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Abstract. A technique for characterizing and correcting the linearity of radiometric

instruments is known by the names the “flux-addition method” and the “combinatorial

technique”. In this paper, we develop a rigorous uncertainty quantification method

for use with this technique and illustrate its use with both synthetic data and

experimental data from a “beam conjoiner” instrument. We present a probabilistic

model that relates the instrument readout to a set of unknown fluxes via a set

of polynomial coefficients. Maximum likelihood estimates (MLEs) of the unknown

fluxes and polynomial coefficients are recommended, while a non-parametric bootstrap

algorithm enables uncertainty quantification including standard errors and confidence

intervals.

The synthetic data represent plausible outputs of a radiometric instrument and

enable testing and validation of the method. The MLEs for these data are found to be

approximately unbiased, and confidence intervals derived from the bootstrap replicates

are found to be consistent with their target coverage of 95 %. For the polynomial

coefficients, the observed coverages range from 91 % to 99 %. The experimental data

set illustrates how a complete calibration with uncertainties can be achieved using the

method plus one well-known flux level. The uncertainty contribution attributable to

estimation of the instrument’s nonlinear response is less than 0.025 % over most of its

range.

Keywords: Satellite Based Measurements, Spectroradiometer, Calibration, Maximum

Likelihood, Bootstrap

1. Introduction

Indicating instruments, such as spectroradiometers, pressure gauges, or scales, require

calibrations so that their output may be considered a measurement result [1]. However,

such instruments are often calibrated using only a small number of known stimuli, while

the subsequent calibrations are expected to be valid over a dynamic range that can
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span several orders of magnitude. If an instrument’s response is known to be perfectly

linear in the stimulus, only a single known non-zero stimulus, combined with estimates

of uncertainty, is required for calibration. Thus, assessing and correcting the linearity

of an instrument’s response is a critical component of instrument calibration.

One method for assessing linearity is the “flux-addition” method or the

“combinatorial technique.” The method is used in the calibration of many types of

instruments [2]. The technique exploits the property of a linear function f(a + b) =

f(a)+ f(b) to construct a system of equations that enables the recovery of the response

function of an indicating instrument, up to an overall scaling factor, using a set of

unknown stimuli.

A technique for recovering the response function involves assuming a polynomial

form and setting up a system of equations that includes both the coefficients of

the polynomial and the unknown stimuli. This system can be solved using either

pseudoinverse methods or numerical optimization routines. However, because both

the stimuli and the response function are unknown, additional constraints are needed

to obtain a unique solution. We know of no published method to recover rigorous

uncertainty statements, such as confidence intervals, about the estimated parameters.

While repeating the experiment until a sufficient number of estimates of the parameters

are generated to characterize the uncertainty to the desired level would work, it is not

an efficient use of resources. Instead, here we develop a maximum likelihood inversion

technique that, in concert with a bootstrap algorithm [3], may be used as part of a

full uncertainty analysis when calibrating an indicating instrument. This algorithm is a

novel contribution of this paper. We then apply this technique to two systems. The first

system is synthetic data based on simulations of a light source and radiometer similar to

that used in calibrations of Earth observing satellites, and the second system is NIST’s

optical Beam Conjoiner [4].

In the simulation, we make a direct comparison of the recovered parameters to the

known inputs, enabling an evaluation of the algorithm’s performance. We also explain

how in the case of calibrations of imagers, a linear calibration may be achieved even in

the presence of non-uniform illumination, a critical problem in the calibration of remote

sensing instruments, which may have many pixels that observe different parts of a

calibration standard. In the application to the Beam Conjoiner, we compare the results

of the new method to the results obtained using the traditional inversion technique.

We also show how uncertainty in the estimated nonlinear detector response can be

incorporated into a calibration using the output from the bootstrap algorithm.

The remainder of the article is organized as follows: Section 2 describes the

probabilistic model and techniques used to estimate the fluxes and polynomial

coefficients as well as quantify uncertainty in those estimates. Section 3 presents the

results of a simulation study using realistic assumptions based on NIST’s experience

calibrating earth observing satellites. Section 4 presents results for an experimental data

set collected at NIST using the Beam Conjoiner and a commercial spectroradiometer.

Finally, Section 5 summarizes the main contributions of the article.
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2. Methods

Consider an indicating instrument output n in response to a stimulus Φ. In the absence

of noise, an instrument has an ideal linear response when n ∝ Φ. We are concerned in

this paper with instruments that can be described by a relation n = h(Φ), with h some

well-behaved, monotonic, continuous function. In this case, it is of interest to find a

“linearizing function” h−1 so that h−1(n) = Φ. This is a “linearizing function” in the

sense that its output is proportional to the stimulus. For instruments with responses

of the type considered here, the linearizing function h−1 can be approximated by a

polynomial

h−1(n) = β0 +

p∑
m=1

βmn
m,

with p chosen to achieve good accuracy. Overfitting is avoided through a constraint

in our statistical model. Other functional forms, such as splines, may be substituted

into the method presented here, but for concreteness we restrict the development to

polynomial functions.

To use a single known non-zero stimulus to calibrate an indicating instrument,

a first step is to estimate the shape of the linearizing function h−1. We reduce this

problem to estimating the above coefficients, up to an unknown scale factor, following

the lead of Ref. [2]. The method is variously called the combinatorial technique, or in the

case of radiometric calibrations, the flux-addition or Beam Conjoiner method. No prior

knowledge of the magnitude of the stimuli is required, although they must be stable,

repeatable, and chosen to sample the dynamic range of the instrument. The technique

enables estimation of the magnitude of the observed stimuli and the coefficients of the

the linearizing function, up to the aforementioned overall scale factor. Next, a bootstrap

algorithm enables quantification of uncertainty in the parameters. Finally, measurement

of a known stimulus then constrains the overall scaling of all measured parameters.

In the method presented here, all three steps originate from a generative

probabilistic model. The model is generative in the sense that it could be used to

generate data that mimic those from a real-world experiment. It is probabilistic in

the sense that such data would be generated from a joint probability distribution, not

deterministically. The model is described next.

2.1. Statistical Model

For concreteness, we develop our model in the context of calibration of a radiometric

measurement device that is viewing a lamp illuminated integrating sphere with a set

of J > 2 lamps that can be switched on and off. This choice was made because of

an interest in optical satellite calibrations, but it does not restrict generalization of the

model to other systems. Integrating spheres with two variable light sources have been

considered for linearity characterization before [5]. Variable light sources can easily be

accommodated in our model by considering each specified level to be a separate lamp
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and restricting the allowed configurations such that one light source cannot have more

than one level on at once. An additional method, which we describe after this simpler

version of the model, allows the introduction of correlations between these levels, as

might be the case when using a variable aperture. The first model is described by the

relations

ni ∼ Normal

(
α0 +

p∑
m=1

αmPm (s(Φi)) , σ
2

)
Φi =

∑
j

xijϕj

max
i

{Φi} ∼ Normal
(
Φmax, τ

2
)

(1)

αm ∼ Normal
(
0, γ2

)
for m > 1

γ ∼ Exponential (λ) ,

where ∼ indicates that the quantity on the left follows the distribution on the right,

Normal (µ, ξ2) is the normal distribution with mean µ and standard deviation ξ,

Exponential (λ) is the exponential distribution with mean λ, ni is the instrument reading

from data point i, Φi is the stimulus (here a flux) for data point i, s is a linear

transformation of Φi to the interval [−1, 1], Pm is the Legendre polynomial of order

m [6], α = (α0, . . . , αp) is a vector of polynomial coefficients, ϕj is the flux of lamp j,

xij takes the values 0 or 1 for lamp j being off or on in data point i (and the values are

restricted to only physically allowed configurations in the case of variable light sources),

σ represents noise, Φmax estimates the maximum flux, τ is the uncertainty in the estimate

of the maximum flux, γ is a penalty parameter that pulls the regression coefficients

towards expected values a priori, and λ is another penalty parameter that disallows

very large values of γ. The noise represented by σ may be due both to instrumental

sources and noise in the stimulus. The ni, the xij, Φmax, τ , and λ are taken to be fixed

quantities and are inputs to the model. All other parameters, i.e., ϕ = (ϕ1, . . . , ϕJ), α,

γ, and σ are estimated by maximum likelihood and those estimates are called maximum

likelihood estimates (MLEs)‡. If the parameter σ were known or estimated from a

separate experiment, it could be treated as a known fixed quantity. The assumption

of normally distributed homogeneous noise is not a unique possible choice, and the

exact noise behavior of the model must be tuned to match the system under study (see

Section 2.5 for an example).

The constraint maxi {Φi} =
∑

j ϕj ∼ Normal (Φmax, τ
2), represents a measurement

with all lamps on, and sets a scale for the solution. The value of τ should be no larger

than σ, and choosing a value much much less than this can impose maxi {Φi} = Φmax

as a hard constraint. The constraints αm ∼ Normal (0, γ2) for m > 1 reduce overfitting

for a given p. Without the first constraint, the estimation problem is ill-posed, and

the second constraint helps to ease the burden of choosing a single optimal value of p

(see Section 2.6). The higher order coefficients are forced toward zero by our imposed

‡ See for example Chapters 4 and 5 of [7]
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constraints, due to our restriction to well-behaved instruments. Note that the ni are

described in terms of a forward model that is polynomial in the fluxes; a calibration is

expected to result in coefficients that give the fluxes in terms of a polynomial in the ni.

This is discussed further in Section 2.2

The strength of the forcing of the polynomial coefficients, to balance prediction

variance and bias, is a parameter that is optimized within the model and thus not

arbitrary. This forcing is related to the technique known as ridge regression, introduced

originally in [8], and the technique known as LASSO (for “Least Absolute Shrinkage

and Selection Operator”), originally introduced in [9]. Since the Gaussian distribution

is leveraged to achieve the shrinkage, the similarity to ridge regression is more striking.

It also resembles standard Bayesian treatments of regression problems, see for example

Section 14.8 of reference [10], which uses Gaussian prior distributions for regression

coefficients, and [11] which uses Laplace prior distributions.

The statistical model assumes stability and repeatability of lamp flux levels over

the duration of the acquisition of the ni. That assumption is reflected in Equation (1)

by the fact that the lamp fluxes, the ϕj, do not change across a data set (i.e., they don’t

depend on i). However, integrating spheres have variable throughput that depends

on the average reflectance of the interior surface, and light sources change over time.

In Section 3, the effects of variable throughput on the MLEs are examined, and we

incorporate changing light sources into our synthetic data to investigate how this affects

the utility of the method.

Up to constant terms, the log-likelihood function corresponding to Equation (1) is

ℓ(Φ,α, γ, σ) = − 1

2σ2

 N∑
i=1

(
ni − α0 −

p∑
m=1

αmPm(s(Φi))

)2
−N log σ

− 1

2τ 2

(
J∑

j=1

ϕj − Φmax

)2

− 1

2γ2

[
p∑

m=2

(αm)
2

]
− (p− 1) log γ − λγ. (2)

Equation (2) is based on a joint probability distribution, so by definition, it is a

generative model.

The integrating sphere used calibrate the Orbiting Carbon Observatory-2 [12] has

10 lamps, and a single lamp with a variable aperture. To make our model more like

this, we make one of the lamps a variable aperture. Under the assumption that there

are J lamps with lamp J having a variable aperture, we modify Φi from Equation (1)

to

Φi =
J−1∑
j=1

xijϕj +
Nv∑
k=1

x
(J)
ik ψkϕJ (3)

where the first sum represents the lamps without a variable aperture and the second sum

represents the lamp with the variable aperture. The ψk, which represent the fractional
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opening of the variable aperture, are constants in the interval [0,1] to be estimated. The

x
(J)
ik are indicator variables which take the values 0 and 1. At most one of x

(J)
ik is 1, but

they can all be 0. With J lamps including a single variable aperture lamp taking one

of Nv levels if illuminated, there are 2J−1(Nv + 1) unique lamp settings.

A detail of integrating spheres is left out of our model for simplicity. An integrating

sphere is a diffuse optical cavity whose throughput will change depending on how it is

loaded by opening and closing shutters. Experience with the integrating sphere used in

[13] indicates that this effect can be at the 0.1 % level, and it can be accommodated

by multiplying the fluxes ϕj with experimentally determined configuration factors. The

experimental determinations would be made by turning on a single lamp and measuring

flux changes as other shutters are opened and closed.

2.2. Linearization Function

The model in Equation (1) is a forward model in the sense that for given values of

the lamp fluxes, the polynomial coefficients, and the noise, the probability distribution

for the instrument signal is fixed. However, the goal of calibration in this context is

to predict the flux viewed by the detector corresponding to the instrument response.

This means that to achieve a calibration, we must invert the polynomial equation

E[n] = α0 +
∑p

m=1 αmPm(s(Φ)), where E[n] is the expected instrument reading for

the flux Φ. Because we are restricted to well-behaved, monotonic functions, the inverse

function is also approximated by a polynomial,

Φ = β0 +

p∑
m=1

βmE[n]
m. (4)

To estimate the parameters β0, . . . , βp, from α0, . . . , αp, a regular sequence of values

is constructed over the interval [−1, 1] and transformed by s−1, the inverse of the

linear transformation s. Denote this sequence Φ̂ℓ, with ℓ = 1, . . . , L. The maximum

likelihood estimates of α0, . . . , αp are α̂0, . . . , α̂p, and we construct Ê[nℓ] = α̂0 +∑p
m=1 α̂mPm(s(Φ̂ℓ)). Finally, ordinary least squares is used to estimate β = (β0, . . . , βp)

by minimizing
∑L

ℓ=1

(
Φ̂ℓ − β0 −

∑p
m=1 βmÊ[nℓ]

m)2
. The estimate is β̂ = (β̂0, . . . , β̂p).

2.3. Uncertainty

Maximizing Equation (2) yields the MLEs for ϕ, α, γ, σ, and ψ but does not yield

a quantitative uncertainty for those estimates. To get this uncertainty, we use the

statistical bootstrap. This is a more efficient use of data than an alternative approach of

repeating the experiment and analysis a sufficient number of times so that uncertainties

could be calculated from the distribution of results.

Uncertainty for all parameters is quantified by a bootstrapping pairs approach [see

Section 7.2 and 9.5 in Ref. 3, for example]. A “pair” is a response ni together with

a configuration xi. The N pairs of (ni, xi) are sampled at random N times with no

restriction on how many times a particular pair may be sampled. Some pairs in the
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original dataset will appear more than once and some will not appear at all in this new

bootstrap replicate. Thus, each bootstrap replicate data set will differ from the original

data set, and an MLE calculated from a bootstrap replicate data set will differ from

the original MLE. The distribution of replicate MLEs approximates the true sampling

distribution of the MLE, and so may be used to calculate standard errors and confidence

intervals. The standard error is the standard deviation of the set of bootstrap replicates,

while confidence intervals are determined by computing quantiles. For example, a 95 %

confidence interval is calculated by selecting a range that includes the central 95 % of

bootstrap replicates.

While the bootstrap algorithm accounts for sampling variability, it does not account

for other sources of uncertainty like model uncertainty, i.e., the mismatch between the

model and reality. One potential mismatch is that the model in Equation (1) assumes

that the ϕj, j = 1, . . . , J are constant throughout the experiment. If the fluxes of the

lamps drift during the experiment, this is not true, but it may be accounted for in the

bootstrap algorithm by also randomly perturbing Φmax for each bootstrap sample. In the

synthetic data in Section 3.1 two cases are considered, with lamps drifting independently

of each other, and drifting together identically. These two cases represent possible

extremes. Importantly, in the flux-addition method, the stimuli are applied in random

order so that systematic drift in the lamps is converted into random noise.

To account for the possibility that the lamps drift during the experiment, Φmax

in Equation (1) is perturbed by Gaussian white noise with variance Var [maxi {Φi}] =
Var

[∑
j ϕj

]
for each bootstrap replicate. This can work well even if the individual

lamps drift according to a distribution other than a Gaussian distribution because the

assumption of Gaussian drift is placed on the sum of the lamp fluxes, which by the

central limit theorem may be reasonable even if the individual lamps drift according

to a different distribution. The value of Var
[∑

j ϕj

]
is an input to the analysis

procedure, and it is similar to a prior distribution in Bayesian inference. It must be

based on additional data collected during or externally to the calibration experiment.

For example, the experimenter could characterize the magnitude of the drift using a

separate stable detector observing repeated light levels over time during the calibration

experiment.

2.4. Bootstrap Sample Size Determination

The bootstrap, as a general purpose technique for calculating standard errors and

confidence intervals, is justified asymptotically. That is, for small samples, it may

not work well. A natural question is then, how small is too small? The authors of [14]

assert that as long as the sample size is large enough that it is likely that all bootstrap

replicates will be unique, the results of the procedure should be “reliable.” They go on

to propose sample sizes such as 20, 30, and 50, drawing from the work of [15] and [16] for

further support. In the experimental scenarios considered here, very small samples sizes

are not expected. However, there are further considerations for applying a bootstrap
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algorithm to the cases we consider here, namely that each bootstrap replicate must

sufficiently cover the whole response range [0,Φmax].

Consider for pedagogy Φmax = 1, and the following sequence of target fluxes

Φi = 7.5 × 10−5 · 1.099i, i = 1, . . . , 100. The sequence starts at about 8.2 × 10−5, and

ends at about 0.94. However, only 7 values (less than 10 %) are larger than 0.5. The

sequence was chosen for illustrative purposes, but in the Beam Conjoiner application of

Sections 2.5 and 4 a non-uniform sequence of fluxes with more small fluxes is observed.

The non-uniformity is important because in each bootstrap replicate, the probability

that any one observation will be left out of a bootstrap replicate is approximately e−1, a

little more than 1
3
. Thus, in the illustrative example 6 or 7 of the fluxes greater than 0.5

would be left out of about 1 out of every 100 bootstrap replicates, and 5 or more would

be left out of about 1 out of every 16. For some bootstrap replicates, this will cause poor

coverage of the flux range (0.5, 1.0), which will significantly degrade the performance

of the bootstrap algorithm there. For example, when p is large, the bootstrap replicate

of the non-linear detector response can fluctuate unrealistically in flux ranges with no

data points. Fortunately, problems are easily diagnosed with graphical checks described

in Section 4. In cases where poor coverage of the flux range may arise, we recommend

either changing the experiment design to avoid a non-uniform sequence of flux values

or to obtain repetitions.

2.5. Beam Conjoiner

In Section 4, we describe the results of an application of the methods here to data

from the NIST Beam Conjoiner, an instrument which is described in detail in [4] and

briefly here. The Beam Conjoiner comprises a light source (typically a single quartz

tungsten halogen lamp) whose output is collimated and split along two different paths.

Each beam passes through one neutral density filter wheel (filter 1 and filter 2) with

four levels filters as well as a blocking insert. The beams are recombined and directed

through a third, shared, neutral density filter wheel (filter 3) with five levels filters and

a blocking insert before being viewed by the instrument. The forty filter combinations

enable a dynamic range of signals of about 500 in a single measurement scan of all of the

combinations. Additional ranges are achieved using an external neutral density filter

wheel which then can be used to obtain a dynamic range of 14 orders of magnitude [17].

A schematic of the beam conjoiner is given in Figure 1.

To use the model in Equation (1), we make a slight adaptation for use with the

beam conjoiner. There are different and equivalent ways to adapt Equation (1). The

simplest is to label every combination of settings for filter 1 and filter 3 as one “lamp”

and every combination of filter 2 and filter 3 as another “lamp”. Then constraints on

the xij are imposed to ensure that only physical combinations are enumerated. Thus

if the xij are represented as an N × 40 matrix, each of the first and last 20 columns

would have at most a single nonzero value in each row, with each of these nonzero values

representing a particular filter combination.
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Figure 1: Schematic diagram of the Beam Conjoiner showing the primary elements.

Filter wheels are tilted so that reflections are directed into the anti-reflection coated

floor of the apparatus.

In our analysis of the data, we found a modification to the noise model to be

necessary. We had made a simplifying assumption that instrumental noise would

dominate, as represented by a single parameter σ that is constant across a data.

However, in some systems, electronic noise will dominate at low signal levels and at

high signal levels the light source and photon shot noise will dominate. As a result, σ

from Equation (1) becomes σi, and for the Beam Conjoiner application takes the form

σi =

{
σΦi if Φi > κ0Φmax

σκ0Φmax if Φi ≤ κ0Φmax.
(5)

In Equation (5), the noise is assumed constant until the flux exceeds κ0Φmax, and after

that it is assumed proportional to the flux, as would be appropriate in a case where

fluctuations in the light source but not shot noise are dominant.

2.6. Polynomial Order

For real-world data, it is necessary to choose the polynomial degree p. The typical

approach to choosing such a model parameter is to balance the trade-off between

prediction variance and bias. As p increases, so too does the prediction variance, but

prediction bias simultaneously decreases.

The likelihood in Equation (2), attempts to balance the bias-variance trade-off
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ID identical lamps linear drift correlated drifts

1 ✓ 0 % NA

2 ✓ 0.5 % ✗

3 ✓ 0.5 % ✓

4 5 % range 0.5 % ✓

Table 1: The four conditions considered in the simulation study. NA means “not

applicable.”

automatically through the parameter γ. As γ approaches zero, the αm for m =

2, . . . , p approach zero. In this limit, variance is minimized (zero variance), but bias

is maximized. Conversely, as γ approaches ∞, bias is minimized, but variance is

maximized. By estimating γ along with the other parameters, the two extremes are

balanced. This implies that p should be chosen to be very large to allow bias and thus

mean squared error to be minimized, and that minimization is part of the estimation

process. If p is too small, the bias will be artificially inflated.

Practically, however, p cannot be chosen to be arbitrarily large. A range of values

of p producing an optimal and stable MSE may be identified by K-fold cross validation

(see for example Chapter 5 of [18]). Briefly, to carry out K-fold cross validation, the

complete data set is partitioned at random intoK parts. The MLEs are calculated based

on K − 1 parts, and those estimates are used to predict the instrument responses from

the left out part. An MSE is calculated using the predicted and observed instrument

responses. The process is repeated K times leaving each part out of the estimation once,

resulting K MSEs.

3. Simulation Study

The methodology described in Section 2 was tested using synthetic data under four

conditions of practical interest, listed in Table 1. For each condition, 100 sets of

instrument readings, the ni, were generated. For each set of ni, the methodology of

Section 2 was applied, and the results compared to the known truth. The comparisons

are presented in Section 3.2. The generation of the sets of instrument readings are

discussed next.

3.1. Signal Simulation

To generate one set of instrument readings ni, the lamp configurations, xij and x
(J)
ik ,

are first defined. The number of lamps is taken to be J = 7. One lamp has a variable

aperture and the number of open variable aperture positions Nv = 4 is used. These

choices are arbitrary but similar to values on existing spheres used for calibration of

remote sensing instruments [12, 19]. For the six lamps that do not have a variable

aperture, there are 26 = 64 possible off/on configurations. The variable aperture
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lamp can take on 5 possible states, off, on at full intensity, or on at one of the three

intensities that are lower than full intensity. This gives 64 × 5 = 320 possible lamp

configurations. Each simulated data set contains all 320 possible lamp configurations,

plus five repetitions with all lamps off and five repetitions with all lamps on at full

intensity, giving a total of N = 330 data points in each data set.

Next, values are chosen for the ϕj, j = 1, . . . , 7, ψk, k = 1, . . . , 4, and β0, . . . , βp. In

all simulations, p = 3, ψ1 = 0.25, ψ2 = 0.5, ψ3 = 0.75, β0 = 0.5, β1 = 1, β2 = 0.022,

and β3 = −0.008. Note that all quantities here are chosen to be dimensionless, as our

procedure for recovering the inputs is used on normalized data. For simulation 1, where

the lamps are identical and do not drift, ϕj = 1
7
, j = 1, . . . , 7. To represent drift in

the simulations 2 through 4, each initial ϕj = 1
7
is multiplied by a random number

between 0.995 and 1.005 times the number in the sequence of data points divided by

N . In simulation 2 with “uncorrelated drifts”, a different random number is used for

each lamp in each data set. For simulations 3 and 4, which have “correlated drifts”, the

same random number is used for all lamps, with a different number used in each data

set. For simulation 4, the ϕj are randomly selected to be within approximately 2.5 %

of 1
7
, subject to a sum to unity constraint. This is summarized in Table 1.

Given values for all of the xij, x
(J)
ik , ϕj, and ψk, Φi =

∑J−1
j xijϕj +

∑Nv

k x
(J)
ik ψkϕJ

(for readability, the drifts are omitted here). Then, Φi is perturbed by Gaussian white

noise with standard deviation 1.1× 10−4
√
Φi (to represent shot noise) yielding Φ̃i. This

value is for illustrative purposes. The magnitude of the shot noise selected here is in

only slight conflict with the homogeneous noise model of Equation (1), but a real-world

application may require tuning of the noise model, as is done in Section 2.5. We found

improved numerical convergence when using the homogeneous model, and it did not

result in bias, as evidenced in the results section below.

Given values for all of the βm, ñi is obtained by solving the equation

Φ̃i = β0 +

p∑
m=1

βmñ
m
i .

Because we restrict our analyis to well-behaved instruments with monotonic responses,

there is a unique real solution. Finally, Gaussian white noise (electrical noise) with

standard deviation 10−3 is added to the ñi to yield ni. Because of the arbitrarily chosen

nonzero value for β0 = −0.5, −0.5 ⪅ ni ⪅ 0.5.

3.2. Results

To apply our method, values for Φmax, τ , and λ must be selected. Since for each

simulation, the true values of the ϕj j = 1, . . . , 7 are exactly 1
7
, or on average 1

7
in the

case of the simulations 2, 3, and 4, Φmax is set to unity. The values for τ and λ are

0.001 and 1, respectively. For the bootstrap algorithm, it is also necessary to specify

Var [maxi {Φi}] = Var
[∑

j ϕj

]
, as described in Section 2.3. For simulation 1, it is set to

zero since the lamps do not not drift. For simulations 2 and 3, it is set to 0.00055, and
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for simulation 4, 0.0014. The values for simulations 2, 3, and 4 are based on the known

distribution of the amount of drift for the lamps.

Figure 2 shows the recovered MLEs for β0, β1, β2, and β3 for 100 simulated data

sets for each of the 4 simulation scenarios described in Table 1. The points are the

MLEs ordered from smallest to largest, and the shading represents 95 % confidence

intervals. The black vertical lines are the true values, and the numbers to the right are

the proportion of confidence intervals that bracket the true value, the target being 0.95.

From Figure 2, it can be seen that the true values of β0, β1, β2, and β3, lie around the

center of the 100 maximum likelihood estimates for each scenario. This implies that

the estimation procedure is approximately unbiased. To put it another way, the true

values are approximately equal to the estimates, on average. For β0 and β1, for the 100

simulations pictured, the observed relative bias is less than 0.1 %. For β2 it is less than

1 %, and for β3, it is less than 4 %.

Also from Figure 2, it may be seen that the bootstrap procedure described in Section

2.3 achieves its nominal coverage of 95 % for β0, β1, β2, and β3. This claim is tenable even

though only one of the values on the right side of Figure 2 is exactly 0.95. Because of

the finite number (namely, 100) of data sets for each simulation, 1 of the 16 proportions

in Figure 2 is expected to lie outside of the interval (0.91, 0.99) even if the true coverage

is exactly 95 %, none do. Another important observation from Figure 2 is that for β0
and β1 the confidence intervals are shortest for simulation scenario 1, and longest for

scenarios 3 and 4. This occurs because of the extra uncertainty introduced into the

bootstrap algorithm that is intended to account for lamp drift during the experiment.

The widths of the confidence intervals for scenario 2 are in between the two extremes of

perfectly correlated drift between the lamps in scenarios 3 and 4 and no drift in scenario

1. The widths of the confidence intervals for β2 and β3 do not vary systematically

between the simulations, implying that uncertainty for those higher order coefficients is

primarily due to sampling variability not lamp drift.

Figure 3 shows similar results as in Figure 2, but for ψ1, ψ2, and ψ3. Again, the

true values are centered around the 100 maximum likelihood estimates, implying that

the estimators are unbiased. The observed relative biases are less than 0.1 %. Further,

the coverage proportion of the confidence intervals is consistent with the nominal 95 %.

In Figure 3, it is also observed that the widths of the confidence intervals between

simulations are similar. As with β2 and β3, this implies that the dominant component

of uncertainty for ψ1, ψ2, and ψ3 is sampling variability, not lamp drift.

Figure 4 is similar to Figures 2 and 3, but for ϕ1, . . . , ϕ7. Simulation scenario 4

is not plotted because lamps are not assumed to be nominally identical as in scenarios

1, 2, and 3. Again, the true average lamp fluxes are centered about the 100 maximum

likelihood estimates, implying no bias. The observed relative biases are less than 0.1 %.

On the other hand, for simulations 2 and 3, the coverage proportions of the confidence

intervals are not consistent with the nominal 95 %. This occurs because the lamp fluxes

are not exactly 1
7
, but instead drift around 1

7
during the experiment. The deviation of

the coverage proportions from the nominal coverage for ϕ1, . . . , ϕ7 when the lamps drift
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Figure 2: Results for β0, β1, β2, and β3 for 100 simulated data sets for each of the

4 simulation scenarios described in Table 1. The points are the MLEs ordered from

smallest to largest, and the shading represents 95 % confidence intervals. The vertical

axis indexes the data set within a simulation, 1 to 100. The black vertical lines are the

true values, and the numbers to the right are the proportion of confidence intervals that

bracket the true value.
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Figure 3: Results for ψ1, ψ2, and ψ3 for 100 simulated data sets for each of the 4

simulation scenarios described in Table 1. The points are the MLEs ordered from

smallest to largest, and the shading represents 95 % confidence intervals. The vertical

axis indexes the data set within a simulation, 1 to 100. The black vertical lines are the

true values, and the numbers to the right are the proportion of confidence intervals that

bracket the true value, the target being 0.95.
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Figure 4: Results for ϕ1, . . . , ϕ7 for 100 simulated data sets for the first 3 of 4 simulation

scenarios described in Table 1. The points are the MLEs ordered from smallest to

largest, and the shading represents 95 % confidence intervals. The vertical axis indexes

the data set within a simulation, 1 to 100. The black vertical lines are the true values,

and the numbers to the right are the proportion of confidence intervals that bracket the

true value, the target being 0.95. The 4th simulation scenario is not presented because

there is not a single true value. Tick marks refer to the same values in all graphs.

is not concerning since the modified bootstrap algorithm accounts for the variation due

to drift through Φmax, which affects the individual ϕj only indirectly through their sum.
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The simulation scenarios considered here show that the maximum likelihood

estimation procedure and the non-parametric bootstrap algorithm work well for

estimating nonlinear detector response as well as variable lamp intensities. For the

simulations where the lamps do not drift during the experiment, the procedures also

work well for estimating the true lamp intensities. The only cases for which the bootstrap

algorithm did not convey good estimates of the uncertainty were simulation scenarios 2

and 3 (and 4, although not presented) for the true lamp intensities, ϕ1, . . . , ϕ7. In those

simulations, the lamps are assumed to drift during the experiment, and so in reality there

is no single true value to compare the estimated lamp intensity to. Thus, we do not

find it concerning that the coverage proportions for the bootstrap confidence intervals

are not consistent with the target 95 %. However, even in the case of drifting lamps,

the maximum likelihood estimates center around 1
7
because, over the 100 simulations,

it is the average lamp intensity.

4. Beam Conjoiner

A dataset to evaluate the linearity of a spectroradiometer belonging to NIST was taken

on the beam conjoiner. A total of four runs through each of the 150 filter wheel positions

is included in our dataset. For the present work we average across a small set of pixels

near the peak of the spectrum and use our methods to extract the nonlinearity.

Some practical matters must be addressed before applying our methods to the Beam

Conjoiner data. First, we study the required polynomial order, per Section 2.6. The

results of this study are shown in in Figure 5. For 8 ≤ p ≤ 15, the distributions of points

(blue circles) and means (orange circles) are nearly identical; although, the minimum

mean is achieved for p = 10. Based on Figure 5, any p in the range of 8 ≤ p ≤ 15 is a

reasonable choice. The values of MSE in Figure 5 may be interpreted in the following

way: when p is small, prediction bias dominates the MSE. As p increases, prediction

bias decreases, and the γ parameter in Equation (2) automatically balances the trade

off between prediction bias and variance, which produces a range of p for which the

MSE is optimal and stable.

The quantity κ0, representing the flux level at which noise from the light source

begins to dominate, from Equation (5) must also be chosen. In this case it was done by

inspecting residuals after fitting the constant noise model, and κ0 = 0.2 was selected.

It is also necessary to select Φmax, τ , λ. As in the simulations, Φmax and λ are set to

unity and τ = 0.0001. Since we set Φmax = 1, the ni are also scaled to the interval [0, 1]

before the analysis.

The results of this section do not expand uncertainty by perturbing Φmax in the

Monte Carlo bootstrap algorithm, but in practice, it may be necessary, depending on

the deployment conditions. This makes it analogous to the conditions in simulation

scenario 1.

Figure 6 plots the residuals ni− α̂0−
∑p

m=1 α̂mPm(s(Φ̂i)) for p = 10 on the vertical

axis versus the estimated fluxes Φ̂i on the horizontal axis. As noted previously, and
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Figure 5: The 10-fold cross validation error plotted as a function of the polynomial

degree p for the Beam Conjoiner data discussed in Section 2.5. For each polynomial

degree, the 10 estimates of root mean squared prediction error (MSE) are plotted (blue

circles) as well as the square root of the average MSE (orange circles).

accounted for by Equation (5), the increasing noise with flux is apparent in Figure 6.

The residuals at each estimated flux level are symmetrically distributed around zero.

This implies that the model described in Equation (1), with the modifications detailed

in Section 2.5, represents the Beam Conjoiner data well. The light red band in Figure 6

depicts 95 % pointwise prediction bounds for the residuals. The target 95 % coverage of

the prediction bounds is achieved. This implies that the bootstrapping pairs algorithm

properly accounts for uncertainty in the estimated model parameters and that the model

for the noise in Equation (5) is appropriate. The light grey band in Figure 6 depicts

95 % pointwise confidence bounds for the mean residual. By construction the band

contains zero, but at higher flux values and those where there are fewer observed data,

the bands widen indicating more uncertainty in the average residual.

Figure 7 shows the estimated nonlinear detector response where the horizontal axis

represents flux and the vertical axis the detector response; the dashed green line is the

diagonal, the black curve is the estimated mean detector response, and the red points

are instrument readings, ni. Note that in Figure 7 the deviation between the diagonal

and the estimated mean detector response has been exaggerated; otherwise, visually,

the curves are indistinguishable. Figure 8 shows the estimated non-linear response in

a different way, depicting differences between the estimated expected detector response
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Figure 6: Residuals versus the estimated fluxes (blue points), 95 % pointwise prediction

bounds for the residuals (light red band), and 95 % pointwise confidence bounds for the

mean residual.

and the diagonal (black curve), bootstrap replicates of that difference (blue curves), and

differences between the the observed detector responses and the diagonal (red points);

the diagonal in Figure 7 becomes a horizontal line at zero in Figure 8. No exaggeration

for visual effect is needed in Figure 8. There are 986 bootstrap replicates shown because

14 of the attempted 1000 bootstrap replicates encountered failures in optimization of the

likelihood function. The Beam Conjoiner data exhibit statistically significant nonlinear

behavior as seen in Figure 8, where the bootstrap replicates do not envelop zero. The

orange curve in Figure 8 is discussed below in Section 4.1.

We recommend that users graphically check the fit of the model to the data. At

a minimum, figures such as 6 and 8 should be examined. For example, in Figure 6,

if the residuals were not symmetrically distributed around zero for each value of Φ̂,

p should be increased. Also in Figure 6, the 95 % prediction bounds should envelop

about 95 % of the residuals, and if they do not, the noise model should be modified. In

Figure 8, both the estimated non-linearity and the bootstrap replicates of it should be

examined for unrealistic fluctuations. As explained in Section 2.4, by random chance,

some bootstrap replicate data sets may cover the flux range of interest poorly, which can

lead to unreasonably large oscillations of the estimated non-linearity for those replicates.

Potential remedies are suggested in Section 2.4.
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Figure 7: The horizontal axis depicts the flux, and the vertical axis depicts the

instrument reading. The black curve is the MLE of the expected instrument reading.

The red points depict the observed ni. The deviation between the expected detector

response and the (green dashed) 1:1 diagonal are exaggerated by a factor of 25;

otherwise, the curves would be visually indistinguishable.

4.1. Comparison to an Existing Approach

The method for estimating β0, . . . , βp, ϕ11 . . . ϕ1J1 , and ϕ21, . . . , ϕ2J2 from Ref. [4] is

based on optimizing a least-squares-like objective function. Using similar notation

Equation (2), one form of the objective function is

O =
[
Φmax −max

i
{Φi}

]2
+

N∑
i=1

[(
β0 +

p∑
m=1

βmn
m
i

)
− Φi

]2
. (6)
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where the first term fixes the normalization of the problem. An alternative to this

normalization, as is done in [4], is to set the coefficient of the linear term to unity.

The largest difference between the use of this objective function and our model is the

firm statistical justification on which our model lies. While the objective function often

“works,” it is challenging to understand where its limitations may lie. Mathematically,

the objective function, unlike our model, is not derived from a generative probability

model as is the likelihood function in Equation (2). We consider it to be a best practice

when making statistical inferences from data to begin with a generative probability

model, and indeed it is a requirement in two major paradigms of statistical inference:

maximum likelihood and Bayesian inference. Further, the model presented in this paper

has been adapted to deal with differing spread in the residuals at different signal levels

apparent in Figure 6. This adaptation has not been done with the objective function.

For comparison with our method, Figure 8 includes an estimate of detector

nonlinearity based on minimization of the objective function (orange curve). The two

procedures produce similar estimates. The largest differences are found at high values

of flux where there is more distinction between the approaches since the maximum

likelihood approach of this work accounts for increasing variability in the detector

response as flux increases. The estimate of nonlinearity based on Equation (6) is also

within the range of the bootstrap replicates of the estimated nonlinearity based on

Equations (1) and (2) (light blue curves). These observations provide further confidence

in the proposed approach.

To recap, both approaches produce similar estimates of the nonlinear behavior of

the detector, but the approach proposed herein adds flexibility, a mechanism for choosing

the degree of the polynomial, p, and rigorous confidence and prediction intervals that

may be used to express uncertainty in the results.

4.2. Calibration

A final step in producing a calibration using the Beam Conjoiner is to scale the results

using a single, known flux level. To isolate the uncertainty in a calibration due to

nonlinearity, we perform an analysis assuming we have a single known flux level Φref

with zero uncertainty. Also, the average detector response, E[nref ] is considered to have

been measured a sufficient number of times to have negligible uncertainty. Extending

the result to nonzero uncertainty in the Φref may be performed using Monte Carlo error

propagation techniques, though we emphasize that what we show here is uncertainty

due to estimation of the linearization function, which is not affected by uncertainty in

the reference measurements.

Uncertainty estimation is done by applying the calibration to every bootstrap

replicate individually, so that each predict a flux of exactly Φref when n = E[nref ]. Each

bootstrap replicate represents a plausible shape for the response of the instrument, and

a calibration scales and offsets these so that each give the same result at zero signal

and at the single calibration level. The uncertainty attributable to empirical estimation
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Figure 8: The horizontal axis depicts the flux, and the vertical axis depicts the

instrument reading minus the flux. The black curve is the estimated expected instrument

reading minus the flux where the estimated expected instrument reading is calculated

by the methods described in the present work. The blue curves are bootstrap replicates

(as described in the present work) of the estimated expected instrument reading minus

the flux. The red points depict ni minus the estimated flux for data point i, Φ̂i where

the Φ̂i are calculated by the methods described in the present work. The orange curve

is an estimate of the expected instrument reading minus the flux based on Equation (6)

and [4].

of the linearization function is then represented by the spread in the scaled bootstrap

curves as illustrated in figure 9a, where we have taken E[nref ] = 0.5 and Φref = 0.5,

which are chosen because indicating instruments are generally designed to perform well

at midrange. Figure 9b represents these data as a relative uncertainty. It may be seen

directly in Figure 9b, that for most of the range of Φ̂cal, the bootstrap replicates are

within 0.025 % of the calibrated maximum likelihood result.

5. Summary

This article investigates the problem of quantifying uncertainty when applying the

radiometry technique known as the flux-addtion method. There are four primary novel

contributions:

(i) A generative probability model applicable to the calibration of radiometeters is
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(a) (b)

Figure 9: In both figures, the horizontal axis depicts the MLEs of calibrated fluxes,

Φ̂cal. In (a) the vertical axis depicts bootstrap replicates of MLEs of calibrated fluxes

minus MLEs of calibrated fluxes. Each curve represents a single bootstrap replicate.

The vertical axis in (b) is similar, but the relative difference is plotted.

introduced. This permits the application of maximum likelihood.

(ii) A non-parametric bootstrap algorithm is described for the purpose of making

uncertainty statements about estimates of the parameters of the probability model.

(iii) The coverage probabilities of confidence intervals derived from the bootstrap

algorithm are assessed via simulation.

(iv) The probability model requires the choice of a polynomial degree. A cross-

validation-based strategy is proposed to help make that choice.

The probabilistic model and bootstrap algorithm were tested in a simulation study.

In the simulation study, the MLEs for the polynomial coefficients of the linearizing

function were found to be approximately unbiased, meaning when estimates are averaged

across many data sets, the average value is approximately the true value. The relative

bias observed in the simulation study for the polynomial coefficients defining the

linearization function was less than 4 %; although, for the intercept, linear, and quadratic

coefficients, it was less than 1 %. The simulation study also shows that bootstrap

percentile confidence intervals for the same polynomial coefficients are consistent with

their nominal 95 % coverage. In 100 simulations, the observed coverage proportions

ranged from 91 % to 99 %. Similar results were obtained for the other model parameters,

e.g., fractional flux factors for variable aperture lamps.

In simulation configurations 2, 3, and 4 (Table 1), where the lamps drifted, we found

that confidence intervals were too short when we failed to account for this additional

source of variability. To get confidence intervals that were consistent with their target

coverage (95 %), additional noise was injected into the bootstrap algorithm, comeasurate

with the size of the drift. The real world implication is that to use this technique with

a light source that drifts on a level comparable or greater than other sources of noise,
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the experimenter must characterize the magnitude of the drift using a separate stable

detector observing repeated light levels over time. Using the methodology on a real

satellite instrument requires careful planning to ensure that the measurements, the

model, and the bootstrap algorithm for uncertainty quantification are well-matched.

The probabilistic model and bootstrap algorithm were also tested on an

experimental data set from the NIST Beam Conjoiner. The model was deemed to

perform well for these data because pointwise 95 % prediction intervals for the residuals

enveloped approximately 95 % of them. The probabilistic model was also compared

to a conventional technique. The two approaches matched well for estimating the

linearization function.

After a further calibration step, for the Beam Conjoiner data set, the component of

uncertainty in a calibrated value, attributable to estimation of the linearizing function,

was found to be less than 0.025 % for most of the range of the instrument. The

method provides unbiased estimates for nonlinear corrections required in high-precision

calibrations along with accurate uncertainty statements.
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Appendix A. Table of Symbols

Table A1: Table of symbols. If a symbol appears in the Integrating Sphere section,

it is not repeated in the following sections, e.g., Φi. With the exception of symbols

appearing in the calibration section, accented symbols, such as α̂0, are not included

because the accent does not change the underlying meaning of the symbol. For α̂0, the

accent designates that it is the MLE of the unaccented symbol. The meaning of all

accents are discussed at first use. In the calibration section, some symbols are originally

defined with accents.

Integrating Sphere
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ni Instrument reading for data point i = 1, . . . , N .

n General symbol denoting an instrument reading.

N Number of instrument readings.

αm Legendre polynomial coefficients; m = 1, . . . , p.

p Maximum polynomial degree.

Pm(·) Legendre polynomial of order m.

s(·) Function that shifts and scales inputs to the interval [−1, 1].

Φi Stimulus or flux for data point i.

Φ General symbol denoting a stimulus or flux.

σ Standard deviation of noise.

ϕj Flux for lamp j = 1, . . . , J .

xij Indication of lamp j being 0 (off) or 1 (on) for data point i.

Φmax Estimate of maximum flux.

τ Uncertainty in estimated maximum flux expressed as a standard deviation.

γ Parameter used to force the Legendre polynomial coefficients.

λ Prior expected value of the parameter used to force the polynomial coefficients.

ψk Scale in [0, 1] for variable aperture setting k = 1, . . . , Nv.

x
(J)
ik Indication of variable aperture state k on lamp J for data point i.

Nv Number of variable aperture settings.

βm Polynomial coefficients defining the linearization function h−1.

Beam Conjoiner

σi Standard deviation of noise for data point i.

κ0 The cutoff below which noise is assumed constant is κ0Φmax.

σ The standard deviation of the noise is assumed to be proportional to the flux with

proportionality constant σ.

Calibration

Φref Reference flux.

E[nref ] Expected instrument response at Φref .

Φ̂cal Calibrated flux (MLE).

Φ∗
cal Calibrated flux (From bootstrap replicate).
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