𝐴))] − 𝑄(𝝌, 𝚽(𝝌; θ𝐴))) ∗ (log 𝓟(𝝌; θ𝐴)))
2

] (15)

Fig. 5. Actor-Critic-based cooperative MEC task assignment.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3270242

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on August 25,2023 at 18:48:25 UTC from IEEE Xplore. Restrictions apply.

We simulated multiple MEC network scenarios with
different numbers of edge servers, various task arrival rates,
node processing, network delay, and other system parameters.
Due to the page limit, we present the results for several typical
settings. In the simulations, we assume the slot duration is 20
ms for the following considerations. First, we consider real-
time edge computing applications, such as 3D scene
reconstruction, AR/VR and others, with an end-to-end service
delay at an order of 10s-100s ms [49]. A scheduling slot
duration of 20 ms will be reasonable to capture the bursty
traffic demands and queue delay states. Another motivation to
choose 20 ms slot duration is the underlying networks. 5G new
radio defines a frame to be 10 ms in duration and the minimal
round-trip time at the application layer can be around 20 ms.
Further, the slot is used as the time unit in our evaluation, and
the delay is measured by the number of time slots and the
actual value of the time slot duration can be changed. The
processing capabilities of edge servers are modeled with two
states characterizing the high and low with {4, 1} tasks per
slot to reflect the edge servers with different available
resources and heterogeneous, fluctuating capabilities. The
processing states 𝑠𝑛

𝑡 , ∀𝑛 ∈ 𝒩 of different edge servers are
independent of each other and evolve according to a Markov
chain. Similarly, the network delay between two edge servers,

𝑐𝑛𝑗
𝑡 , ∀𝑛, 𝑗 ∈ 𝒩 , is modeled as a Markov chain with three

states, {1, 0.5, 0.2} time slots. The network delay between the
edge server and the cloud 𝑐𝑛𝑛𝑐

𝑡 , ∀𝑛 ∈ 𝒩 is assumed to be a

large value, 15 slots due to the transmission over the Internet.
In addition, we assume the maximal size of the queue buffer
at an edge server is 30 tasks. We consider that task queue
overflow impacts QoS more significantly than that of service
delay, thus, the weight factors in the utility function, 𝑤𝑑 and
𝑤𝑜 are set to be 1 and 10, respectively.

The parameters of the proposed DRL schemes are set
according to the needs and through our simulation
experiments to achieve good learning accuracy and reasonable
convergency time. For the DDQN-based task assignment
scheme (Algorthim 1), the neural networks of Q-tar and Q-
eval in each subagent have a single hidden layer with 10
neurons each. We employ the ReLU (Rectified Linear Unit)
function as the activation function of the hidden layer because
ReLU reduces the vanishing gradient problem [32] and is
simple to implement. The softmax function is used as the
activation function of the output layer to output the possibility
matrix for action selection because it can calculate a vector of
real numbers into a vector of probability values that ranges
between 0 and 1 with the sum of the probabilities being equal
to 1 [32, 37]. The number of iterations for updating parameters
of Q-tar is set to be 20, and the memory replay size and the
batch size are set to be 40 because they yield a good balance
between the convergence time and learning accuracy through
our simulation experiments. The training and learning process
is triggered when the system collects enough samples and it
will pull out all the samples to train.

For the proposed PG-based scheme (Algorthim 2), the Q-
network has a single hidden layer with 35 neurons. A larger
number of neurons are used in the hidden layer for the PG-
based scheme because the action policy is directly determined
without decomposition and more neurons are needed to handle
the large network states. Similar to the DDQN-based scheme,
we employ ReLU as the activation function of the hidden layer
and Softmax for the output layer to output the possibility
matrices for the action selection. The number of iterations for
updating parameters of Q-network is set to be 20, and the
memory replay size and the batch size are set to be 40 because

they yield good convergence time and learning accuracy in our
simulation experiments.

 For the proposed hyrbid AC-based scheme (Algorithm 3),
the actor is built with a neural network that includes one
hidden layer with 35 neurons. The tanh function is employed
as the activation function of the hidden layer because it
produces a zero-centered output, thereby easily supporting the
TD-based learning process [35, 36]. The softmax is used as
the activation function for the output layer. The critic is
constructed by a 50-neuron network with a hidden layer using
tanh as the activation function but no activation function for
the output layer.

5.2 Convergence Performacne

 We first investigate the convergence property of the
proposed DRL-based algorithms under dynamic stochastic
MEC network environments. Figs. 6(a), 6(b) and 6(c)
illustrate the convergence of the state value function for
DDQN, PG, and AC-based task assignment algorithms,
respectively. Three edge servers and one cloud data center are
used in the simulations and the number of tasks arriving at
each of the edge servers follows an independent Poisson
arrival process with an average arrival rate of 4 tasks per slot.
We can observe that each of the three algorithms spends a
short time-period to learn and then converges to a stable state
in a reasonable time, specifically few hundreds of decision
slots.

Fig. 7 illustrates the convergence of the proposed three
DRL-based task assignment algorithms versus the network
size. DRL learns the parameterized value function or policy
with DNNs [32, 35, 36], instead of all action values in all
states separately as in traditional Q learning. When the
network size increases, the value function or policy will be
more complex, it takes more time to capture the function
parameters. The algorithms thus take more time to converge
with the increased network size.

Fig. 6. Convergence of the proposed DRL-based task assignment schemes in
the learning process; (a) DDQN-based scheme; (b) PG-based scheme; (c)
AC-based scheme.

(a) (b) (c)

Fig. 7. Convergence of the proposed DRL-based task assignment
schemes versus the network size.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3270242

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on August 25,2023 at 18:48:25 UTC from IEEE Xplore. Restrictions apply.

5.3 Performance Comparision of Different Algorithms

In this section, we compare the performance of the

proposed DRL-based task assignment algorithms with

baselines. We first investigate the effect of edge servers’ task

arrival rates on the performance. Figs 8 and 9 show the

average task service delay and the average task queue

overflow rate (the average number of overflowed tasks per

slot), respectively, for different algorithms. The edge servers

and the cloud data center cooperate to jointly process the

tasks. The task arrivals at the edge servers follow independent

Poisson arrival process. One edge server, node 1, changes its

average task arrival rate (the average number of task arrivals

per slot) in the experiment while the average task arrival rates

of the other nodes are fixed. The service delay includes the

network delay and queuing delay, and the queueing delay is

the time a task waits in the buffer for being processed and the

time it is processed, i.e., the sojourn time of a task in the

system, as described in Section 3. The unit for the delay is

time slot duration.

The proposed learning-based schemes outperform the

subgradient-based algorithm and other baselines in terms of

service delay, especially when the workload is high. This is

because the learning-based schemes can capture the dynamic

MEC network state transitions and determine the optimal task

assignment matrix by taking into consideration the effects of

time-varying stochastic task arrivals and network conditions

on the expected long-term performance. On the other hand,

the subgradient optimization algorithm makes task

assignment decisions based on the current average task

arrivals and network conditions without considering the

underlying dynamics and randomness as well as their impacts

to the long-term QoS. This thus may cause a lot of tasks to be

shipped to the cloud data center for processing so that it leads

to a large network delay and a large task service delay.

 The traditional Q-learning algorithm can achieve the

same or slightly better task service delay performance when

the task arrival rate is low. The reason is that the queue state

space is relatively small under the low workload and the

optimal solution can be achieved by the traditional value-

based tabular Q-learning method. However, the average task

service delay of the traditional Q-learning scheme quickly

increases as the task arrival rate become high. This is because

the traditional Q-learning may overestimate the control

policy in the large state and action space [32] and makes

inaccurate task assignment decisions so that a node may

choose to process the tasks locally even it does not have

sufficient resources or may cause shipping the tasks to the

cloud for processing when it is capable to handle them. The

proposed DDQN-based algorithm addresses the large state

space problem of the traditional Q-learning scheme by using

two value-based Q-learning neural networks and it performs

relatively well when the workload is high. However, it may

still cause overestimation of the control policy when the task

arrival rate is high and the state-action space is huge.

The massive state-action space problem is handled much

better in the policy-based and hybrid actor-critic approaches.

The PG-based algorithm can prevent the overestimation by

periodically amending the task assignment action probability

matrix that outputs the optimal decision and improves the

system performance. However, with the PG-based algorithm,

the perdition process of the action probability may result in

premature stagnation at local optima [35], which degrades the

performance. The proposed AC-based task assignment

scheme offers the best performance in terms of the task

service delay and queue overflow as it combines the policy-

based approach in the decision-making to avoid the

overestimation and the value-based approach to determine

the optimal task assignment matrix with the precise utility

related to the performance at each time slot.

For the cloud execution scheme, a large value of network

delay is always incurred to ship the tasks to the cloud data

center over the Internet. The edge server self-processing

scheme performs well when the workload is very low because

an edge server can process the tasks by itself. However, as the

task arrival rate becomes high, the edge server does not have

enough resources to process all the tasks so that the service

delay rapidly increases, and more tasks are overflowed from

the queue. In Fig. 9, we present the task queue overflow rates

for different algorithms. The overflow rates for the learning-

based and subgradient-based task assignment algorithms are

close to zero because the algorithms give the task queue

overflow minimization a high weight and the edge servers

will forward the tasks to the cloud data center when their

buffers become full. We will thus focus on the task service

Fig. 10. Memory usage versus the average task arrivals per slot for

different learning algorithms.

Fig. 8. The average task service delay versus the average task arrivals

per slot for different algorithms.

Fig. 9. The average queue overflow rate versus the average task arrivals

per slot for different algorithms.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3270242

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on August 25,2023 at 18:48:25 UTC from IEEE Xplore. Restrictions apply.

delay performance of the DRL-based schemes under different

scenarios in the following sections as their task queue

overflow is always close to zero.

5.4 Memory Usage of Differenent Algorithms

Next, we evaluate the memory usage of the proposed

DRL-based algorithms and traditional Q-learning algorithm

during the learning process. As illustrated in Fig. 10, the

traditional tabular Q-learning consumes much higher

memory resources than the DRL-based schemes and cannot

scale well due to the explosion in state and action spaces,

making it unviable for the scenarios such as very high task

arrival rates or very large networks. On the other hand, the

memory usage by the DRL-based task assignment schemes

scale well as the task arrival rate and the state/action space

increases.

5.5 Performance of Horizontal Cooperation

In this subsection, we evaluate the impact of the

horizontal cooperation of the edge servers to the system

performance. Fig. 11 shows the average task service delay of

the proposed AC-based scheme with and without the edge

server cooperation for task processing. We change the task

arrival rate of one edge server, node 1, and fix the task arrival

rate of the other edge servers. It can be observed that with the

cooperation of the edge servers, the growing speed of the task

service delay is decreased as the task arrival rate of edge

server 1 increases, compared to the case without edge server

cooperation. This is because edge server 1 can offload its

tasks to other edge servers with the horizontal cooperation to

jointly process the tasks when its workload is high. Without

the horizontal cooperation, the edge server can only offload

its tasks to the cloud so that it incurs a large network delay.

In addition, with more edge servers, the MEC computation

capability increases so that the average task service delay

reduces. We only show the results of the AC-based scheme

here due to the page limit, and the same conclusions can be

obtained for the DDQN and PG-based schemes.

In Fig. 12, we investigate the average utilization rate of

the edge servers. The utilization rate of an edge server is

defined as the ratio of the actual task process rate to the task

process capability of the edge server. We again fix the task

arrival rate of all the edge servers except edge server 1.

Compared to the case without the edge-to-edge cooperation,

the cooperation of edge servers can increase the average

utilization rate. This is because that the workload of different

edge servers can be balanced through cooperation, more

specifically, an edge server may process the tasks for others

when its own workload is low and will forward part of its

tasks to others when its own workload is high. In addition, we

can observe that the utilization rate initially increases and

then approaches to a fixed value as the task arrival rate grows

to the total task processing capacity of the edge servers.

5.6 Different Sizes of MEC Networks

Fig. 13 illustrates the average task service delay of the

proposed DRL-based schemes under different numbers of

edge servers in the MEC network. In the experiment, the task

arrivals at each of the edge servers are random with a total

average arrival rate of 20. We can observe again that the

proposed AC-based algorithm performs the best, especially

with edge server cooperation. Although the PG-based

algorithms can perform efficiently in continuous or large

action space, they may suffer from a large variance in action

and stagnate prematurely at local optima [35]. For the

scenarios without cooperation, i.e., the edge servers do not

cooperate to process the tasks, the PG algorithm may stagnate

prematurely around 20 and 25 servers so that it makes a

premature task assignment decision that the edge server will

not be able to process certain tasks in time as the resources

are limited. The edge server will offload these tasks to the

remote cloud data center for task processing, which incurs a

large network delay, given no cooperation with other edge

servers. Further, the results demonstrate that the cooperation

of edge servers can greatly enhance the overall system

processing capabilities and reduce the average task service

delay, compared to no edge server cooperation, which is

consistent with Fig. 11. The system performance can be

improved as the number of edge servers increases. This is

because the total MEC computation capability increases with

Fig. 11. The average task service delay versus the average task arrivals
per slot with and without edge server cooperation.

Fig. 12. The average server utilization rate versus the average task arrivals
per slot with and without edge server cooperation.

Fig. 13. The average task service delay versus the number of edge

servers in the MEC network for the proposed DRL-based schemes.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3270242

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on August 25,2023 at 18:48:25 UTC from IEEE Xplore. Restrictions apply.

more densely deployed edge servers and the proposed

schemes can learn the optimal control policy and assign the

tasks to the edge servers with sufficient resources for

processing.

Figs. 14 and 15 show the CPU and memory usages of the

proposed DRL-based task assignment algorithms under

different MEC network sizes. We observe that the memory

and CPU usages slightly increase as the network size

increases. This is because the memory and CPU usages of the

DRL-based algorithms mainly depend on the size, structure,

and parameter updates of deep neural networks used by the

algorithms. The DNN update process in the decision

inference of the DRL algorithms is not significantly affected

by the MEC network size or the state space [31, 35]. The

memory and CPU usages of the DRL-based algorithms are

also not significantly affected by the MEC network size. The

proposed algorithms can scale well in a relatively large

network.

6 RELATED WORK

6.1 Task Offloading

Significant research work has investigated computational
task offloading from mobile devices to MEC edge servers. In
[9], the authors formulated task offloading as a QoS
optimization problem by assuming the network environments
were deterministic, and they transformed the original problem
into a convex problem of latency minimization to decompose
and solve it. Similarly, the authors in [10] formulated the
offloading as a convex optimization problem for minimizing
the weighted sum of mobile energy consumption under the
constraint of computation latency with infinite or finite edge
computation capacity and proposed an optimal offloading
policy according to users’ wireless channel gains and local
computing energy consumption. In [11], a resource demand
estimation and provisioning scheme is presented for an edge

micro data center to support the requested services and
maximize resource utilization. In [12], the problem of delay
optimal task offloading was considered as a Markov decision
process and a search algorithm was developed to find the
optimal solution. In [13], the computation offloading policy
for a MEC system with wireless energy harvesting-enabled
mobile devices were investigated using a Lyapunov
optimization technique and an approximate optimization
solution was obtained. In [14], the authors formulated the task
offloading problem as a one-to-many matching game to
determine the best edge server to offload the tasks to while
minimizing overall energy consumption. In [15], the
advantages of offloading the tasks to distributed MEC edge
servers have been demonstrated in terms of service delay and
power efficiency, compared to traditional offloading to
centralized cloud data centers.

More recently, the authors in [42] proposed a Bayesian
online learning algorithm for joint optimization of the service
and wireless network parameters to process data streams
offloaded from mobile devices in video analytics applications,
which maximized the analytics accuracy in a cross-layer way.
In [43], a reinforcement learning scheme was developed to
learn varying demands and then reserve edge servers to
support the computation tasks from connected vehicles. The
authors in [44] jointly optimized task offloading and caching
to minimize a composite metric of mobile device energy
saving and task response latency by using an alternating
minimization algorithm. In [45], a resource allocation and task
scheduling optimization scheme based on service priority was
proposed to minimize the total delay of the system and ensure
the delay requirement of high priority services. The authors in
[46] proposed a task offloading scheme for an air-ground
integrated edge computing system according to information
freshness, and the optimal offloading policy was obtained
based on DRL without presuming the dynamic network states
to be known.

6.2 Edge Server Cooperation

Vertical cooperation between the MEC edge layer and the
remote cloud layer has been studied. In [16], an approximate
algorithm for joint resource allocation of a MEC server and a
cloud data center is designed to minimize carbon footprint for
video streaming service. In [17], a resource provisioning
scheme for an edge micro datacenter is presented, which
conducts resource estimation and management while deciding
what type of data is to be uploaded to the cloud based on
fluctuating relinquish probability of a user, service type, and
service price. In [18], the authors proposed a hierarchical
game framework to model the interactions where the edge
servers help the cloud data center operators process delay-
sensitive tasks from mobile users that originally target at the
cloud data centers and to determine the edge server resource
allocation, service price, and pairing of edge servers and data
center operators with Stackelberg game and matching theory.
In [19], a reinforcement learning-based resource management
algorithm is developed, which obtains the optimal policy for
dynamically offloading the tasks from energy-harvesting
MEC edge servers to a centralized cloud data center and
provisioning the edge servers to minimize the long-term
system cost. The authors in [47] analyzed the delay in a cloud-
fog-edge computing system and proposed a computational
resource allocation method to maximize a social welfare
metric, constrained to specific QoS requirements. In [48], a
task offloading scheme in integrated edge-fog-cloud

Fig. 14. CPU usage versus the number of edge servers in the MEC

network for the proposed DRL-based schemes.

Fig. 15. Memory usage versus the number of edge servers in the MEC

network for the proposed DRL-based schemes.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3270242

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on August 25,2023 at 18:48:25 UTC from IEEE Xplore. Restrictions apply.

computing environments was proposed and the performance
was analyzed, where a device offloaded its generated tasks to
a layer for computation, a task was only accepted if the queue
size was below the pre-defined threshold, otherwise, it would
be offloaded to the next layer. These previous works mainly
consider a hierarchical network architecture and focus on the
vertical interaction among users, MEC edge servers and cloud
data centers, but they either abstract the MEC layer as a single
edge server or assume that the edge servers are independent of
each other and there is no cooperation among them.

Recently, exploring the cooperation of geographically
distributed edge servers for jointly processing the tasks has
received some research attention. In [39], the benefits of edge
server cooperation were demonstrated through several
application scenarios, however the algorithms for such
cooperation were not presented. The authors in [20, 41]
addressed the task assignment problem when an edge server
can forward its tasks to the neighboring edge servers for
processing. However, they formulated the task assignment as
a classic convex optimization problem based on a much-
simplified network model where the task arrival rate, the
queueing delay, and the network delay are all deterministic
and known beforehand. Such a deterministic model not only
contrasts many practical MEC scenarios (where networks are
dynamic and stochastic, and the network state and task arrival
statistics are unknown in advance) but also fails to capture the
broad range of network parameters and ignores the effects of
various dynamics so that the task assignment depends only on
one-shot optimization given a static MEC network state,
irrespective of the underlying non-stationary process.

In our previous work [30], we proposed a machine
learning based stochastic optimization approach for task
assignment, which can achieve optimal performance with no
assumptions on knowing the dynamic network state and task
arrival statistics. We also showed that the machine learning-
based task assignment approach outperforms the model-based
deterministic task assignment optimization. However, the
algorithm used in [30] is based on conventional tubular Q-
learning, which is subject to scalability limitation due to the
state space explosion and high memory consumption. In [33],
we proposed a double deep Q network-based learning
algorithm for task assignment in dynamic MEC networks,
which addressed the state space explosion problem. This
paper significantly extends our previous work with new DRL-
based schemes and performance comparison of value-based,
policy-based, and hybrid DRL algorithms.

7 CONCLUSIONS AND FUTURE WORK

In many MEC scenarios, the user task arrival statistics,
task processing rates at edge servers, and network delay
between edge servers are time-varying and unknown
beforehand. Therefore, it is more reasonable and compelling
to cast task assignment as a stochastic and dynamic
optimization problem, instead of model-based deterministic
optimization. In this paper, we proposed and investigated a
stochastic cooperative framework, which enables cooperation
among the various entities of a MEC system, including the
horizontal cooperation among geographically distributed
MEC edge servers and the vertical cooperation between edge
servers and cloud data centers, to jointly process user tasks to
balance the varying workload on heterogeneous edge servers
and improve the QoS in dynamic MEC networks. The task
assignment optimization problem is formulated as a Markov
decision process by taking into consideration the interaction

of the involved entities. Particularly, we proposed three online
deep reinforcement learning algorithms, value-based, policy-
based, and a hybrid approach, which all perform sequential
task assignment decisions in a series of time slots for the edge
servers to help each other process tasks according to an
assignment matrix that optimizes a long-term expected QoS-
aware utility function in terms of task service delay and queue
overflow. A function decomposition technique was
introduced to simplify the problem in the learning process.
The proposed online DRL-based algorithms can learn the
optimal task assignment matrix with no assumption on prior
knowledge of task arrival statistics and network state
transitions. Their convergence was validated. We compared
the performance of the proposed DRL-based task assignment
schemes with each other and with several existing baseline
algorithms. The evaluation results show the proposed DRL-
based schemes significantly reduce the task service delay and
task queue overflow rate, especially in high workload,
compared to the baselines. The AC-based hybrid scheme
performs the best. In addition, the DRL-based schemes require
much less memory than the conventional Q-learning based
algorithm. They can scale well in the dense deployment and
handle a relatively large MEC network with 40 edge servers.
We also demonstrated that the service delay of user tasks can
be significantly reduced by allowing edge servers to cooperate
and offload the tasks to each other.

Reinforcement learning models take time to converge and
the time cost of retraining a reinforcement learning model to
adapt to the changing system states and new configurations is
high if the real-world system is highly dynamic. There is
recent advancement in machine learning techniques that trains
an ensemble of DRL models, each for a different system
environment, and employs a high-level meta policy to choose
or combine the results of ensemble members based on the
system environment states [50, 51] so that the algorithm can
adapt to the changing system environments with few-shot
retraining. As part of our future work, we will exploit
ensemble or meta reinforcement learning to design fast
adaptive task scheduling algorithms for cooperative MEC in
highly dynamic system environments.

REFERENCES

[1] B. Chandramouli, J. Claessens, S. Nath, I. Santos, and W. Zhou,
“Race: Real-time applications over cloud-edge,” in Proc. of
ACM SIGMOD’12, pp. 625–628, 2012.

[2] A. Chandra, J. Weissman, and B. Heintz, “Decentralized edge
clouds,” IEEE Internet Computing, vol. 17, no. 5, pp. 70–73,
2013.

[3] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The
case for vm-based cloudlets in mobile computing,” IEEE
Pervasive Computing, vol. 8, no. 4, 2009.

[4] U. Drolia, R. Martins, J. Tan, A. Chheda, M. Sanghavi, R.
Gandhi, and P. Narasimhan, “The case for mobile edge-clouds,”
in Proc. of IEEE UIC/ATC’13, pp. 209–215, 2013.

[5] Y. Jararweh, A. Doulat, O. AlQudah, E. Ahmed, M. Al-Ayyoub,
and E. Benkhelifa, “The future of mobile cloud computing:
Integrating cloudlets and mobile edge computing,” in Proc. of
IEEE ICT’16, 2016.

[6] H. Liu, F. Eldarrat, H. Alqahtani, A. Reznik, X. de Foy, Y.
Zhang, "Mobile Edge Cloud System: Architectures, Challenges,
and Approaches," IEEE Systems Journal, vol. 12, no. 3, pp.
2495-2508, Sept. 2018.

[7] ETSI Whitepaper, “Harmonizing standards for edge computing
- A synergized architecture leveraging ETSI ISG MEC and
3GPP specifications,”
 https://www.etsi.org/images/files/ETSIWhitePapers/, 2020.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3270242

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on August 25,2023 at 18:48:25 UTC from IEEE Xplore. Restrictions apply.

https://www.etsi.org/images/files/ETSIWhitePapers/

[8] 3GPP TS 23.558, “Architecture for Enabling Edge
Applications,” https://www.3gpp.org/DynaReport/23558.htm,
2021.

[9] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang,
“Computation offloading and resource allocation in wireless
cellular networks with mobile edge computing,” IEEE Trans.
Wireless Commun., vol. 16, no.8, pp. 4924–4938, Aug. 2017.

[10] C. You, K. Huang, H. Chae, and B. H. Kim, “Energy-efficient
resource allocation for mobile-edge computation offoading,”
IEEE Trans. Wireless Commun., vol. 16, no. 3, pp. 1397–1411,
Mar. 2017.

[11] M. Aazam and E.-N. Huh, “Dynamic resource provisioning
through fog micro datacenter,” in Proc. of the IEEE PerCom
Workshops, St. Louis, MO, Mar. 2015, pp. 105–110.

[12] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, ‘Delay-optimal
computation task scheduling for mobile-edge computing
systems,” in Proc. IEEE ISIT, Barcelona, Spain, Jul. 2016.

[13] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation
offloading for mobile-edge computing with energy harvesting
devices,” IEEE J. Sel. Areas Commun., vol. 34, no. 12, pp.
3590–3605, Dec. 2016.

[14] B. Gu, Y. Chen, H. Liao, Z. Zhou, and D. Zhang, “A distributed
and context-aware task assignment mechanism for collaborative
mobile edge computing,” Sensors, vol. 18, no. 8, pp. 2423–2439,
2018.

[15] S. Sarkar, S. Chatterjee, and S. Misra, “Assessment of the
suitability of fog computing in the context of internet of things,”
IEEE Transactions on Cloud Computing, 2016.

[16] C. Do, N. Tran, C. Pham, M. Alam, J. H. Son, and C. S. Hong,
“A proximal algorithm for joint resource allocation and
minimizing carbon footprint in geo-distributed fog computing,”
in the Proc. of the IEEE ICOIN, pp. 324–329, Siem Reap,
Cambodia, Jan. 2015.

[17] M. Aazam and E.-N. Huh, “Dynamic resource provisioning
through fog micro datacenter,” in Proc. Of IEEE PerCom
Workshops, pp. 105–110, St. Louis, MO, Mar. 2015,

[18] H. Zhang, Y. Xiao, S. Bu, D. Niyato, F. R. Yu, and Z. Han,
“Computing resource allocation in three-tier IoT fog networks:
A joint optimization approach combining stackelberg game and
matching,” IEEE Internet Things J., vol. 4, no. 5, pp. 1204–1215,
2017.

[19] J. Xu, L. Chen, and S. Ren, “Online learning for offloading and
autoscaling in energy harvesting mobile edge computing,” IEEE
Trans. Cogn. Commun. Netw., vol. 3, no. 3, pp. 361–373, Jul.
2017.

[20] Y. Xiao and M. Krunz, “QoE and power efficiency tradeoff for
fog computing networks with fog node cooperation,” in Proc.
of IEEE INFOCOM’17, Atlanta, GA, May 2017.

[21] A. Gudipati, D. Perry, E. Li, and S. Katti, “SoftRAN: Software
Defined Radio Access Networks,” ACM HotSDN, Aug. 2013.

[22] K.R. Smith, H. Liu, L. Hsieh, X. de Foy, R. Gazda, “Wireless
Adaptive Video Streaming with Edge Cloud,” Wiley/Hindawi
Journal of Wireless Communications and Mobile Computing,
vol. 2018, pp. 1-13, Dec. 2018.

[23] X. Chen, Z. Han, H. Zhang, G. Xue, Y. Xiao, and M. Bennis,
“Wireless resource scheduling in virtualized radio access
networks using stochastic learning,” IEEE Transactions on
Mobile Computing, vol. 17, no. 4, pp. 961-974, 2018.

[24] D. Adelman and A. J. Mersereau, “Relaxations of weakly
coupled stochastic dynamic programs,” Oper. Res., vol. 56, no.
3, pp. 712–727, Jan. 2008.

[25] D. P. Bertsekas, Dynamic programming and optimal control.
Athena Scientific, Belmont, MA, 1995.

[26] S. M. Ross, Introduction to stochastic dynamic programming.
Academic press, 2014.

[27] M. L. Puterman and M. C. Shin, “Modified policy iteration
algorithms for discounted Markov decision problems,”
Management Science, vol. 24, no. 11, pp. 1127–1137, 1978.

[28] R. Howard, Dynamic Programming and Markov Processes.
The MIT Press, 1960.

[29] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, The MIT Press, 2005.

[30] L. Hsieh, H. Liu, Y. Guo, R. Gazda, “Task Management for
Cooperative Mobile Edge Computing,” In Proceedings of the
5th ACM/IEEE Symposium on Edge Computing (SEC)
HotWoT workshop, 2020.

[31] V. Francois-Lavet, Vincent et al., "An Introduction to Deep
Reinforcement Learning," Foundations and Trends in Machine
Learning. Vol. 11, no. 3-4, pp. 219–354, 2018.

[32] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement
learning with double Q-Learning,” In Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence
(AAAI'16), Pages 2094–2100, February 2016.

[33] L. Hsieh, H. Liu, Y. Guo, R. Gazda, “Quality of Service
Optimization in Mobile Edge Computing Networks via Deep
Reinforcement Learning,” In Proceedings of 15th International
Conference on Wireless Algorithms, Systems, and Applications
(WASA), 2020.

[34] J. N. Tsitsiklis and B. van Roy, “Feature-based methods for
large scale dynamic programming,” Mach. Learn., vol. 22, no.
1-3, pp. 59 - 94, Jan. 1996.

[35] I. Grondman, L. Busoniu, G.A. Lopes, and R. Babuska, “A
survey of actor-critic reinforcement learning: Standard and
natural policy gradients,” IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews), 42(6),
1291-1307, 2012.

[36] Williams, Ronald J. "Simple statistical gradient-following
algorithms for connectionist reinforcement learning." Machine
learning 8(3), pp. 229-256, 1992.

[37] V.R. Konda and J.N. Tsitsiklis, “Actor-critic algorithms,”
Advances in neural information processing systems, 2000.

[38] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, M. Bennis,
“Optimized Computation Offloading Performance in Virtual
Edge Computing Systems Via Deep Reinforcement Learning,”
IEEE Internet of Things Journal, vol. 6 , no. 3, pp. 4005 – 4018,
June 2019.

[39] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili,
“Collaborative mobile edge computing in 5g networks: New
paradigms, scenarios, and challenges,” IEEE Communications
Magazine, vol. 55, no. 4, pp. 54–61, 2017.

[40] Open Edge Compute Initiative,
https://www.openedgecomputing.org/.

[41] Y. Xiao and M. Krunz, "Distributed Optimization for Energy-
Efficient Fog Computing in the Tactile Internet," in IEEE
Journal on Selected Areas in Communications, vol. 36, no. 11,
pp. 2390-2400, Nov. 2018.

[42] A. Galanopoulos, J. A. Ayala-Romero, D. J. Leith and G.
Iosifidis, "AutoML for Video Analytics with Edge Computing,"
in Proceedings of 2021 IEEE INFOCOM, July 2021.

[43] J. Zhang, S. Chen, X. Wang and Y. Zhu, "DeepReserve:
Dynamic Edge Server Reservation for Connected Vehicles with
Deep Reinforcement Learning," in Proceedings of 2021 IEEE
INFOCOM, July 2021.

[44] C. Tang, C. Zhu, X. Wei, H. Wu, Q. Li and J. J. P. C. Rodrigues,
"Task Offloading and Caching for Mobile Edge Computing," in
Proceedings of 2021 International Wireless Communications
and Mobile Computing (IWCMC), pp. 698-702, June 2021.

[45] J. X. Liao and X. W. Wu, "Resource Allocation and Task
Scheduling Scheme in Priority-Based Hierarchical Edge
Computing System," in Proceedings of 2020 19th International
Symposium on Distributed Computing and Applications, Dec.
2020.

[46] X. Chen, C. Wu, T. Chen, Z. Liu, H. Zhang, M. Bennis, H. Liu,
and Y. Ji, X. Chen et al., "Information Freshness-Aware Task
Offloading in Air-Ground Integrated Edge Computing
Systems," IEEE Journal on Selected Areas in Communications,
vol. 40, no. 1, pp. 243-258, Jan. 2022.

[47] R. Fantacci and B. Picano, "Performance Analysis of a Delay
Constrained Data Offloading Scheme in an Integrated Cloud-
Fog-Edge Computing System," IEEE Transactions on
Vehicular Technology, vol. 69, no. 10, pp. 12004-12014, Oct.
2020.

[48] S. D. Okegbile, B. T. Maharaj and A. S. Alfa, "A multi-user
tasks offloading scheme for integrated edge-fog-cloud

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3270242

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on August 25,2023 at 18:48:25 UTC from IEEE Xplore. Restrictions apply.

https://www.3gpp.org/DynaReport/23558.htm
https://www.openedgecomputing.org/

computing environments," in IEEE Transactions on Vehicular
Technology, April 2022.

[49] W. Zhang, S. Li, L. Liu, Z. Jia, Y. Zhang, and D. Raychaudhuri.
"Hetero-edge: Orchestration of real-time vision applications on
heterogeneous edge clouds," In Proceedings of 2019 IEEE
INFOCOM, 2019.

[50] T. M. Hospedales, A. Antoniou, P .Micaelli, and A. J. Storkey,
“Meta-learning in neural networks: A survey,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
2021.

[51] A. Modi, N. Jiang, A. Tewari, and S. Singh, “Sample
Complexity of Reinforcement Learning using Linearly
Combined Model Ensembles,” in Proceedings of the Twenty
Third International Conference on Artificial Intelligence and
Statistics, 2020.

ACKNOWLEDGMENTS

Certain commercial equipment, instruments, or materials are
identified in this paper in order to specify the experimental procedure
adequately. Such identification is not intended to imply
recommendation or endorsement by the National Institute of
Standards and Technology, nor is it intended to imply that the
materials or equipment identified are necessarily the best available
for the purpose.

Li-Tse Hsieh received his B.S. degree in
Computer Science and Information
Engineering from Fu Jen Catholic University,
New Taipei City, Taiwan in 2014, M.S. in
Computer Science from The Catholic
University of America in 2016, and Ph.D. in
Computer Science from The Catholic
University of America in 2021. Currently, he
is a software engineer at UiPath Inc., Bellevue,

WA. His research interests include wireless communications and
networking, distributed systems, edge-cloud network architecture,
resource management for Internet of Things, mobile edge computing,
deep reinforcement learning, software-defined networks, and 5G/6G
mobile networks.

Hang Liu joined the Catholic University of
America in 2013, where he currently is a
Professor with the Department of Electrical
Engineering and Computer Science. Prior to
joining the Catholic University, he had more
than 10 years of research experience in
networking industry and worked in senior
research and management positions at several
companies. He has published more than 100

papers in leading journals and conferences and holds over 50 US
patents. He received two best paper awards and one best student
paper award. He has also made many contributions to the IEEE 802
wireless standards and 3GPP standards, and was the editor of the
IEEE 802.11aa standard and the rapporteur of a 3GPP work item. He
received his Ph.D. degree in Electrical Engineering from the
University of Pennsylvania. His research interests include wireless
communications and networking, millimeter wave communications,
dynamic spectrum management, mobile computing, Internet of
Things, future Internet architecture and protocols, mobile content
distribution, video streaming, and network security.

Yang Guo is a senior computer scientist at the
Computer Security Division, National Institute
of Standards and Technology (NIST),
Gaithersburg, MD. His research interests span
broadly over the distributed systems and
networking, with a focus on Software Defined
Networking, Cybersecurity, and AI/ML. He
obtained Ph.D. from University of
Massachusetts at Amherst in 2000, and B.S. and
M.S. from Shanghai Jiao Tong University.

Before joining the NIST, he was a researcher at Bell Labs from 2010
to 2015 and was a Principal Scientist at Technicolor Corporate
Research from 2005 to 2010. At NIST, he leads the research on
Software Defined Networking (SDN) and the High-Performance
Computing (HPC) Security Working Group. He has published over
80 peer-reviewed papers in renowned technical journals and
conferences and holds 18 US patents. He received Bell Labs’
teamwork award, ICC Best Paper award, and was on Technicolor’s
Fellowship Network as a technical leader.

Robert (Bob) Gazda is a Senior Director in
InterDigital's Wireless Networking Lab. He is
an accomplished engineering professional and
technologist with over 20 years of industry
experience in wireless telecommunications,
networking, and embedded systems. Currently
at InterDigital, Bob is leading research and
innovation focused on 5G and 6G Distributed
and Converged Computing and

Communications Architectures. Bob holds a Master, Software
Engineering (MSE) degree from Carnegie Mellon University, a MS
in Computer Engineering degree from Villanova University, and a
B.S. in Electrical Engineering from Drexel University. His research
interests include wireless communications and networking, mobility
management, edge & distributed computing, and real-time systems.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3270242

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on August 25,2023 at 18:48:25 UTC from IEEE Xplore. Restrictions apply.

