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Abstract. With the widespread use of artificial intelligence (AI) models in bio-
sciences, researchers need the ability to characterize AI models trained for spe-
cific tasks to support model reuse and dissemination. This work is motivated by
characterizing AI models based on metrics derived from optimization curves cap-
tured during model training. Such AI model characterization can aid future model
accuracy refinement, inform users about model hyper-parameter sensitivity, and
assist in model reuse according to multi-purpose objectives. The challenges lie
in designing quantitative AI model metrics, validating them, and disseminating
them with shared pre-trained AI models. We approach these challenges by de-
signing nine metrics derived from optimization curves collected during model
training and by evaluating them on image segmentation tasks. The results demon-
strate the value of quantitative metrics for multi-purpose reuse of AI models, as
well as a use-case for recommending AI model architectures.

Keywords: Efficient training and inference methods; Fairness, accountability,
transparency, and ethics in vision; Optimization and learning methods; Medical,
biological, and cell microscopy

1 Introduction

The problems of reusing artificial intelligence (AI) models range from defining a stan-
dard AI model file format to sharing the code and AI models via repositories [7]. Mul-
tiple communities come together to define a standard file format, such as Open Neu-
ral Network Exchange (ONNX)[4], and agree on sharing application code, installation
software dependencies, AI frameworks, and packaging via open framework projects
(e.g., Conda, Colaboratory, PyTorch, TensorFlow), code and model repositories (e.g.,
GitHub, BitBucket, Model Zoo, Model Depot, TensorFlow Hub), and software packag-
ing and distribution solutions (e.g., Docker, Apache Zookeeper, Apache Kafka) [7]. In
the broad range of AI model reusability problems, our focus is on specific sub-problems
related to characterizing AI models for the purpose of value added to parties reusing the
models.

The need within the scientific imaging community for AI model characterization
is driven by several factors. First, the scientific community strives for reproducible re-
search results. Second, domain-specific applications with focus on special objects of
interest acquired by unique imaging modalities struggle with insufficient training data
(in comparison to typical imaging modalities and objects in computer vision datasets,



045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

ECCV
#100

ECCV
#100

2 ECCV-22 submission ID 100

e.g., ImageNet or Microsoft Common Objects in Context (COCO)). Finally, the sci-
ences struggles with a general lack of computational resources for AI model training
compared to the resources available to large companies. We listed several example tasks
with needed inputs for AI model reuse in Table 1. Characterizing AI models improves
the input metadata about AI models for reuse and reproducibility. Additionally, model
reuse saves computational resources and time while providing higher final model accu-
racy.

Table 1. Example tasks for AI model reuse

Task Needed
Inference

on new hardware
Trained model
GPU utilization

Reproduce
training

Training data
Model architecture

Optimal configuration
Speed of training

Train more
to improve

model accuracy

Training data
Trained model

Convergence prediction
Explored configurations

Establish
model robustness

Training datasets
Trained model

Explored configurations

Select architecture
for transfer learning

Training datasets
Explored architectures

Explored configurations

Our specific problem is illustrated in Figure 1 where the recorded metadata about
training box contains the optimization curves and the extraction of metrics about con-
figurations box computes the metrics to accompany an AI model. Our assumption is
that data collected during training sessions are common to all modeling tasks including
image classification and segmentation (tasks of our interest) and, therefore, the charac-
teristics can be applied to a general set of AI models. Our approach to designing charac-
teristics of AI models consists of three steps: (1) Develop experimental framework for
collecting optimization curves from AI model training sessions; (2) Design and extract
characteristics of AI models from optimization curves; (3) Visualize and validate AI
model characteristics Our approach derives AI model characteristics from optimization
curves collected during model training sessions in which researchers executes multi-
ple training runs with different hyper-parameter configurations (e.g., AI architecture,
model initialization, learning rate, batch size, and training datasets) to create an optimal
model. The optimization curves are typically pairs of AI model accuracy metrics col-
lected over many epochs from train and validation/test/holdout datasets (denoted in this
work as train and test datasets).

The overarching challenges lie in (a) computational resources needed to simulate a
large number of optimization curves generated by production-level training of AI mod-
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els, (b) limited information content in optimization curves that combine contributions
from model architecture, training hyper-parameters, and training dataset, and (c) limited
a priori knowledge about relationships among parts of AI solutions (see Table 3) that
could be used for validation of quantitative AI model metrics. Our technical challenges
are in designing quantitative AI model characteristics (metrics) for ranking AI model
configurations (datasets, model, training process), validating them, and integrating the
metrics into on-going efforts to generate accompanying metadata for each disseminated
pre-trained AI model [12].

Relation to prior work: The concept of describing AI models has already been
discussed in the past (Datasheets for datasets [5], The Dataset Nutrition Labels [8,18],
Google AI Model Cards [12]). The published work on Datasheets for datasets and
Dataset Nutrition Labels has been focused mainly on training datasets from the per-
spective of fairness. The fairness aspect is documented via data attributes, motivation
for collection, data composition, collection process, and recommended uses in [5], as
well as via design of ranking widgets in [8]. In contrast to [8,18,5], our work is focused
on documenting lessons-learned from the optimization curves collected during training
sessions. While a placeholder for model performance measures has been designated in
the AI model cards [12] (i.e., under Metrics heading), the metrics have not been defined
yet, which is the gap our work is trying to address. In addition, our work aims at utilizing
the information that is not preserved with disseminated AI models for the multi-purpose
reuse of the AI models right now, although multiple platforms for optimizing AI model
configurations have been designed, such as TensorBoard [1] or Experiment Manager
[11], and many optimization curves are generated over a range of hyper-parameters.

Our contributions are (a) in leveraging information from log files of hyper-parameter
AI model optimization campaigns performed by the entity sharing a pre-trained AI
model for reuse and (b) in defining specific characteristics of AI models for model ac-
companying metadata, for example, metadata in AI model cards. The novelty of this
work lies in defining computable metrics that characterize AI models and provide cost
savings for further reuse of AI models.

2 Methods

Our approach to defining AI model characteristics from pairs of train and test opti-
mization curves consists of three steps: (a) classify parts of an AI solution and their
attributes, (b) design mathematical functions used in analytical and statistical analyses
that characterize each part, and (c) compute quantitative characteristics over a range of
AI model hyper-parameter configurations and several training datasets. The mathemat-
ical functions are applied to accuracy or error measurements collected during training,
for instance, to cross entropy loss HCE computed for training and testing datasets ac-
cording to Table 2 and Equations 1-9. The output quantitative AI model characteristics
serve multiple purposes: as entries under Metrics in the AI model card definition [12]
and as inputs to ranking of AI models according to a variety of objectives (e.g., model
accuracy refinement, model architecture recommendation).

AI model parts: We divided the AI model solution into three parts: model archi-
tecture, training process, and training dataset. The parts have associated attributes that
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Fig. 1. A framework for extracting metrics about AI model configurations.

define feature engineering and input/output relationship (model architecture), optimiza-
tion search strategy, and initial search point as well as computing limitations (training
process), cross-validation distribution of information, and alignment of pre-training vs.
training datasets (training dataset).

AI model characteristics: The AI model characteristics are defined as sums, deltas,
correlations, and extreme points as well as least-squared fits of power and exponential
models to optimization curves from a varying number of data points. Equations 1-9
denote the index of each epoch as ep, number of epochs as EP , the epoch for which a
model achieves the minimum error as ep∗(Mer), the window around ep∗(Mer) as ±δ,
initializations as rand (random) or pretrain, execution time as T , correlation of two
curves as ρ, and utilization of memory and processing power of a graphics processing
unit as GPUmem and GPUutil. In this work, we assume that the optimized error metric
Mer per AI model is the cross entropy (CE) loss since it is widely used and supported
by common AI libraries [15,1].

In Equation 5, the value of HCE,fit represents a predicted CE values from the first
few epochs given power or exponential models for the least-squared fit approximation.
In our analyses, we refer to the power model a∗xb as PW and the exponential model a∗
bx as EXP for a, b ∈ R and x = HCE(ep). The metric ∆(fit) is a difference between
predicted HCE,fit and measured HCE cross entropy loss values. ∆(fit) is designed
as an optimization cost function for finding the most accurate convergence prediction
model (min∆(fit) constrained by the maximum number of measured epochs over
two models {Model = PW,EXP} and three sets of AI model optimization curves
constrained by maximum of {10, 15, 20} measured epochs.

AI model configurations: For each AI model configuration, one pair of train and
test optimization curves is generated. Figure 3 shows an example of two pairs of op-
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timization curves with fluctuations due to the optimization path in a high-dimensional
variable space (i.e., the space is discontinuous and/or frequently flat without expected
extrema, the objective evaluation fails due to sparse discrete objective space formed
by integer and categorical variables and/or numerical difficulties and hardware fail-
ures [16]). Parties that share AI models for reuse have scripts or tools that automate
sweeping a range of AI model parameters, such as, Optuna [2], Vizier [6], Autotune [9],
or Experiment Manager [11], while following random, grid, simulated annealing, ge-
netic algorithm, or Bayesian search strategies. The AI model characteristics can be
derived from a set of pairs of optimization curves corresponding to many AI model
configurations. We gather optimization curves from training sets of AI model config-
urations and from multiple image segmentation datasets to deliver parallel coordinate
graph visualizations for multiple purposes of AI model reuse.

Table 2. Definition of AI model characteristics

Parts of
AI solution

Measurement
name & symbol

Eq.

Architecture
model error

Mer, ep
∗(Mer)

1

model stability Mstab 2

Training
process

speed T (Mer) 3
initialization gain Ginit 4
predictability ∆(fit) 5

GPU utilization
GPUMaxM ,GPUAvgU 6

Training
data

Compatibility Dcm

(training data
and architecture)

7

Uniformity Dunif

(training and
testing data)

8

Compatibility Dinit

(pre-trained data
and domain data)

9

Mer = min
ep

(HCE
test(ep))

ep∗(Mer) = argmin
ep

HCE
test(ep)

(1)

Mstab =

ep∗(Mer)+δ∑
ep=ep∗(Mer)−δ

(HCE
test(ep)−Mer) (2)

T (Mer) = ep∗(Mer) ∗
1

EP
∗

EP∑
i=1

Ti (3)
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Ginit = Mrand
er −Mpretrain

er (4)

∆(fit) =

EP∑
ep=1

(HCE
test(ep)−HCE,fit

test (ep)) (5)

GPUMaxM = max
ep

(GPUmem(ep))

GPUAvgU =
1

EP
∗

EP∑
ep=1

GPUutil(ep)
(6)

Dcm =

EP∑
ep=1

(HCE
train(ep) +HCE

test(ep)) (7)

Dunif = ρ(HCE
train(ep), H

CE
test(ep)) (8)

Dinit =

EP∑
ep=1

(HCE,rand
test (ep)−HCE,pretrain

test (ep)) (9)

Fig. 2. Examples of training image pairs (intensity, segmentation mask) for A10 dataset (top row),
and cryoEM dataset (bottom row).
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train loss cryoEM test loss cryoEM train loss A10 test loss A10

Fig. 3. Optimization curves (train, test) for DeepLab50 AI architecture trained on A10 and cry-
oEM datasets.

3 Experimental Results

We divided the experimental work into (1) building the framework for generating op-
timization curves over a range of AI model configurations, (2) validating the designed
metrics based on a couple of datasets and their prior characterization of segmentation
difficulties, and (3) describing multi-purpose reuses of AI models in Section 4.

Experimental framework: We explored the hyper-parameters in the AI model con-
figurations shown in Table 3. All model architectures were implemented using the Py-
Torch library [15]. The model initialization using pre-trained coefficients was based on
the COCO dataset [10] for object segmentation (1.5 million object instances). The ob-
jective was to sample a set of AI model configurations by collecting the optimization
curves and then probing their accuracy, predictability, and compatibility with AI model
architecture and training dataset.

We chose to train each model configuration for EP = 100 epochs. In general,
this value will vary during hyper-parameter optimization runs depending on available
computational resources, the definition of model convergence error, or the use of early
stopping criterion (an increment observed in CE loss values over consecutive epochs is
smaller than ϵ). We also set the value δ = 5 epochs in Equation 2. All computations
were performed on a compute node with a Quadro Ray Tracing Texel eXtreme (RTX)
4000 GPU card and Compute Unified Device Architecture (CUDA) 11.6.

Training datasets: We analyzed five datasets representing optical florescent, optical
bright-field, electron, cryogenic electron, and neutron imaging modalities. The training
image datasets are characterized in Table 4 in terms of the number of predicted classes
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(#Classes), the number of pixels (#Pixels), and the average coefficient of variation (CV )
over all training images as defined in Equation 10.

CV =
1

N

N∑
i=1

σi

µi
(10)

where µi and σi are the mean and standard deviation of each intensity image in the
training collection of size N images. The A10 dataset denotes fluorescently labeled
optical microscopy images of A10 cells [14]. The concrete dataset came from electron
microscopy of concrete samples [3]. The cryoEM dataset was prepared by the authors
using cryogenic electron microscopy of lipid nanoparticles. The infer14 dataset was
prepared by the authors using data-driven simulations of porous concrete samples from
measured neutron images [13]. The rpe2d dataset denotes time-lapse bright-field optical
microscopy images of retinal pigment epithelial (RPE) cells published in [17].

Validation of AI characteristics: We selected two training image datasets labeled
as A10 and cryoEM in Table 4 for validation. Examples of training image pairs are
shown in Figure 2. The A10 dataset has a high contrast (the average coefficient of
variation (CV ) per image is 1.34) while the cryoEM dataset has a low contrast (average
image CV is 0.06) and a large heterogeneity in sizes and textures. The datasets were
chosen based on the assumption that segmenting images with low contrast is a much
harder task than segmenting images with high contrast.

Given the assumption about segmentation difficulty, one can validate AI model char-
acteristics against expected inequalities to be satisfied by the values derived from these
two datasets. The expected inequalities include model error Mer, uniformity of training
and testing data Dunif , and convergence predictability ∆(fit) as shown in Equation 11.
These inequalities are validated by comparing the values of Mer and Dunif in Table 5.
Ideally, the correlation of train and test CE loss curves Dunif should be close to one.

Figure 5 shows the values in parallel coordinate plots including the values of ∆(fit,A10)
and ∆(fit,CryoEM) on the right most vertical line denoted as minP (PW 20). The
values of minP (PW 20) were calculated using the power model fit from the first 20
epochs. The sum of train and test optimization curves Dcm, as well as the conver-
gence predictability P (PW 20), quantify the sensitivity of model training to hyper-
parameters (i.e., learning rate and initialization). In both A10 and CryoEM datasets,
Dcm and P (PW 20) values for 2-3 architecture types indicate epoch-specific opti-
mization divergence (as illustrated by the scattered black points in Figure 4(b) for the
A10 dataset).

Mer(A10) < Mer(CryoEM)

Dunif (A10) > Dunif (CryoEM)

∆(fit,A10) < ∆(fit,CryoEM)

(11)

Reuse of AI models with convergence predictability: The graphs in Figures 3
and 4 illustrate the tradeoffs in reusing AI models for several tasks in Table 1.. The
configuration in Figure 4(b) achieves desirable lower cross entropy error Mer (vertically
lowest black point) but undesirable higher training divergence ∆(fit) (large deviations
of black points from predicted curves) than the configuration in Figure 4(a) for the same
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Table 3. Explored hyper-parameters in AI model configurations

Hyper-parameters
Values

of hyper-parameters

Architecture

DeepLab 50
DeepLab 101

MobileNetV3-Large
LR-ASPP-MobileNetV3-Large

FCN Resnet 50
FCN Resnet 101

Initialization
Random

COCO pre-trained
Learning Rate 10−5, 10−4, 10−3, 10−2

Optimizer Adam
Optimization

criterion
Cross entropy loss

Epochs 100
Batch size 2

Class balance
method

Weighting by
1 – class proportion

Augmentation None
Train-Test

dataset split
80 : 20

Table 4. Training datasets. OF - optical fluorescent, EM - electron microscopy, OB - optical
bright field, NI - neutron imaging

Dataset Modality #Classes #Pixels [MPix] CV

A10 OF 2 5.79 1.34
concrete EM 4 71.7 0.31
cryoEM EM 2 117.44 0.06
infer14 NI 9 125.9 0.24
rpe2d OB 2 53.22 0.84

Table 5. Summary of AI model characteristics per model architecture and per dataset where the
models were optimized over the learning rates and pretraining options listed in Table 3.

Architecture A10 Mer A10 Dunif cryoEM Mer CryoEM Dunif

DeepLab101 0.0528 0.3513 0.1271 -0.0093
DeepLab50 0.0451 0.8356 0.1284 -0.2515
LR-ASPP 0.04 0.7978 0.1435 -0.3585

MobileNetV3 0.0568 0.5794 0.1602 0.3092
ResNet101 0.042 0.2256 0.1379 -0.0867
ResNet50 0.045 0.391 0.1369 -0.2269
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dataset A10 and the same DeepLab50 AI architecture. A large divergence from the
predicted optimization curves indicates that (a) it is not sufficient to predict the model
training convergence using a few initial epochs (10, 15, or 20 epochs), (b) training
and testing subsets might not have been drawn from the same distribution, and (c) the
COCO dataset used for pretraining the AI model might not be compatible with the
domain training dataset, and, hence, the test CE loss values vary a lot during the first
few epochs. This is undesirable for researchers who would like to predict how many
more epochs to run on the existing model while targeting a low test CE loss value.

Reuse of AI models with pretraining gain: Figure 6 shows the AI model initi-
ation gain Ginit, as defined in Equation 4, for DeepLab101 architecture and the five
datasets listed in Table 4. The values of Ginit are less than zero for all datasets except
the concrete dataset. These values indicate that the objects in the COCO dataset are sig-
nificantly different from the objects annotated in the five scientific microscopy datasets,
and the pre-training on COCO does not yield better model accuracy.

Reuse of AI models with model stability: Figure 7 illustrates how stable each
optimized AI model – per architecture and per training dataset – is over the hyper-
parameters listed in Table 3. If the test CE loss curve is close to constant within the
neighborhood of δ = 5 epochs, then the value of Mstab, as defined in Equation 2, is
small indicating model stability. Based on Figure 7, all model architectures for the rpe2d
dataset yielded highly-stable, trained models, while the stability of trained models for
the infer14 dataset was low and varied depending on a model architecture.

4 Discussion

How to use AI model characteristics? The designed metrics are useful for the use
cases listed in Table 1. The practical value of each metric is task dependent (e.g., con-
vergence is of interest to improving accuracy but less important for inference on a new
hardware). For instance, if the task is model portability to a new hardware or model-
training reproducibility, then knowing maximum required GPU memory and GPU uti-
lization would be very valuable.

The metrics are dataset-specific, but useful for matching datasets and AI model
architectures. For example, if a researcher wants to reuse an existing AI model for the
transfer learning task with a small set of optical microscopy images of A10 cells, then
he/she would benefit from knowing what architectures and imaging modality datasets
led to the most accurate shared AI model that was trained on an electron microscopy
training dataset of RPE cells and transfer-learned on optical microscopy images of 3T3
cells.

Limitations of AI model characteristics We do not recommend drawing con-
clusions based on metric values when architectures, training parameters, and training
datasets vary because the metrics are limited by their information content. The opti-
mization curves entangle multiple sources of CE loss variability (as stated in the list of
challenges in Section 1). Nevertheless, the metrics are useful if one has some apriori
knowledge about the training datasets and the complexity of predicting image segmen-
tation as illustrated in our validation.
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5 Summary

This work presented design and validation of quantitative AI model metrics from a set of
optimization curves. The designed metrics were evaluated on image segmentation tasks
applied to image datasets selected based on their estimated segmentation level of diffi-
culty. Our main results demonstrated use cases of scientists reusing pre-trained AI mod-
els for the purposes of (1) improving model accuracy by further training/optimization
of model hyper-parameters constrained by computational resources (convergence pre-
dictability in Figure 4) and (2) selecting an AI model architecture that is best suited in
terms of model accuracy, predictability of training convergence, and compatibility with
training datasets (metric comparisons across architectures Figure 5).

The impact of sharing AI models with presented metrics is significant for principal
investigators limited by their grant budgets and small research labs limited by their own
computational resources or the cost of cloud resources. A higher reuse of shared AI
models can save not only cost and time to researchers but also advance their scientific
goals more efficiently. The cost of achieving a higher reuse of AI models is the extra
summarization of optimization sessions using transparent metrics and sharing them in
AI model cards. In the future, we plan to research calibration protocols that would
enable comparing AI model metrics across datasets and tasks.
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Fig. 4. Predictions of training model convergence from A10 dataset for two configurations. Top
configuration: (DeepLab50, COCO pre-trained initialization, learning rate: 1e-5). Bottom config-
uration: (DeepLab50, random initialization, learning rate: 1e-3). Black dots are the measured test
CE loss values. Color-coded curves are predictions for a set of fitted model parameters.
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(a)

(b)

Fig. 5. Parallel coordinate plots for A10 (top) and CryoEM (bottom) datasets. The plots are in-
tended to support decisions about which AI model architecture is the most accurate for the image
segmentation tasks.
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