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ABSTRACT
Atomic spectroscopy and atomic physics papers represent a significant part of publications in Journal of Physical and Chemical Reference
Data (JPCRD). Critical compilations of spectroscopic data, accurate calculations of collisional parameters, and bibliography on spectral line
profiles and shifts provided much needed information for plasma physics, astrophysics, lithography, fusion research, and other fields of
science. We present a brief overview of the atomic physics research published in JPCRD over its first 50 years.
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1. INTRODUCTION
In the early 20th century, atomic spectroscopy research was

highly instrumental in providing the emerging field of quantum
physics with the most accurate data to test new ideas and theo-
ries. At that time, even a few precise energy levels or wavelengths
were often sufficient to captivate physicists’ curiosity and provide the
much required benchmarks. Following the explosive development of
astrophysical research and plasma physics, more and more atomic

data were and still are required to analyze complex spectra from
neutral atoms to highly charged ions of heavy elements. This, in turn,
brought about large compilations of atomic data that originally did
not have many viable options for publication in “standard” scien-
tific journals. Then, 50 years ago, the very timely appearance of the
Journal of Physical and Chemical Reference Data (JPCRD) opened
new pathways to report and disseminate high-quality atomic data.

As of today, there are more than 100 JPCRD papers on
atomic physics covering basic spectroscopic data, collisional param-
eters, spectral linewidths and shifts, isotope shifts, quantum-
electrodynamic effects, and so on. These papers are typically highly
cited and extensively used in various fields of science where atomic
data are in demand, e.g., astrophysics, high-energy-density physics,
fusion research, lithography, atmospheric physics, and others. Here,
we present a brief overview of the JPCRD atomic-physics papers
during the first 50 years of the journal.

2. NIST evaluated data publications
Due to a strong partnership between JPCRD and the National

Institute of Standards and Technology (NIST), most of the atomic
papers in the journal come from the NIST Atomic Spectroscopy
Group although more and more contributions from other research
groups around the world are being submitted and published in
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recent years. Atomic spectroscopy has long been an important part
of research at NIST and its predecessor, the National Bureau of
Standards. One of the responsibilities of NIST is the production of
physical reference data for science and industry, which is based on
multi-faceted evaluations of the available scientific information. The
critical evaluations of fundamental atomic spectroscopic data started
with the pioneering compilations by Charlotte Moore Sitterly in the
late 1940s. Her Atomic Energy Levels series1–3 has become a clas-
sical example of a complete and scrupulously analyzed collection
of important and vastly needed atomic data. In addition to setting
various basic criteria for the data analysis, she also developed specific
formats for data presentation that are still in use today. Charlotte
Moore also established two data centers, on Atomic Energy Levels
and on Atomic Transition Probabilities (or oscillator strengths) and
Line Shapes, to carry out the compilation work and to develop
and maintain databases on atomic spectroscopic data. With time
it became evident that for optimal representation and utilization of
data, it is preferable to rather develop unified compilations including
both energy levels and radiative transition probabilities.

The primary difference between the energy level (or spectral
line wavelength) and the transition probability compilations is in the
availability of accurate experiments. The legacy and modern spectro-
scopic instruments can efficiently perform measurements of wave-
lengths with resolving powers exceeding 1 000 000 in the infrared
or visible spectral ranges although the instrument resolution some-
what drops for extreme ultraviolet or x-ray photons. Importantly,
such measurements are routine and plentiful. On the other hand,
most measurements of transition probabilities are directly related to
determination of spectral line intensities that are affected by exper-
imental conditions, and therefore, they are much more demanding
and less accurate—it is very challenging to measure radiative proba-
bilities at even sub-percent level. Therefore, most of the compilations
of transition probabilities are based on advanced calculations. How-
ever, this shortcoming is largely alleviated by the fact that the
modern atomic theories are generally very mature. The new theo-
retical methods have been widely tested and benchmarked so that
uncertainty quantification for various atomic systems may be carried
out quite reliably.

It should also be mentioned that over the decades of crit-
ical data evaluation research, the NIST scientists developed the
corresponding methods and computational tools, which are contin-
uously improved and updated. The most recent description of the
systematic approach to data evaluations can be found in Ref. 4.

The first JPCRD paper on atomic energy levels5 was published
by the Director of the Data Center on Atomic Energy Levels (Mar-
tin) in 1973. This was an update of his previous compilation on
neutral helium from 1960 resulting from a number of accurately
measured new spectra. The paper presented data for singly excited
levels up to the principal quantum number n = 22, a number of dou-
bly excited autoionizing levels, and several accurately determined
ionization limits. As typical for NIST compilations, this work con-
tains a scrupulous assessment of uncertainties for all reported atomic
parameters. It is remarkable that in spite of many advances in He
I spectroscopy over the last 50 years, this seminal paper is still
routinely cited in the literature.

The transition probability publications in JPCRD started with
an outstanding compilation of forbidden lines in the spectra of iron-
group elements from V (atomic number Z = 23) to Ni (Z = 28) by

Smith and Wiese.6 The forbidden lines from highly charged ions
were already well known from solar spectroscopy studies where, for
instance, discovery of the famous “green” magnetic-dipole line at
530.3 nm in Fe XIV7,8 unambiguously confirmed the extremely high
temperature of about 1 000 000 K of the solar corona. In the early
1970s, a rapid advance of magnetic fusion research resulted in a high
demand for new spectroscopic methods to diagnose even hotter,
multi-million-degree plasmas in tokamaks and stellarators, where
intensities of many forbidden lines are indeed sensitive to electron
density variations. A key parameter that is crucial for determina-
tion of the appropriate range of densities is the radiative transition
probability. Thus, this timely paper provided the valuable and accu-
rate up-to-date information that is still being used in spectroscopic
diagnostics of fusion devices.

Over a few decades, the atomic data compilations were strongly
affected by the magnetic fusion research. For instance, the iron-
group elements were important components of the early tokamak
plasma-facing materials. Sputtered by energetic plasma particles,
their atoms would propagate into the hot core plasmas and become
ionized to very high degrees of ionization. The ensuing spectra
across a very wide spectral range provided important diagnostics
of plasma temperature and density. The extensive publications of
energy levels and spectra (some later publications including tran-
sition probabilities) for ions of Fe,9,10 Cr,11,12 Mn,13,14 V,15,16 Ti,17,18

Sc,19,20 Ni,21 and Co22,23 as well as a very comprehensive compilation
of energy levels for the iron-period elements from K to Ni24 cre-
ated a solid foundation for spectroscopy of magnetic fusion devices.
This effort was complemented by a number of critical compila-
tions of transition probabilities for Sc and Ti;25 V, Cr, and Mn;26

Cr;27 Fe, Co, and Ni;28 and Fe.29,30 With the following measure-
ments and calculations, those compilations were updated in 1988
for Sc through Mn31 and Fe through Ni.32 In addition to the iron-
group elements, Mo was also of high importance for magnetic fusion
since it was previously used as a first-wall material. Accordingly, a
number of compilations on its spectra33,34 were developed in the
1980s. This extensive work on fusion-related atomic spectroscopy
culminated in a comprehensive compilation for Ti, V, Mn, Cr, Fe,
Co, Ni, Cu, Kr, and Mo published as the JPCRD Monograph 8 by
Shirai et al.35

At the present time, the magnetic fusion research aims at com-
pletion and initiation of the international ITER reactor. Its first wall
will be covered by beryllium, which has just four ionization stages.
The recommended energy levels and spectra for Be I36 and transition
probabilities for all ions37 were reported in 1997 and 2010, respec-
tively. Interestingly, the most recent JPCRD paper is devoted to the
benchmark calculations of energy spectra and oscillator strengths
of Be I.38 Much more challenging is the spectroscopy of tungsten
(Z = 74), which will be the plasma-facing material for the ITER
divertor. The 2006 JPCRD paper by Kramida and Shirai39 provided
the first evaluated set of spectroscopic data for neutral and singly
ionized W.

Another important consumer of atomic spectroscopic data is
astronomy and astrophysics. Here, the primary interest is in rel-
atively light elements (Z ≤ 30) due to their high abundance in
the universe. The relevant compilations of energy level data cover
Al,40,41 Ca,42 K,43,44 Mg,45,46 Na,47 Si,48 P,49 S,50,51 Cu,52,53 O II,54

Zn,55 Ne,56 Ar,57 and Na.58 In addition, sets of critically evaluated
transition probabilities for Ar;57,59 C, N, and O60 (followed by an
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improved compilation for C and N61); and H, He, and Li62 were
reported as well.

After the launch of the Chandra X-Ray Observatory in 1999,
it became evident that the then-existing atomic data, in particular,
on the radiative transition probabilities, may not provide satisfactory
support for the upcoming observations. To address this problem, the
NIST Atomic Spectroscopy Group generated critical compilations
for S VII–XIV,63 Si VI–XII,64 Mg V–X,65 and Ne V–VIII66 supply-
ing data for the ions emitting in the x-ray spectral range of interest
to Chandra. Those compilations made use of the newest results
calculated by the rapidly improving theoretical methods, including
multi-configuration Hartree–Fock and Dirac–Fock theories. This
work later evolved into the production of complete sets of transition
probabilities for all ions of Na and Mg,67 Al,68 Si,69 and S.70

The noble gases heavier than Ar are also often used for spec-
troscopic diagnostics of terrestrial and astrophysical plasmas, and
therefore, the spectra of their atoms and ions have been studied in
numerous publications. As a result, several data compilations for
Kr71–73 and Xe74,75 were published in JPCRD. Another diagnostically
important element, Ba, was the subject of a number of spectro-
scopic papers76–78 that summarized the evolution of accurate data
on energy levels and transition probabilities.

Other publications from NIST address data needs for diverse
fields of physics. The 1974 paper on the ground states and ioniza-
tion potentials of lanthanide and actinide atoms and ions79 was one
of the first data collections for these most complex atomic systems.
Another series of papers80–82 provided decadal updates to the bind-
ing energies of negative ions. Other publications report critically
evaluated data for the elements of interest for development of atomic
clocks (Rb,83 Hg,84 Fr,85 Cs,86 and Sr87,88), inertial confinement
fusion (Ge89 and Ga90), and others.91–93

In 2005, Sansonetti and Martin published a comprehensive
compilation presenting a selection of the most important and fre-
quently used atomic spectroscopic data in an easily accessible com-
pact format.94 This Handbook of Basic Spectroscopic Data includes
data for the neutral and singly ionized atoms of all elements from
hydrogen through einsteinium (Z = 1–99). The wavelengths, intensi-
ties, and spectrum assignments are given in a table for each element,
and the data for ∼12 000 lines of all elements are also collected into
a single table, sorted by wavelength in a “finding list.” Simultane-
ously with the JPCRD publication, the Handbook was released as an
e-book as well as an online database.95

The development of online databases of atomic reference data
was always a very important component of the atomic physics pro-
gram at NIST. It was therefore very natural for the JPCRD atomic
data compilations to be directly added to the NIST Atomic Spec-
tra Database (ASD),96 the most authoritative collection of critically
evaluated atomic spectroscopic data. The ASD, which currently
contains about 112 000 energy levels, 292 000 spectral lines, and
123 000 transition probabilities, is queried more than 600 000 times
a year for up-to-date spectroscopic data, and its success is certainly
in part due to the high quality of JPCRD contributions. Further-
more, the reference database work laid out foundations for the
development of other online tools for atomic and plasma spec-
troscopy, e.g., Laser-Induced Breakdown Spectroscopy Database,97

FLYCHK collisional-radiative code,98 and NIST-LANL Lanthanide
Opacity Database.99 An extensive description of the ASD structure,
evolution, and future goals can be found in the recent paper.100

3. Other publications on atomic physics
In addition to publications from the NIST group, JPCRD has

become a journal of choice for many other research groups produc-
ing accurate atomic data, both spectroscopic and collisional. Two
relatively small papers by Krause101 and Krause and Oliver102 on
atomic radiative and radiationless yields and natural widths for K-
and L-shells are among the mostly cited papers from JPCRD. For
many years, Erickson’s paper on one-electron atoms103 was consid-
ered a de facto standard as it accurately reported up to 11 or 12
significant digits for the corresponding energy levels. A 1700-page
volume by Kelly on atomic and ionic spectrum lines below 2000 Å
(H through Kr)104 was one of the most extensive compilations of
x-ray, extreme ultraviolet, and vacuum ultraviolet spectra. Other
papers105–107 from the late 1970s report on infrared spectral lines,105

electron binding energies,106 and the B I spectrum.107

More recently, a number of accurate results on quantum-
electrodynamic effects in muonic hydrogen,108 bound electron
g-factors in highly-charged ions,109 helium isotope shifts110 and
accurate theoretical111 and experimental analyses112 of its energy
structure, Lamb shifts in hydrogenic atoms,113 fundamental data for
Ra I and Ra II,114 ionization energies of lanthanides,115,116 and other
important data117–121 were also published in JPCRD. It is interesting
to note, for instance, that the recently developed theoretical meth-
ods can surpass the experimental data for non-trivial three-electron
Li-like systems.122

Collisional atomic data have also found their place in the
JPCRD universe. In a series of three papers, Janev et al. reported
charge-exchange cross sections for collisions of neutrals with mul-
tiply charged ions.123–125 These data are particularly important
for fusion experiments. The recommended data for ionization
cross sections of light atoms and ions126,127 published in the
1980s are still often used in advanced collisional-radiative mod-
els of plasma emission. More recent works present charge trans-
fer cross sections in metal vapors,128 photon- and electron-impact
cross sections for atomic oxygen,129,130 inner-shell ionization cross
sections,131 a series of papers on electron collisions with Be,132

Mg,133 Zn,134 and In,135 and recommended positron scattering cross
sections.136

4. Line broadening and shifts
Unlike fundamental atomic parameters (energy levels, wave-

lengths, and transition probabilities), which are not significantly
altered by plasmas in most cases, spectral line shapes and shifts are
strongly affected by plasma environments. The instrumental width
is due to imperfections of the recording equipment, and it can
be subtracted from the measured line profiles. Then, the Doppler
broadening is due to the emitter motion, and thus, it is mostly sen-
sitive to plasma temperature. The most complicated contributions
to spectral line profiles come from the plasma fields and interac-
tions with fast and slow plasma particles. Both accurate calculations
and precise measurements of such collisional widths are very elab-
orate, and the availability of tabulated recommended line profile
parameters is always of high importance.

The JPCRD papers on line broadening and shifts were mainly
due to a very fruitful collaboration between NIST and Konjević and
co-workers in Belgrade, Serbia (then Yugoslavia). Already in 1976,
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two review works on Stark widths and shifts in non-hydrogenic
atoms were released.137,138 Those reviews were later updated several
times to account for new experimental and theoretical data.139–142

Some of the line broadening reviews contained extensive bibli-
ographies that resulted in the development of an online biblio-
graphic database.143 This database currently contains more than
7000 references and it is regularly updated and expanded.

5. Conclusions
For the last 50 years, JPCRD presented researchers around the

world with exceptional data in a variety of fields, including atomic
physics and spectroscopy. The JPCRD atomic-physics papers are
widely cited in the literature, and the reported data are critically
important for diagnostics and analysis of various environments,
including terrestrial and astrophysical plasmas, magnetic and iner-
tial fusion, and lithography. In recent years, the emphasis is clearly
shifting from the basic spectroscopic data (i.e., energy levels, wave-
lengths, and transition probabilities) to more sophisticated atomic
parameters, such as isotope shifts and quantum-electrodynamic
contributions. Yet, there is no doubt that JPCRD will continue to
strongly influence the atomic physics research due to the uniqueness
and highest quality of its publications.
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