
000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

ECCV
#100

ECCV
#100

Characterization of AI Model Configurations For Model
Reuse

Anonymous ECCV submission

Paper ID 100

Abstract. With the widespread use of artificial intelligence (AI) models in bio-
sciences, researchers need the ability to characterize AI models trained for spe-
cific tasks to support model reuse and dissemination. This work is motivated by
characterizing AI models based on metrics derived from optimization curves cap-
tured during model training. Such AI model characterization can aid future model
accuracy refinement, inform users about model hyper-parameter sensitivity, and
assist in model reuse according to multi-purpose objectives. The challenges lie
in designing quantitative AI model metrics, validating them, and disseminating
them with shared pre-trained AI models. We approach these challenges by de-
signing nine metrics derived from optimization curves collected during model
training and by evaluating them on image segmentation tasks. The results demon-
strate the value of quantitative metrics for multi-purpose reuse of AI models, as
well as a use-case for recommending AI model architectures.

Keywords: Efficient training and inference methods; Fairness, accountability,
transparency, and ethics in vision; Optimization and learning methods; Medical,
biological, and cell microscopy

1 Introduction

The problems of reusing artificial intelligence (AI) models range from defining a stan-
dard AI model file format to sharing the code and AI models via repositories [7]. Mul-
tiple communities come together to define a standard file format, such as Open Neu-
ral Network Exchange (ONNX)[4], and agree on sharing application code, installation
software dependencies, AI frameworks, and packaging via open framework projects
(e.g., Conda, Colaboratory, PyTorch, TensorFlow), code and model repositories (e.g.,
GitHub, BitBucket, Model Zoo, Model Depot, TensorFlow Hub), and software packag-
ing and distribution solutions (e.g., Docker, Apache Zookeeper, Apache Kafka) [7]. In
the broad range of AI model reusability problems, our focus is on specific sub-problems
related to characterizing AI models for the purpose of value added to parties reusing the
models.

The need within the scientific imaging community for AI model characterization
is driven by several factors. First, the scientific community strives for reproducible re-
search results. Second, domain-specific applications with focus on special objects of
interest acquired by unique imaging modalities struggle with insufficient training data
(in comparison to typical imaging modalities and objects in computer vision datasets,



045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

ECCV
#100

ECCV
#100

2 ECCV-22 submission ID 100

e.g., ImageNet or Microsoft Common Objects in Context (COCO)). Finally, the sci-
ences struggles with a general lack of computational resources for AI model training
compared to the resources available to large companies. We listed several example tasks
with needed inputs for AI model reuse in Table 1. Characterizing AI models improves
the input metadata about AI models for reuse and reproducibility. Additionally, model
reuse saves computational resources and time while providing higher final model accu-
racy.

Table 1. Example tasks for AI model reuse

Task Needed
Inference

on new hardware
Trained model
GPU utilization

Reproduce
training

Training data
Model architecture

Optimal configuration
Speed of training

Train more
to improve

model accuracy

Training data
Trained model

Convergence prediction
Explored configurations

Establish
model robustness

Training datasets
Trained model

Explored configurations

Select architecture
for transfer learning

Training datasets
Explored architectures

Explored configurations

Our specific problem is illustrated in Figure 1 where the recorded metadata about
training box contains the optimization curves and the extraction of metrics about con-
figurations box computes the metrics to accompany an AI model. Our assumption is
that data collected during training sessions are common to all modeling tasks including
image classification and segmentation (tasks of our interest) and, therefore, the charac-
teristics can be applied to a general set of AI models. Our approach to designing charac-
teristics of AI models consists of three steps: (1) Develop experimental framework for
collecting optimization curves from AI model training sessions; (2) Design and extract
characteristics of AI models from optimization curves; (3) Visualize and validate AI
model characteristics Our approach derives AI model characteristics from optimization
curves collected during model training sessions in which researchers executes multi-
ple training runs with different hyper-parameter configurations (e.g., AI architecture,
model initialization, learning rate, batch size, and training datasets) to create an optimal
model. The optimization curves are typically pairs of AI model accuracy metrics col-
lected over many epochs from train and validation/test/holdout datasets (denoted in this
work as train and test datasets).

The overarching challenges lie in (a) computational resources needed to simulate a
large number of optimization curves generated by production-level training of AI mod-



090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

ECCV
#100

ECCV
#100

ECCV-22 submission ID 100 3

els, (b) limited information content in optimization curves that combine contributions
from model architecture, training hyper-parameters, and training dataset, and (c) limited
a priori knowledge about relationships among parts of AI solutions (see Table 3) that
could be used for validation of quantitative AI model metrics. Our technical challenges
are in designing quantitative AI model characteristics (metrics) for ranking AI model
configurations (datasets, model, training process), validating them, and integrating the
metrics into on-going efforts to generate accompanying metadata for each disseminated
pre-trained AI model [12].

Relation to prior work: The concept of describing AI models has already been
discussed in the past (Datasheets for datasets [5], The Dataset Nutrition Labels [8,18],
Google AI Model Cards [12]). The published work on Datasheets for datasets and
Dataset Nutrition Labels has been focused mainly on training datasets from the per-
spective of fairness. The fairness aspect is documented via data attributes, motivation
for collection, data composition, collection process, and recommended uses in [5], as
well as via design of ranking widgets in [8]. In contrast to [8,18,5], our work is focused
on documenting lessons-learned from the optimization curves collected during training
sessions. While a placeholder for model performance measures has been designated in
the AI model cards [12] (i.e., under Metrics heading), the metrics have not been defined
yet, which is the gap our work is trying to address. In addition, our work aims at utilizing
the information that is not preserved with disseminated AI models for the multi-purpose
reuse of the AI models right now, although multiple platforms for optimizing AI model
configurations have been designed, such as TensorBoard [1] or Experiment Manager
[11], and many optimization curves are generated over a range of hyper-parameters.

Our contributions are (a) in leveraging information from log files of hyper-parameter
AI model optimization campaigns performed by the entity sharing a pre-trained AI
model for reuse and (b) in defining specific characteristics of AI models for model ac-
companying metadata, for example, metadata in AI model cards. The novelty of this
work lies in defining computable metrics that characterize AI models and provide cost
savings for further reuse of AI models.

2 Methods

Our approach to defining AI model characteristics from pairs of train and test opti-
mization curves consists of three steps: (a) classify parts of an AI solution and their
attributes, (b) design mathematical functions used in analytical and statistical analyses
that characterize each part, and (c) compute quantitative characteristics over a range of
AI model hyper-parameter configurations and several training datasets. The mathemat-
ical functions are applied to accuracy or error measurements collected during training,
for instance, to cross entropy loss HCE computed for training and testing datasets ac-
cording to Table 2 and Equations 1-9. The output quantitative AI model characteristics
serve multiple purposes: as entries under Metrics in the AI model card definition [12]
and as inputs to ranking of AI models according to a variety of objectives (e.g., model
accuracy refinement, model architecture recommendation).

AI model parts: We divided the AI model solution into three parts: model archi-
tecture, training process, and training dataset. The parts have associated attributes that



135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

ECCV
#100

ECCV
#100

4 ECCV-22 submission ID 100

Fig. 1. A framework for extracting metrics about AI model configurations.

define feature engineering and input/output relationship (model architecture), optimiza-
tion search strategy, and initial search point as well as computing limitations (training
process), cross-validation distribution of information, and alignment of pre-training vs.
training datasets (training dataset).

AI model characteristics: The AI model characteristics are defined as sums, deltas,
correlations, and extreme points as well as least-squared fits of power and exponential
models to optimization curves from a varying number of data points. Equations 1-9
denote the index of each epoch as ep, number of epochs as EP , the epoch for which a
model achieves the minimum error as ep∗(Mer), the window around ep∗(Mer) as ±δ,
initializations as rand (random) or pretrain, execution time as T , correlation of two
curves as ρ, and utilization of memory and processing power of a graphics processing
unit as GPUmem and GPUutil. In this work, we assume that the optimized error metric
Mer per AI model is the cross entropy (CE) loss since it is widely used and supported
by common AI libraries [15,1].

In Equation 5, the value of HCE,fit represents a predicted CE values from the first
few epochs given power or exponential models for the least-squared fit approximation.
In our analyses, we refer to the power model a∗xb as PW and the exponential model a∗
bx as EXP for a, b ∈ R and x = HCE(ep). The metric ∆(fit) is a difference between
predicted HCE,fit and measured HCE cross entropy loss values. ∆(fit) is designed
as an optimization cost function for finding the most accurate convergence prediction
model (min∆(fit) constrained by the maximum number of measured epochs over
two models {Model = PW,EXP} and three sets of AI model optimization curves
constrained by maximum of {10, 15, 20} measured epochs.

AI model configurations: For each AI model configuration, one pair of train and
test optimization curves is generated. Figure 3 shows an example of two pairs of op-



180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

ECCV
#100

ECCV
#100

ECCV-22 submission ID 100 5

timization curves with fluctuations due to the optimization path in a high-dimensional
variable space (i.e., the space is discontinuous and/or frequently flat without expected
extrema, the objective evaluation fails due to sparse discrete objective space formed
by integer and categorical variables and/or numerical difficulties and hardware fail-
ures [16]). Parties that share AI models for reuse have scripts or tools that automate
sweeping a range of AI model parameters, such as, Optuna [2], Vizier [6], Autotune [9],
or Experiment Manager [11], while following random, grid, simulated annealing, ge-
netic algorithm, or Bayesian search strategies. The AI model characteristics can be
derived from a set of pairs of optimization curves corresponding to many AI model
configurations. We gather optimization curves from training sets of AI model config-
urations and from multiple image segmentation datasets to deliver parallel coordinate
graph visualizations for multiple purposes of AI model reuse.

Table 2. Definition of AI model characteristics

Parts of
AI solution

Measurement
name & symbol

Eq.

Architecture
model error

Mer, ep
∗(Mer)

1

model stability Mstab 2

Training
process

speed T (Mer) 3
initialization gain Ginit 4
predictability ∆(fit) 5

GPU utilization
GPUMaxM ,GPUAvgU 6

Training
data

Compatibility Dcm

(training data
and architecture)

7

Uniformity Dunif

(training and
testing data)

8

Compatibility Dinit

(pre-trained data
and domain data)

9

Mer = min
ep

(HCE
test(ep))

ep∗(Mer) = argmin
ep

HCE
test(ep)

(1)

Mstab =

ep∗(Mer)+δ∑
ep=ep∗(Mer)−δ

(HCE
test(ep)−Mer) (2)

T (Mer) = ep∗(Mer) ∗
1

EP
∗

EP∑
i=1

Ti (3)



225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

ECCV
#100

ECCV
#100

6 ECCV-22 submission ID 100

Ginit = Mrand
er −Mpretrain

er (4)

∆(fit) =

EP∑
ep=1

(HCE
test(ep)−HCE,fit

test (ep)) (5)

GPUMaxM = max
ep

(GPUmem(ep))

GPUAvgU =
1

EP
∗

EP∑
ep=1

GPUutil(ep)
(6)

Dcm =

EP∑
ep=1

(HCE
train(ep) +HCE

test(ep)) (7)

Dunif = ρ(HCE
train(ep), H

CE
test(ep)) (8)

Dinit =

EP∑
ep=1

(HCE,rand
test (ep)−HCE,pretrain

test (ep)) (9)

Fig. 2. Examples of training image pairs (intensity, segmentation mask) for A10 dataset (top row),
and cryoEM dataset (bottom row).



270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

ECCV
#100

ECCV
#100

ECCV-22 submission ID 100 7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

CE
 L
os
s

Epoch  index

Optimization Curves (train, test)
for DeepLab50 Architecture Applied to A10 and cryoEM 

Datasets

train loss cryoEM test loss cryoEM train loss A10 test loss A10

Fig. 3. Optimization curves (train, test) for DeepLab50 AI architecture trained on A10 and cry-
oEM datasets.

3 Experimental Results

We divided the experimental work into (1) building the framework for generating op-
timization curves over a range of AI model configurations, (2) validating the designed
metrics based on a couple of datasets and their prior characterization of segmentation
difficulties, and (3) describing multi-purpose reuses of AI models in Section 4.

Experimental framework: We explored the hyper-parameters in the AI model con-
figurations shown in Table 3. All model architectures were implemented using the Py-
Torch library [15]. The model initialization using pre-trained coefficients was based on
the COCO dataset [10] for object segmentation (1.5 million object instances). The ob-
jective was to sample a set of AI model configurations by collecting the optimization
curves and then probing their accuracy, predictability, and compatibility with AI model
architecture and training dataset.

We chose to train each model configuration for EP = 100 epochs. In general,
this value will vary during hyper-parameter optimization runs depending on available
computational resources, the definition of model convergence error, or the use of early
stopping criterion (an increment observed in CE loss values over consecutive epochs is
smaller than ϵ). We also set the value δ = 5 epochs in Equation 2. All computations
were performed on a compute node with a Quadro Ray Tracing Texel eXtreme (RTX)
4000 GPU card and Compute Unified Device Architecture (CUDA) 11.6.

Training datasets: We analyzed five datasets representing optical florescent, optical
bright-field, electron, cryogenic electron, and neutron imaging modalities. The training
image datasets are characterized in Table 4 in terms of the number of predicted classes



315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

ECCV
#100

ECCV
#100

8 ECCV-22 submission ID 100

(#Classes), the number of pixels (#Pixels), and the average coefficient of variation (CV )
over all training images as defined in Equation 10.

CV =
1

N

N∑
i=1

σi

µi
(10)

where µi and σi are the mean and standard deviation of each intensity image in the
training collection of size N images. The A10 dataset denotes fluorescently labeled
optical microscopy images of A10 cells [14]. The concrete dataset came from electron
microscopy of concrete samples [3]. The cryoEM dataset was prepared by the authors
using cryogenic electron microscopy of lipid nanoparticles. The infer14 dataset was
prepared by the authors using data-driven simulations of porous concrete samples from
measured neutron images [13]. The rpe2d dataset denotes time-lapse bright-field optical
microscopy images of retinal pigment epithelial (RPE) cells published in [17].

Validation of AI characteristics: We selected two training image datasets labeled
as A10 and cryoEM in Table 4 for validation. Examples of training image pairs are
shown in Figure 2. The A10 dataset has a high contrast (the average coefficient of
variation (CV ) per image is 1.34) while the cryoEM dataset has a low contrast (average
image CV is 0.06) and a large heterogeneity in sizes and textures. The datasets were
chosen based on the assumption that segmenting images with low contrast is a much
harder task than segmenting images with high contrast.

Given the assumption about segmentation difficulty, one can validate AI model char-
acteristics against expected inequalities to be satisfied by the values derived from these
two datasets. The expected inequalities include model error Mer, uniformity of training
and testing data Dunif , and convergence predictability ∆(fit) as shown in Equation 11.
These inequalities are validated by comparing the values of Mer and Dunif in Table 5.
Ideally, the correlation of train and test CE loss curves Dunif should be close to one.

Figure 5 shows the values in parallel coordinate plots including the values of ∆(fit,A10)
and ∆(fit,CryoEM) on the right most vertical line denoted as minP (PW 20). The
values of minP (PW 20) were calculated using the power model fit from the first 20
epochs. The sum of train and test optimization curves Dcm, as well as the conver-
gence predictability P (PW 20), quantify the sensitivity of model training to hyper-
parameters (i.e., learning rate and initialization). In both A10 and CryoEM datasets,
Dcm and P (PW 20) values for 2-3 architecture types indicate epoch-specific opti-
mization divergence (as illustrated by the scattered black points in Figure 4(b) for the
A10 dataset).

Mer(A10) < Mer(CryoEM)

Dunif (A10) > Dunif (CryoEM)

∆(fit,A10) < ∆(fit,CryoEM)

(11)

Reuse of AI models with convergence predictability: The graphs in Figures 3
and 4 illustrate the tradeoffs in reusing AI models for several tasks in Table 1.. The
configuration in Figure 4(b) achieves desirable lower cross entropy error Mer (vertically
lowest black point) but undesirable higher training divergence ∆(fit) (large deviations
of black points from predicted curves) than the configuration in Figure 4(a) for the same



360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

ECCV
#100

ECCV
#100

ECCV-22 submission ID 100 9

Table 3. Explored hyper-parameters in AI model configurations

Hyper-parameters
Values

of hyper-parameters

Architecture

DeepLab 50
DeepLab 101

MobileNetV3-Large
LR-ASPP-MobileNetV3-Large

FCN Resnet 50
FCN Resnet 101

Initialization
Random

COCO pre-trained
Learning Rate 10−5, 10−4, 10−3, 10−2

Optimizer Adam
Optimization

criterion
Cross entropy loss

Epochs 100
Batch size 2

Class balance
method

Weighting by
1 – class proportion

Augmentation None
Train-Test

dataset split
80 : 20

Table 4. Training datasets. OF - optical fluorescent, EM - electron microscopy, OB - optical
bright field, NI - neutron imaging

Dataset Modality #Classes #Pixels [MPix] CV

A10 OF 2 5.79 1.34
concrete EM 4 71.7 0.31
cryoEM EM 2 117.44 0.06
infer14 NI 9 125.9 0.24
rpe2d OB 2 53.22 0.84

Table 5. Summary of AI model characteristics per model architecture and per dataset where the
models were optimized over the learning rates and pretraining options listed in Table 3.

Architecture A10 Mer A10 Dunif cryoEM Mer CryoEM Dunif

DeepLab101 0.0528 0.3513 0.1271 -0.0093
DeepLab50 0.0451 0.8356 0.1284 -0.2515
LR-ASPP 0.04 0.7978 0.1435 -0.3585

MobileNetV3 0.0568 0.5794 0.1602 0.3092
ResNet101 0.042 0.2256 0.1379 -0.0867
ResNet50 0.045 0.391 0.1369 -0.2269



405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

ECCV
#100

ECCV
#100

10 ECCV-22 submission ID 100

dataset A10 and the same DeepLab50 AI architecture. A large divergence from the
predicted optimization curves indicates that (a) it is not sufficient to predict the model
training convergence using a few initial epochs (10, 15, or 20 epochs), (b) training
and testing subsets might not have been drawn from the same distribution, and (c) the
COCO dataset used for pretraining the AI model might not be compatible with the
domain training dataset, and, hence, the test CE loss values vary a lot during the first
few epochs. This is undesirable for researchers who would like to predict how many
more epochs to run on the existing model while targeting a low test CE loss value.

Reuse of AI models with pretraining gain: Figure 6 shows the AI model initi-
ation gain Ginit, as defined in Equation 4, for DeepLab101 architecture and the five
datasets listed in Table 4. The values of Ginit are less than zero for all datasets except
the concrete dataset. These values indicate that the objects in the COCO dataset are sig-
nificantly different from the objects annotated in the five scientific microscopy datasets,
and the pre-training on COCO does not yield better model accuracy.

Reuse of AI models with model stability: Figure 7 illustrates how stable each
optimized AI model – per architecture and per training dataset – is over the hyper-
parameters listed in Table 3. If the test CE loss curve is close to constant within the
neighborhood of δ = 5 epochs, then the value of Mstab, as defined in Equation 2, is
small indicating model stability. Based on Figure 7, all model architectures for the rpe2d
dataset yielded highly-stable, trained models, while the stability of trained models for
the infer14 dataset was low and varied depending on a model architecture.

4 Discussion

How to use AI model characteristics? The designed metrics are useful for the use
cases listed in Table 1. The practical value of each metric is task dependent (e.g., con-
vergence is of interest to improving accuracy but less important for inference on a new
hardware). For instance, if the task is model portability to a new hardware or model-
training reproducibility, then knowing maximum required GPU memory and GPU uti-
lization would be very valuable.

The metrics are dataset-specific, but useful for matching datasets and AI model
architectures. For example, if a researcher wants to reuse an existing AI model for the
transfer learning task with a small set of optical microscopy images of A10 cells, then
he/she would benefit from knowing what architectures and imaging modality datasets
led to the most accurate shared AI model that was trained on an electron microscopy
training dataset of RPE cells and transfer-learned on optical microscopy images of 3T3
cells.

Limitations of AI model characteristics We do not recommend drawing con-
clusions based on metric values when architectures, training parameters, and training
datasets vary because the metrics are limited by their information content. The opti-
mization curves entangle multiple sources of CE loss variability (as stated in the list of
challenges in Section 1). Nevertheless, the metrics are useful if one has some apriori
knowledge about the training datasets and the complexity of predicting image segmen-
tation as illustrated in our validation.



450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

ECCV
#100

ECCV
#100

ECCV-22 submission ID 100 11

5 Summary

This work presented design and validation of quantitative AI model metrics from a set of
optimization curves. The designed metrics were evaluated on image segmentation tasks
applied to image datasets selected based on their estimated segmentation level of diffi-
culty. Our main results demonstrated use cases of scientists reusing pre-trained AI mod-
els for the purposes of (1) improving model accuracy by further training/optimization
of model hyper-parameters constrained by computational resources (convergence pre-
dictability in Figure 4) and (2) selecting an AI model architecture that is best suited in
terms of model accuracy, predictability of training convergence, and compatibility with
training datasets (metric comparisons across architectures Figure 5).

The impact of sharing AI models with presented metrics is significant for principal
investigators limited by their grant budgets and small research labs limited by their own
computational resources or the cost of cloud resources. A higher reuse of shared AI
models can save not only cost and time to researchers but also advance their scientific
goals more efficiently. The cost of achieving a higher reuse of AI models is the extra
summarization of optimization sessions using transparent metrics and sharing them in
AI model cards. In the future, we plan to research calibration protocols that would
enable comparing AI model metrics across datasets and tasks.

6 Disclaimer

after blind review

7 Acknowledgement

after blind review



495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

ECCV
#100

ECCV
#100

12 ECCV-22 submission ID 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

CE
 L
os
s

Epoch  index

Dataset: A10; Config: DeepLab50, Pretrained Init, lr=1e‐5

Test_loss POW_P10 EXP_P10 POW_P15

EXP_P15 POW_P20 EXP_P20

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

C
E 
Lo
ss

Epoch index

Dataset: A10; Config: DeepLab50, Random Init, lr=1e‐3

Test_loss POW_P10 EXP_P10 POW_P15

EXP_P15 POW_P20 EXP_P20

(b)

Fig. 4. Predictions of training model convergence from A10 dataset for two configurations. Top
configuration: (DeepLab50, COCO pre-trained initialization, learning rate: 1e-5). Bottom config-
uration: (DeepLab50, random initialization, learning rate: 1e-3). Black dots are the measured test
CE loss values. Color-coded curves are predictions for a set of fitted model parameters.



540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

ECCV
#100

ECCV
#100

ECCV-22 submission ID 100 13

(a)

(b)

Fig. 5. Parallel coordinate plots for A10 (top) and CryoEM (bottom) datasets. The plots are in-
tended to support decisions about which AI model architecture is the most accurate for the image
segmentation tasks.



585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

ECCV
#100

ECCV
#100

14 ECCV-22 submission ID 100

‐0.1

‐0.08

‐0.06

‐0.04

‐0.02

0

0.02

0.04

A10 concrete cryoem infer14 rpe2d

C
E 
Lo
ss
 ‐
C
E 
Lo
ss
 (
p
re
tr
ai
n
e
d
)

Dataset

Training Gain: without and with COCO pretrain
DeepLab101 Architecture 

Fig. 6. Training gains from initializing DeepLab101 AI architecture using the COCO dataset.

0

2

4

6

8

10

12

14

16

18

20

A10 concrete cryoem infer14 rpe2d

Su
m
 o
f 
N
B
H
 T
e
st
 C
E 
Lo
ss

Datasets

Model Stability=f(dataset, architecture)

deeplab101 deeplab50 lraspp mobilenetv3 resnet101 resnet50

Fig. 7. Model stability of the most accurate AI model per architecture and per dataset.



630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

ECCV
#100

ECCV
#100

ECCV-22 submission ID 100 15

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S.,
Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Is-
ard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga,
R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I.,
Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P.,
Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learn-
ing on heterogeneous systems (2015). https://doi.org/10.5281/zenodo.5898685, https:
//www.tensorflow.org/, software available from tensorflow.org

2. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperpa-
rameter optimization framework (2019)

3. Bajcsy, P., Feldman, S., Majurski, M., Snyder, K., Brady, M.: Approaches to
training ai-based multi-class semantic image segmentation. Journal of Microscopy
279(2), 98–113 (2020). https://doi.org/http://dx.doi.org/10.1111/jmi.12906, https://
pubmed.ncbi.nlm.nih.gov/32406521/

4. Community: Open neural network exchange (ONNX). https://onnx.ai/ (2022), https://
onnx.ai/

5. Gebru, T., Morgenstern, J., Vecchione, B., Vaughan, J.W., Wallach, H., III, H.D., Crawford,
K.: Datasheets for datasets. arXiv 1803.09010 (2021)

6. Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J.E., Sculley, D.
(eds.): Google Vizier: A Service for Black-Box Optimization (2017), http:
//www.kdd.org/kdd2017/papers/view/google-vizier-a-service-
for-black-box-optimization

7. Haibe-Kains, B., Adam, G., Hosny, A., Khodakarami, F., Waldron, L., Wang, B., McIn-
tosh, C., Goldenberg, A., Kundaje, A., Greene, C., Broderick, T., Hoffman, M., Leek, J.,
Korthauer, K., Huber, W., Brazma, A., Pineau, J., Tibshirani, R., Hastie, T., Ioannidis,
J., Quackenbush, J., Aerts, H.: Transparency and reproducibility in artificial intelligence.
Nature 586(7829), E14–E16 (2020). https://doi.org/10.1038/s41586-020-2766-y, https:
//aclanthology.org/Q18-1041

8. Holland, S., Hosny, A., Newman, S., Joseph, J., Chmielinski, K.: The dataset nutrition label:
A framework to drive higher data quality standards. arXiv 1805.03677 (2018)

9. Koch, P., Golovidov, O., Gardner, S., Wujek, B., Griffin, J., Xu, Y.: Autotune. Pro-
ceedings of the 24th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining (Jul 2018). https://doi.org/10.1145/3219819.3219837, http://
dx.doi.org/10.1145/3219819.3219837

10. Lin, T.Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan,
D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common objects in context. arXiv 1405.0312
(2014), http://arxiv.org/abs/1405.0312

11. Long, J., Shelhamer, E., Darrell, T.: Experiment manager.
https://www.mathworks.com/help/deeplearning/ref/experimentmanager-app.html (2022)

12. Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L., Hutchinson, B.,
Spitzer, E., Raji, I.D., Gebru, T.: Model cards for model reporting. Proceed-
ings of the Conference on Fairness, Accountability, and Transparency (Jan 2019).
https://doi.org/10.1145/3287560.3287596, http://dx.doi.org/10.1145/
3287560.3287596

13. NIST: Data-driven simulations of measured neutron interferometric microscopy images
(2022), https://www.nist.gov/programs-projects/interferometry-
infer-neutron-interferometric-microscopy-small-forces-and

https://doi.org/10.5281/zenodo.5898685
https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/http://dx.doi.org/10.1111/jmi.12906
https://pubmed.ncbi.nlm.nih.gov/32406521/
https://pubmed.ncbi.nlm.nih.gov/32406521/
https://onnx.ai/
https://onnx.ai/
http://www.kdd.org/kdd2017/papers/view/google-vizier-a-service-for-black-box-optimization
http://www.kdd.org/kdd2017/papers/view/google-vizier-a-service-for-black-box-optimization
http://www.kdd.org/kdd2017/papers/view/google-vizier-a-service-for-black-box-optimization
https://doi.org/10.1038/s41586-020-2766-y
https://aclanthology.org/Q18-1041
https://aclanthology.org/Q18-1041
https://doi.org/10.1145/3219819.3219837
http://dx.doi.org/10.1145/3219819.3219837
http://dx.doi.org/10.1145/3219819.3219837
http://arxiv.org/abs/1405.0312
https://doi.org/10.1145/3287560.3287596
http://dx.doi.org/10.1145/3287560.3287596
http://dx.doi.org/10.1145/3287560.3287596
https://www.nist.gov/programs-projects/interferometry-infer-neutron-interferometric-microscopy-small-forces-and
https://www.nist.gov/programs-projects/interferometry-infer-neutron-interferometric-microscopy-small-forces-and


675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

ECCV
#100

ECCV
#100

16 ECCV-22 submission ID 100

14. NIST: Fluorescent microscopy images of A-10 rat smooth muscle cells and NIH-3T3
mouse fibro-blasts. https://isg.nist.gov/deepzoomweb/data/dissemination (2022), https:
//isg.nist.gov/deepzoomweb/data/dissemination

15. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito,
Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chin-
tala, S.: PyTorch: An imperative style, high-performance deep learning library. In:
Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran As-
sociates, Inc. (2019), http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf

16. Ranjit, M., Ganapathy, G., Sridhar, K., Arumugham, V.: Efficient deep learning hyper-
parameter tuning using cloud infrastructure: Intelligent distributed hyperparameter tun-
ing with bayesian optimization in the cloud. In: 2019 IEEE 12th International Con-
ference on Cloud Computing (CLOUD). pp. 520–522. IEEE Computer Society, Los
Alamitos, CA, USA (jul 2019). https://doi.org/10.1109/CLOUD.2019.00097, https://
doi.ieeecomputersociety.org/10.1109/CLOUD.2019.00097

17. Schaub, N., Hotaling, N., Manescu, P., Padi, S., Wan, Q., Sharma, R., George, A., Chalfoun,
J., Simon, M., Ouladi, M., Simon, C.J., Bajcsy, P., K., B.: Deep learning predicts function of
live retinal pigment epithelium from quantitative microscopy. J Clin Invest. 130(2), 1010–
1023 (2020). https://doi.org/10.1172/JCI131187, https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC6994191/

18. Yang, K., Stoyanovich, J., Asudeh, A., Howe, B., Jagadish, H., Miklau, G.: A nutritional
label for rankings. Proceedings of the 2018 International Conference on Management
of Data (May 2018). https://doi.org/10.1145/3183713.3193568, http://dx.doi.org/
10.1145/3183713.3193568

https://isg.nist.gov/deepzoomweb/data/dissemination
https://isg.nist.gov/deepzoomweb/data/dissemination
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1109/CLOUD.2019.00097
https://doi.ieeecomputersociety.org/10.1109/CLOUD.2019.00097
https://doi.ieeecomputersociety.org/10.1109/CLOUD.2019.00097
https://doi.org/10.1172/JCI131187
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994191/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994191/
https://doi.org/10.1145/3183713.3193568
http://dx.doi.org/10.1145/3183713.3193568
http://dx.doi.org/10.1145/3183713.3193568

	Characterization of AI Model Configurations For Model Reuse

