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Likert-style surveys are a widely used research instrument to assess respondents’ preferences,
beliefs, or experiences. In this paper, we propose and demonstrate how network analysis (NA) can be
employed to model and evaluate the interconnectedness of items in Likert-style surveys. We explore
the advantages of this approach by applying the methodology to the aspects of student experience
scale dataset and compare the results to the principal component analysis. We successfully create
a meaningful network based on survey item response similarity and use modular analysis of the
network to identify larger themes built from the connections of particular aspects. The modular NA
of the network of survey items identifies important themes that highlight differences in students’
overall experiences. Our network analysis for Likert-style surveys methodology is widely applicable
and provides a new way to investigate phenomena assessed by Likert-style surveys.

I. INTRODUCTION

Surveys are important instruments for gathering data
to answer questions about how many people experi-
ence and think about particular phenomena. For sev-
eral decades, scholars, practitioners, and policymakers
have been using national survey data to gather informa-
tion about the state of our educational system and to
take informed actions towards improving and evaluating
the effectiveness of educational reforms [1]. In physics
education research (PER), surveys have been developed
to capture a wide range of student experiences, such as
physics identity formation [2], attitudes towards learn-
ing physics [3], and experiences with department support
structures [4]. These types of surveys are designed to
be administered many times across different university
and department settings to build conclusions with evi-
dence from many contexts. In analyzing large amounts
of data, it is important to select the method of analysis
that matches the research questions and provides useful
insights into the larger phenomena under study.

Survey validity is typically assessed through confirma-
tory or exploratory analysis. Principal component analy-
sis (PCA) and exploratory factor analysis (EFA) are the
most commonly used exploratory techniques. In general,
PCA aims to optimize the grouping of individual vari-
ables (here, the individual survey items), into a set of
higher order components, which we call survey thematic
groups or themes. The goal of EFA is to identify sur-
vey themes (the so-called hidden factors), that explain
or contribute to the observable variables (survey items).
These two approaches are similar but start with very dif-
ferent assumptions. In PCA, the assumption is that there
are larger themes that can be built from looking at the
individual survey items. In EFA, the assumption is that
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each of the individual survey items is the manifestation
of a larger contributing thematic factor.

In the recent decades, network analysis (NA) has re-
ceived increasing attention in the physical and social sci-
ences [5]. In education research, NA has been used to
understand the interactions between students both inside
and outside of the classroom [6–9]. Additionally, this
approach has been used to understand the professional
networks of instructors and the relation to their teaching
practices [10, 11]. In NA the assumption is that each in-
dividual variable (represented as a node), can be locally
related to other variables (with the relationship repre-
sented as an edge connecting appropriate nodes). The
composition of nodes and edges makes up the network.
Similar to both PCA and EFA, clusters can be identified
in the networks. However, NA can provide additional
insight about how exactly these clusters are formed and
the importance of individual nodes within them.

In this paper, we introduce network analysis for Likert-
style surveys (NALS), a method to evaluate and study
Likert-style surveys through NA. Previous research em-
ploying NA for exploratory analysis found that NA pro-
vides more detailed measures of interconnection between
variables than EFA [12]. However, the variables used in
that study as well as connections between them are pre-
defined and established based on prior research. NALS,
on the other hand, relies on building a network from a
single survey allowing for in-depth analysis of survey fea-
tures.

We demonstrate the use of NA for Likert-style survey
items by building a network from student responses to
an established survey instrument [4]. To validate our ap-
proach, we first demonstrate how survey items can be
clustered using NA techniques. Second, we highlight the
differences and similarities of using NA and other tra-
ditional survey analysis methods (e.g., PCA). We show
that using NA to analyze the Likert-style survey reveals
the role of individual survey items in relation to oth-
ers as well as captures complexities in the building of
larger themes, which is significantly different from the
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single-level grouping of PCA. Finally, we demonstrate
how survey validity and question redundancy can be as-
sessed through NA tools. To enable future use of NALS,
we established a GitHub repository of the R source code,
along with a manual and a toy example dataset, that can
be easily adapted to other survey datasets [13].

The manuscript is organized as follows: In Sec. II we
situate NALS in the context of other NA techniques used
in PER and introduce the dataset we use. In Sec. III
we introduce our methodology for creating a network of
Likert-style survey items and the tools we use to analyze
the network. In Sec. IV we demonstrate our approach
on a specific dataset in order to give an example of the
types of findings and insights made possible by NALS.
Finally, in Sec. VI we summarize the results and discuss
the future work that could be accomplished through our
proposed technique.

II. BACKGROUND

In this section, we review and compare the use of NA in
PER. We then introduce the dataset used to demonstrate
the approach we propose as well as provide an overview
of other types of analysis used in survey design.

A. Network analysis in PER

In PER, NA has been used to investigate two primary
domains. The first focuses on the social and academic
networks of physics students and how various network
features relate to other factors of students or instruc-
tion [14–17]. The students are the nodes and the edges
are their interactions with their peers, either observed
by researchers or self-reported by students. Some studies
seek to explain a particular phenomenon, such as self-
efficacy, persistence in introductory physics, or anxiety,
based on their location in the network [18–21]. Other
studies of in-classroom networks have been used to char-
acterize learning environments, and used to evaluate the
extent of interactions between students [22, 23]. Net-
works have recently been used in PER to explore different
levels of interaction, including collaboration between lab
groups and the effect of gender composition [24]. This
area of study focuses on the analysis and interpretation
of student interactions and have shown how social net-
work analysis can be used to uncover relations between
social interaction and learning.

The second prominent area in which network analy-
sis has emerged in PER is in studies related to concept
inventories. Concept inventories are standardized tests
that aim to accurately assess the conceptual knowledge of
students related to a specific physics topic. The method-
ology, first developed by Brewe et al., is known as mod-
ule analysis for multiple choice responses (MAMCR) [25].
While modular analysis is used in a wide variety of net-
work science studies, the MAMCR enables the use of

modular analysis for investigation of multiple choice re-
sponses. The methodology aims to guide researchers
in identifying groups of conceptually related ideas that
are represented by student responses to multiple choice
questions. This approach was initially used to identify
conceptual modules within the Force Concept Inventory
(FCI), but has been expanded to other concept invento-
ries, such as the Survey of Electricity and Magnetism
and a quantum mechanics concept inventory [26, 27].
The method has been continually built upon and new
interpretation has been introduced in order to identify
alternative conceptual groupings and investigate the re-
ported gendered differences in FCI performance [28].
These types of studies have been successful at classify-
ing student responses into coherent conceptual structures
through modular network analysis.

NALS is similar to MAMCR in that neither aim to
analyze the social relations of individuals, but rather use
their responses to investigate relationships among con-
cepts or ideas. However, MAMCR builds networks on
individual responses to items rather than on the survey
items themselves. NALS relies on building the connect-
ing edges based on the similarity of responses to the sur-
vey items themselves.

In Likert-style surveys, participants respond with the
level to which they agree or disagree with a particular
statement representing a unique aspect of an experience
or belief. These statements constitute the survey items.
One could imagine that these survey items may be inter-
related based on many attributes, such as how respon-
dents collectively answer particular questions in similar
ways. In treating each survey item as a unique unit of
analysis, we aim to investigate the manner in which sur-
vey items are related to each other from the perspective
of the survey respondents. NA is unique when compared
to PCA and EFA in that it relies on the local connections
of individual nodes (variables) to capture features of the
overall phenomenon. In using NA to study Likert-style
surveys, we see an opportunity to better map the connec-
tions that certain survey items have to each other, iden-
tify those survey items that drive connections between
other items, and characterize the resulting networks by
the types of clusters that form. This approach is uniquely
based on how respondents themselves report connections
between survey items, rather than identifying collective
trends first as in PCA, and includes a wide set of tools
to analyze those connections.

B. The ASES instrument

To provide an example of the types of questions and
findings that can be asked and uncovered through these
methods, the aspects of student experience scale (ASES)
dataset is used [4]. ASES is an instrument intended to
assess physics graduate student experience of departmen-
tal support structures. The initial items were developed
based on prior literature and the American Physical Soci-
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ety Bridge Program recommendations for creating a sup-
portive and complete educational experience to Bridge
students [29]. The utility of the ASES was assessed
through responses of 397 students from 19 physics grad-
uate programs. PCA revealed four components: men-
toring and research experience (E), professional devel-
opment (D), social and academic integration (I), and
financial support (S).

A later study used ASES data to examine a graduate
retention model using structural equation modeling [30].
The authors found the critical role of social and academic
integration as well as mentoring and research experience
in predicting academic self-efficacy and intention to per-
sist. These results suggest the utility of ASES for under-
standing graduate student experience and retention.

C. Principal component analysis

In most studies, researchers use multiple variables to
explain a phenomenon. It is often likely that some of
the used variables end up conveying similar information,
therefore these variables could instead be represented by
fewer variables that are necessary to understand the un-
derlying concept. In these cases, researchers apply meth-
ods suitable for dimensionality reduction [31]. Princi-
pal component analysis (PCA) is the most widely used
method for dimensionality reduction [32].

PCA is a method by which researchers transform com-
binations of the original variables in a dataset (e.g., stu-
dent Likert responses) such that the new combinations
capture the maximum possible variance in the dataset
while eliminating correlations. To achieve this outcome,
first a covariance matrix of the original (mean-centered)
data is created. The eigenvectors and eigenvalues of this
matrix are then used to transform the original data into
a new set of variables. The eigenvectors define the di-
rections of the principal components and the eigenvalues
define the magnitude of each eigenvector. Finally, the
principal components with the highest eigenvalues are
retained as principal component since they account for
the most variance in the data.

Additionally important to PCA is the interpretation
and eventual naming of the principal components iden-
tified. In this step, the disciplinary expertise and ex-
perience of the researchers is vitally important. The
researchers bring their knowledge to interpreting what
common theme brings the survey items together. This
introduces a human element into the research process
and can be executed proficiently or poorly, contributing
to the overall validity of the work.

III. METHODOLOGY

In this section, we describe the processes of creating
and analyzing the backbone survey item network. The
network creation is given special attention as the ap-

proach is innovative and unique to Likert-style survey
data. The analysis described focuses on modularity anal-
ysis and node-centric centrality measures.

A. Creation of the network

One way to build a network from responses to Likert-
style surveys is by quantifying the similarity in how re-
spondents answer questions. We build the connections
between survey items based on the level of agreement
between students answering any two questions on the
survey. The process of building the backbone survey
item network is depicted in Fig. 1. Note that the un-
derlying assumption of NALS is that all survey items are
coded the same direction (i.e., selecting agree as desir-
able). Thus, data from reverse coded questions should
be reordered prior to analysis.

The results from the survey are first converted into
a bipartite network structure. Bipartite networks are de-
fined by two sets of nodes, one indicating respondents and
the other being all possible responses to survey questions,
that have connections only with nodes of the opposite
set. In these data, the students who participated in the
survey make up group A, and the individual Likert scale
selections make up group B, with edges indicating each
students’ selections. Figure 1(a) depicts a toy example, in
which we have a pool of 20 students responding to eight
survey questions with five possible selections (strongly
disagree, disagree, neither agree nor disagree, agree, and
strongly agree), leading to 40 possible response selections
with a single student connected to eight of these.

The next step in generating the network is to project
the bipartite network onto the response choices [as shown
in Fig. 1(b)]. Figure 1(c) takes a closer look at the con-
nections between responses to Q1 and Q2 only. In our
toy example, a particular student selects strongly agree
to Q1, and agree to Q2, which results in an edge in the
projected network between Q1SA and Q2A. That same
student also selects agree with survey item Q3, resulting
in Q3A connecting to both Q1SA and Q2A in the pro-
jected network, and so on. A second student also selects
strongly agree to Q1, agree to Q2, but selects neither
agree nor disagree to Q3. Thus, the weight of the edge
between Q1SA and Q2A becomes 2. However, since the
second student selects neither agree nor disagree to Q3,
the weight of the other edges remain 1. Thus, in the
projected network of responses, the weights of the edges
represent the number of students who selected both of
the connected responses. We can see the result of this
step in our model in Fig. 1(b), in which the response se-
lections are projected in a network, with thicker edges
relating to larger weights.

To obtain a network of survey items, rather than just
the Likert scale responses, we start with the adjacency
matrix. The adjacency matrix of a network is an N ×N
matrix, where N is the total number of nodes in the
represented network. Each element of this matrix holds
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FIG. 1. Visualization of generating a network based on Likert-style survey responses. (a) Bipartite network of students (light
gray) and response selections (dark gray). (b) Projection of bipartite network onto the response selections, weighted by number
of students connecting. (c) Network of response selections for just Q1 and Q2. (d) Adjacency matrix representation of Q1 and
Q2 response network with the negative temperature relationships boxed in blue, the positive temperature relationships boxed
in red, and the inverse relationships boxed in gray. The same color scheme is used in the remaining panels. (e) Adjacency
matrix of the survey item network after collapsing the response network with significant edge weights in bold. (f) A full survey
item network with all edges included. (g) A backbone survey item network with only significant edges.

information about the connection between the nodes rep-
resented by the row and column corresponding to that
element. In the adjacency matrix for the Likert scale se-
lection projection, each element represents the number
of respondents that selected the two responses associ-
ated with that particular row and column (e.g., if two
students selected strongly agree to Q1 and selected agree
to Q1, the element in column Q1SA and row Q1A would
be equal to 2).

In the first step in calculating a single value for the
weight between survey items, the adjacency matrix is
split into submatrices associated with each possible pair-
ing of survey items. For our model, this results in 56 5×5
submatrices, since each of the eight survey items could be
connected to the other seven items. Since the adjacency
matrix is symmetric by design, only 28 submatrices are
unique. The rows and columns of each matrix represent
the weight of the edge between two unique Likert scale
selections associated with two different survey items. El-
ements along the diagonal show the absolute similar se-
lections between the two survey items, e.g., Q1A and
Q2A. An example of a submatrix built from the network
depicted in Fig. 1(c) is shown in Fig. 1(d).

The goal of the final step is to collapse each subma-

trix into a single value that represents the edge weight
between the two survey items. In our approach, we
treat both forms of disagreement (i.e., disagree and
strongly disagree) as well as both forms of agreement
(i.e., strongly agree and agree) as indication of similar
attitudes. First, all of the matrix elements that repre-
sent similar responses are summed [see the diagonal red
and blue boxes in Fig. 1(d) which sum up to 13]. Then,
all of the matrix elements that represent dissimilar re-
sponses are summed [see the off-diagonal gray boxes in
Fig. 1(d) which sum up to 1]. The final weight is ob-
tained by subtracting the off-diagonal sum from the di-
agonal sum (resulting in 12 for the example matrix). The
elements along the neutral row and column are ignored
in this calculation as they indicate lack of attitude to a
given question. The result is a single value that repre-
sents the similarity score between two particular survey
items. A positive value indicates that the two items are
answered with similar responses. A negative value in-
dicates that the two items are answered with dissimilar
responses. If the result is 0, then no edge is created be-
tween these two items, indicating no distinct relationship
between response selections. This is repeated for all pairs
of survey items. An example of the resulting adjacency
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matrix for our model is shown in Fig. 1(e).

We use the edge weight in the full survey item net-
work to represent the similarity of the Likert scale se-
lections. However, the edge weight alone does not in-
dicate the level of agreement, i.e., whether two survey
items are connected through mutual selections of dis-
agree or agree. Therefore, we introduce an additional
edge attribute, dubbed temperature. Temperature is an
attempt to capture the difference between the amount of
agrees and the amount of disagrees for each pair of survey
items. That is, temperature is calculated by subtracting
the sum of all mutual disagrees from the sum of all mu-
tual agrees. Temperature is a continuous measure that
ranges from −n to +n, where n is the total number of re-
spondents in the survey. Thus, two nodes that are often
both disagreed with will share an edge with a negative
temperature value (blue), while two nodes that are often
both agreed with will share an edge with a positive tem-
perature (red). Through the temperature value of the
edge, information about the level of agreement between
responses that connect two survey items is retained. Fig-
ure 1(e) shows the resulting color corresponding to tem-
perature for each connection in our toy example.

The resulting survey item network is extremely dense,
with almost every node connected to every other node, as
seen in Fig. 1(f). In order to preform analysis of the net-
work, we must identify the most important connections
between each node. In NA, this involves identifying the
so-called backbone of a network. The backbone is the
residual network after eliminating non-significant edges.

A number of algorithms have been developed to ex-
tract the backbone of dense networks. In previous NA
done in PER, the locally adaptive network sparsifica-
tion (LANS) algorithm was employed to find the network
backbone [25]. In this approach, the significant edges for
each node are identified and kept in the network. Sig-
nificance is defined through an empirical cumulative dis-
tribution function applied to the edge weights associated
with each node [33]. The level of significance, α, is used
to determine the percentage of edges kept during sparsifi-
cation (1−α). This is set based on the size of the network
under consideration, typically α = 0.05 for smaller net-
works and α = 0.01 for larger networks. This approach
keeps all edges that are significant for at least one node
of that pair.

We implement the LANS algorithm to extract the
weighted backbone of the survey item similarity network
in order to identify the connections that were prevalent
for the highest number of respondents. The absolute
value of the edge weight used in the LANS algorithm
allows us to account for the weight of edges both due to
the positive value (more similarities than differences) as
well as the negative value (more differences than simi-
larities). The significant edges in our model are shown
in bold in the adjacency matrix in Fig. 1(e). The final
network is visualized in Fig. 1(g). This final backbone
survey item network is made up of two components. The
larger component contains one edge that represents an

inverse relationship and four edges indicating similar re-
lationships built through agree responses. The smaller
component is made up of two edges representing similar
relationships built through disagree responses.

Through applying the steps of the methodology de-
scribed above, we are able to create a network based
on the significant similar responses to Likert-style survey
items. The backbone survey item network is the outcome
of the construction phase which is then used in the analy-
sis. The source code for generating the network following
the methodology described in this section is available on
a GitHub repository [13]. In the next section, we de-
scribe our approach to analyzing the backbone survey
item network.

B. Analysis of the network

One may be interested in both how nodes group to-
gether within the survey item network as well as which
individual nodes have the highest importance within this
network. To understand how nodes group together, a
partitioning process is needed to detect the clusters of
survey items that exist in the created network. We per-
form this analysis using the backbone survey item net-
work resulting from the above construction process. Such
clusters are defined as having significantly more internal
edges compared to external connections. The measure of
how well the network can be partitioned is called mod-
ularity. The partitioning of our network optimizes the
modularity in the identification of survey item clusters.
In our analysis, we have made use of the weighted mod-
ularity as defined by Newman [34].

The modularity is given by

Q =
1

2m

∑
i,j

[
wij −

CS,iCS,j
2m

]
δ(ci, cj), (1)

where wij represents the weight of an edge between nodes
i and j, CS,i (CS,j) represents the strength of node i (j),
ci (cj) represents the cluster to which node i (j) belongs,
and m = 1

2

∑
i,j wij . The delta function, δ(ci, cj), equals

1 when ci = cj and 0 otherwise. The modularity ranges
from −1 to 1, with a positive value indicating a suc-
cessful partition and a negative value indicating a weak
partition.

To partition the backbone survey item network, we
chose to implement the hierarchical clustering algorithm
proposed by Clauset, Newman, and Moore, colloquially
dubbed the fast-greedy algorithm [35]. This algorithm
follows a modularity optimizing process and produces
a hierarchical ordering that identifies high level clusters
along with the hierarchical relationships between indi-
vidual nodes within each cluster. This approach not only
ensures finding the most optimal partition of the network
but also provides insights into how each node individually
fits within the clusters.

To compare the network partition introduced above
with more traditional processes for grouping survey items
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(such as PCA) we use the F-measure [36]. The F-measure
is made up of two quantities: precision and recall. Pre-
cision quantifies the extent to which a cluster from par-
tition A contains items from only a single cluster in the
partition B. Recall captures the fraction of items that
come from the cluster in partition A out of the total num-
ber of items in the cluster of partition B. The F-measure
ranges from 0, indicating no overlap in partitions, to 1,
indicating a perfect matching. Traditional cluster com-
parison is asymmetric, treating one partition as the base
partition and the other as the variant. As proposed by
Ghawi and Pfeffer [36], we use two-way comparison and
find the combined F-measure as the harmonic mean of
each component.

The clustering techniques can be also used to evalu-
ate validity of surveys and identify redundant questions.
This type of analysis is important for survey designers
in order to ensure that the instrument is measuring the
desired underlying concepts. In the language of modular
analysis, the validity can be captured through the co-
herence of clusters. What this means in practice is that
through the interpretation of the clusters, researchers can
evaluate if the intended themes of their surveys are co-
herently captured by the clusters and how the survey
items are sorted. Additionally, due to the network model,
NALS can help researchers understand the complexities
within the identified themes themselves and the differ-
ences between themes in terms of how they are built from
the survey items. For example, one theme may be more
loosely held together through weaker connections than
another theme.

Using these same techniques, researchers can remove
periphery items from the survey based on their location
in the hierarchical ordering: the higher up in a cluster
a particular survey item is, the less central that item is
to the larger theme represented by that cluster. This
feature is important for researchers as one may be in-
terested in what survey items are most central to the in-
tended themes. NALS provides a tangible way to identify
which survey items are most and which are least central.
Researchers may use the latter information to eliminate
questions that are not central to an identified theme. Ad-
ditionally, they may seek to edit or add survey items to
increase the capacity to measure a particular theme.

A complimentary way to quantify the relative impor-
tance that individual nodes hold within a network is
through centrality measures. We aim to consider both
traditional centrality measures of degree and strength.
The degree of a node is the total number of edges that
are attached to that node, while the strength of a node is
calculated as the sum of all of the weights of those edges.
A node may have a high degree while maintaining a low
strength (many weak connections); alternatively, a node
may have a low degree but a high strength (few strong
connections). To capture both of these features, we use
the weighted degree as defined by Opsahl et al. [37]. The
weighted degree has been chosen in order to account for
both the number of connections between each survey item

and also the weight of those connections.
The weighted degree is defined as follows:

C β
D,i = (CD,i)

1−β(CS,i)
β , (2)

where CD,i is the traditional degree of node i, CS,i is the

strength of node i, and C β
D,i is the weighted degree of

node i. The value of β acts as a tuning parameter for
how degree and strength are valued in the calculation of
weighted degree. If β = 0, then only degree is considered
while for β = 1 only strength is considered. In between 0
and 1, the degree and strength are both included in the
calculation of the weighted degree. Since we are inter-
ested in both of these values, we have chosen β = 0.5 to
give equal importance to both degree and strength.

The weighted degree can also be used as a heuristic for
survey validity and item removal. This centrality mea-
sure captures the extent that respondents view a partic-
ular item as similar to others in the survey. Thus, a low
weighted degree indicates an item that is responded to in
unique ways. This can act as a check for survey designers
to understand whether respondents are reacting to items
in expected or unexpected ways. Depending on the re-
search objective, degree can be used to identify items
that are candidates for removal by being either unlike
the other items (i.e., only weakly related to the under-
lying concept of the survey) or being too similar to the
other items (i.e., not providing additional information to
what is captured by other survey items).

C. Visualization and statistical analysis

All analyses and dendrogram visualization presented
in this work are carried out using the igraph package in
R [38, 39]. The network visualization is created using
the open source software cytoscape [40]. Employing the
LANS algorithm, we use a level of significance α = 0.05.

IV. RESULTS

The validation of the NA methods for Likert-style sur-
veys put forward in Sec. I can be restated as three high-
level research questions:

1. How does modular analysis group survey items?
2. How does modular analysis of networks compare to

PCA and the components identified?
3. Can we use NA to validate the survey design and

identify redundant questions?
To answer the first research question, we employ the

proposed methods to create a network representation of
the ASES dataset described in Sec. II B and identify the
underlying groups of experiences. The second question
motivates a comparison to results from PCA, which we
evaluate quantitatively. A qualitative interpretation of
the differences is presented in Sec. V. Finally, to address
the third question, we propose and model heuristics for
survey validity and item removal.
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FIG. 2. Representations of the full network of ASES items. (a) Adjacency matrix of ASES items represented by a heat map.
(b) Network of survey items arranged in a circle with edge weights corresponding to the absolute value of the similarity. Both
the adjacency matrix representation and the network representation use two scales: one for items that share similar responses
that ranges from red (mutual agreement) to blue (mutual disagreement), the second for items that share dissimilar responses
ranging from black (most dissimilar) to white (no correlation in responses).

A. How does modular analysis group survey items?

The ASES is made up of 35 questions, each with five
possible response options: strongly disagree, disagree,
neither agree nor disagree, agree, and strongly agree.
Thus, there are a total of 175 unique responses possible.
Each of the 397 student respondents is connected to 35 of
these 175 options in the bipartite network. This bipartite
network is then projected onto the possible responses, as
described in Sec. III A, resulting in a maximum possible
edge weight of 397.

The projected network of options is then collapsed to
create a network of survey items. The size of the full ad-
jacency matrix used to perform this step is 175×175, with
a total of 595 submatrices used to calculate similarity and
temperature between items. The resulting collapsed ad-
jacency matrix (35× 35) is represented as a heat map in
Fig. 2(a). Similar to the toy example, the ASES network
is very dense, with almost every survey item connected
to all others. This dense network, visualized in Fig. 2(b),
contains connections built on mutual agreement (positive
similarity and positive temperature; red edges), mutual
disagreement (positive similarity and negative tempera-
ture; blue edges), and inverse response selections (nega-
tive similarity; gray edges). We use Fig. 2(b) to represent
the high density of the full survey item network and to
motivate the need of sparsifying it prior to the modular
analysis. Figure 3 shows the sparsified backbone survey

items network. While there are indications of different
groups of items based on types of connections (positive
and negative temperature), the dense network makes it
difficult to identify specific clusters.

To investigate the network through a cluster analysis
and other NA techniques, we first identify the significant
connections within the dense network through the LANS
algorithm. The resulting backbone survey item network
includes 35 nodes (one for each ASES item) and 55 sig-
nificant edges, out of which 34 (62 %) have a positive
temperature and 21 (38 %) have a negative temperature
(Fig. 3). Moreover, the network is split into two sub-
networks that correspond to the temperature, with the
positive temperature subnetwork consisting of 22 survey
items (component A) and the negative one consisting of
13 items (component B).

B. How does NA compare to PCA?

The next step in the analysis involves identifying the
partition of this network through the fast-greedy cluster-
ing algorithm. In the ASES backbone survey item net-
work, four clusters were detected (Fig. 3). Component B
is partitioned into a single cluster, while component A is
separated into three clusters. The modularity is 0.62, in-
dicating a meaningful split of the network. The network
clustering is depicted in Fig. 3.

The first cluster, C1, is made up of nine survey items.
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FIG. 3. The ASES similarity network. The node colors indicate the principal component that the survey item was loaded into;
mentoring and research experience, E (orange), professional development, D (teal), social and academic integration, I (green),
financial support, S (purple), or not loaded (white). The shaded regions represent the clusters identified by the fast-greedy
clustering algorithm; C1 (green), C2 (orange), C3 (teal), or C4 (purple). The edge thickness represents the amount of similarity.
The edge color indicates the edge temperature, i.e., whether the edge is created via mutual agree (red) or disagree (blue)
answers. The dashed edges indicate connections that span across clusters.

This cluster is a mixture of two principal components,
with four items belonging to PCA component I and two
to PCA component E. In addition, three items not
loaded into a component by PCA are also grouped in
this cluster. The second cluster, C2, is made up of ten
survey items. C2 is very similar to the PCA component
E, with nine items partitioned from E into this cluster.
The tenth item in C2 is one of the items not loaded into a
PCA component. The third cluster, C3, encompasses all
of PCA component D along with four items from PCA
component I. Finally, the fourth cluster, C4, groups the
exact same items as PCA component S. It is the smallest
cluster.

As evident from Fig. 3, while there are some similari-
ties in how NA and PCA group the survey items, there
are some important differences. In particular, the calcu-
lated F-measure between the partitions from PCA and
NA is 0.75, indicating similarity between the principal
components and the clusters. However, there are some
interesting differences, which we discuss in Sec. V.

Another way to understand the partitions generated
through the fast-greedy algorithm is through a dendro-
gram, as seen in Fig. 4. In this representation, each node
shown at the bottom of the figure is connected to other
nodes through hierarchical branches. The lower a node
is connected through a branch, the more essential that

node is to the cluster. Using the dendrogram, we can
see that both C1 and C2 contain two subgroups of about
equal number of nodes, whereas C3 has a core group of
nodes with few nodes being added higher on in the hier-
archy. This is somewhat analogous to the loading factors
provided by PCA.

C. Can we use NA to validate the survey design?

Building on the hierarchical clustering analysis we sug-
gest heuristics that can be used as a guide in future
survey development. In using the resulting hierarchy,
as seen in Fig. 4, one can better understand how the
larger themes are built from the ordering of survey items
through identifying core nodes to each cluster or observ-
ing important subclusters. This, in turn, might reveal
nodes—e.g., those added into clusters higher up in the
structure—that can be pruned without affecting cohesion
of the themes. This approach is best suited for situations
in which there is a core group of nodes in a cluster, rather
than subclusters. For example, in the ASES network, we
may identify a number of possible items for elimination
from C3 that are added to the cluster higher up in the
hierarchy and thus less central to the formation of this
cluster (e.g., I04 and I05).
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FIG. 4. The hierarchical structure of the partition provided by the fast-greedy cluster detection algorithm, represented as a
dendrogram. Each node name is listed along the bottom. Each of the four clusters is identified by colored boxes around the
respective branches; C1 (orange), C2 (green), C3 (teal), or C4 (purple).

This approach also can be used to identify themes that
are more complex within the survey. For example, in the
ASES network, we see that both C1 and C2 have two
clear subclusters, which indicates complex themes that
bring more than one type of experience together.

Alternatively, we may consider the local centrality
measure of the weighted degree that was calculated from
the resulting backbone survey item network, as reported

in Table I. A larger CβD,i value indicates that the par-
ticular survey question is strongly similar to many other

items, and a smaller CβD,i value means that the particular
question is less similar to other items. For example, in

the cluster C1, X01 (CβD,X01
= 73.4) is essential for the

TABLE I. Weighted degree, CβD,i, of each survey item, i,
grouped by clusters. Here, β = 0.5.

Cluster C1 Cluster C2 Cluster C3 Cluster C4

i CβD,i i CβD,i i CβD,i i CβD,i
I01 25.8 E01 68.8 I04 21.2 S01 29.7
I02 65.3 E02 37.5 I05 21.2 S02 41.2
I03 35.1 E03 22.9 I06 33.9 S03 27.9
E06 21.3 E04 38.5 D01 23.5
X01 73.4 E05 70.6 D02 38.7
X02 23.6 X04 40.7 D03 53.7
X03 40.4 E07 22.4 I08 24.9
E09 42.8 E08 30.7 D04 19.5
I07 20.5 E10 87.6 D05 120.0

E11 29.6 D06 30.7
D07 56.1
D08 72.4
D09 29.6

construction of this cluster; however I07 (CβD,I07 = 20.5)
could be considered redundant and unnecessary in the
cluster structure. On the other hand, a low centrality in-
dicates less similarity to other survey questions, meaning
that the particular item is responded to in unique ways
and captures different experiences. Depending on the
purpose of pruning, one might want to keep such items
and remove some of the high centrality nodes instead.
Other heuristics could be used for the identification and
removal of survey items. The choice of methodology for
survey pruning needs to be dependent on the survey pur-
pose and should be guided by the research objective.

V. INTERPRETATION AND DISCUSSION

NALS provides us with new insights that are not ac-
cessible through PCA. While PCA results in a high-level
partition of the survey items, this method does not con-
sider the hierarchical dependencies between items within
each partition. NA, on the other hand, reveals the nu-
anced hierarchical relationships of items that are used to
build each cluster from the bottom up. That is, NA cap-
tures the multilevel complexities of the larger themes in
addition to the high-level partitioning.

Additionally, NA allows us to quantify the relative
dominance of individual items both within and between
clusters. These features are important for understanding
how single survey items are answered in unique or highly
similar ways. The individual characteristics of items is
not accounted for in PCA.

To interpret the findings from the network perspec-
tive, the actual survey that the network represents must
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be considered. For the ASES instrument, the structure
of two separate subnetworks indicates that there is an
important division in the student experience of support-
ive departments. The aspects in the subnetwork created
through mutual agreement (positive temperature) can be
seen as reinforcing an experience of a supportive depart-
ment. Alternatively, the aspects that are a part of the
subnetwork made up of mutual disagreement (negative
temperature) are indicative of support structures that
many students do not experience. While the negative
temperature subnetwork makes up a single cluster, the
subnetwork of positive temperature consists of three clus-
ters.

A. Sensemaking of the NA clustering

We have compared the clusters with the PCA compo-
nents through the F-measure, which quantifies the level
of similarity between the two partitionings, and found
that there is a large amount of overlap between the two
methods. However, there are important differences that
can be explored qualitatively. As mentioned in Sec. II C,
the disciplinary expertise of researchers is important to
interpret these partitionings. Our research team brings
our knowledge and understanding of both the ASES
instrument and physics graduate programs in order to
make sense of our results.

One of the most striking differences to come out of the
two approaches is that the PCA component I, social and
academic integration, is divided in the NA approach, as
seen in Fig. 3. In particular, half of the survey items
that belong to this component are connected with items

from the PCA component D, professional development—
I04, I05, I06, and I08. These four survey items are more
aligned with the type of academic coursework support
that students may experience, as reflected in the C3

cluster in Fig. 5 (additionally, see Appendix A). Being
grouped into the negative temperature cluster, C3, means
that these support structures, along with those related
to professional development, are not often experienced
by respondents. Thus, the aspects in C3, which we call
professional and academic development, form a group of
support constructs that are lacking from many students’
experiences (Fig. 5).

The other four aspects in the PCA component I are
connected with two items from the PCA component E,
mentoring and research experience, as well as three sur-
vey items that were not loaded into any component
through PCA. The four survey items that come from
component I are closely related to social and peer sup-
port. The two survey items from component E are re-
lated to the social support and flexibility that one may
experience as part of graduate research. The three fac-
tors that were previously not loaded are focused on the
exploratory aspects of a graduate degree. These items,
forming cluster C1, indicate supports that are mutually
reinforcing and center the student experience around so-
cial and exploratory aspects within a department. We
call C1 social and scholarly exploration support, as seen
in Fig. 5.

Network clusters C2 and C4 are very similar to the two
PCA components E and S, mentoring and research expe-
rience and financial support, thus each cluster is named
based on the corresponding PCA component (Fig. 5).
While the differences in the two approaches is exempli-
fied in C1 and C3, C2 and C4 make it clear that the par-

FIG. 5. A visual representation of the four clusters in which each term represents a particular survey item. The colors
correspond to those used to shade clusters in Fig.3: C1 (green), C2 (orange), C3 (teal), or C4 (purple). The font size of each
term reflects the relative importance of that survey item to the respective cluster, as determined by the hierarchical clustering
shown in Fig. 4. Complete definitions of the items are presented in Table II.
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titions do overlap. The one difference between C2 and
the PCA component E is that two items from E are not
found in C2 while one previously unloaded item is now
included. The additional aspect is X04—“My research
group meets at least once per week”—which is tied to the
theme of research experiences. The similarity shown here
validates the coherence of the clusters and their relation
to underlying themes.

Through investigating the hierarchical structure shown
in the dendrogram (Fig. 4), we can further understand
how the larger thematic constructs are built into the
network. In the ASES network, two types of clusters
are observed. The first type are clusters consisting of
a set of core nodes and a few auxiliary ones (see C3 in
Fig. 4). The second type includes clusters made up of
two (or more) well-connected subclusters (see C1 and C2

in Fig. 4). Qualitative interpretation allows for better
understanding of what each distinct structure means for
the larger themes.

In C3, the core nodes indicate what is at the center
of the theme that is represented by the cluster. Many
of the aspects at the core involve opportunities for the
building of skills related to time management and net-
working. While the whole cluster represents both aca-
demic and professional development, the central experi-
ences that make up this cluster are related more to pro-
fessional development. This is shown by the relative text
size in Fig. 5.

In C1, one sub-cluster is made up of I01, I02, X03,
and E09—all but one related to structures that make
space for interaction (social activities, common areas,
and seminars). The other sub-cluster contains elements
both of social support and scholarly exploration. The
sub-clusters are not necessarily meaningful by themselves
and that the top level partition identified quantitatively
through modularity optimization is the most meaningful
partition of these aspects.

In C2, one subgroup (consisting of X04, E07, E10,
and E11) pertains to research group experiences, while
the second sub-cluster (made up of E01, E02, E03, E04,
E05, and E08) relates to interactions with research men-
tors. The cohesion of the types of aspects observed in
these sub-clusters can help interpret the complexity of
the larger construct. In C2, the theme of mentoring and
research experience is split between interaction with re-
search groups and interaction with research mentors.

B. Item-oriented interpretation

We can also look at each item individually and evaluate
its importance in the network. In our analysis, we have
done this through the weighted degree centrality. Since
we are looking at the backbone of the full survey item
network, many nodes are only connected to the network
by a few edges—two or three in most cases—resulting in
relatively lower weighted degree measures (Table I). How-
ever, there are a number of hubs within the backbone sur-

vey item network that have a high weighted degree, such
as D05: “I attend activities for graduate students that in-
clude trainings or professional development on the role of
a postdoc,” E10: “The research project I am working on
matches my research interests”, and X01: “I had or have
support and flexibility from my department in finding my
research interests.” This indicates a type of decentralized
network in which there are multiple high degree nodes,
rather than a single hub (centralized network) or uniform
degree measures across all nodes (distributed network).

Each of the largest three hub nodes within the decen-
tralized network belongs to a different cluster. We can
better understand how these items function in the sur-
vey by pairing the high centrality measure with other
information from network analysis. For example, D05 is
connected to other nodes via negative temperature edges,
which means that when other aspects of support struc-
tures (e.g., D07 or D08) are not experienced, D05 is also
absent from the student experience. The nodes E10 and
X01 not only are hubs within the network, but they are
also connected to each other and create an edge that
spans between two different clusters. The similarity be-
tween these two aspects indicates that the fulfillment of
personal research interest is important to the positive
student experience of support structures.

The qualitative interpretation of ASES allows for bet-
ter understating of the network analysis results. This, in
turn, enables diving deeper into the thematic constructs
represented by the clusters to understand how individ-
ual aspects’ contribute to the survey structure. This ap-
proach is very promising for better understanding how
respondents collectively view the experiences that are
represented by the survey items.

VI. CONCLUSIONS

In this paper, we set out with four overall goals in
mind. First, to develop a methodology for creating a
network from Likert-style survey responses. Second, to
understand how modular analysis of the network com-
pares to PCA. Third, to show how NA techniques can
help validate the survey and identify redundant survey
questions. And fourth, to showcase the types of analysis
that can be conducted through applying the NA derived
thematic categories.

As part of NALS, our proposed method for generating
a network involves the following steps:

• create bipartite network of respondents and re-
sponse selections,

• project the network onto response selections using
the edge weights to indicate number of respondents
selecting both responses,

• build an item relation matrix for each possible item
pair,

• calculate a similarity value between items and
record the ratio of mutual agree to mutual disagree
selections in temperature, and
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• determine the backbone of the resulting network
through identifying the most significant edges by
similarity.

These steps are generalizable for any set of Likert-style
survey responses, making the creation of networks based
on many surveys used in PER possible. For surveys that
evaluate experiences or beliefs of closely connected and
mutually reinforcing features (e.g., graduate program
support structures or attitudes about learning science) a
network representation is able to model how respondents
relate each of these features to each other, building a hi-
erarchical structure of thematic clusters and quantifying
important items in the survey.

We found that the clusters identified through modular
analysis and the previously calculated principal compo-
nents had a strong resemblance. While there are simi-
larities between the two approaches for grouping survey
items, we do see important differences in the partitions.
These differences have implications for the qualitative in-
terpretation of the larger concepts that each aspect con-
tributes to. Additionally, an analysis of centrality mea-
sures of individual nodes identifies items that are more
important for the network and cluster structure, giving
additional information that is not easily assessed in PCA.
Though not explicitly explored in this work, this capa-
bility can be particularly valuable for comparing between
distinct groups of respondents or identifying correlations
between survey items and other factors.

We have also proposed two possible heuristics for iden-
tifying redundant survey items that aim to perform a
similar function to that the covariance factors in PCA.
The first is based on the weighted degree centrality of
each node, which can be used to prune the network of
survey items that are seen as not strongly correlated to
other items. Alternatively, these items may be kept as
they gather more unique responses, and the items of high
centrality be pruned. The second heuristic focuses on the
hierarchical cluster structure of the network, and is use-
ful for limiting the survey to only include items that are
at the core of each cluster.

We have learned that the ASES as a whole is well
designed with items clearly capturing larger themes of
student experiences. We have also found that the the-
matic clusters are slightly different than what was found
in PCA, and are more complicated than previously iden-
tified. For example, the NA revealed that certain items
loaded into PCA components, such as I04 and I05 or E07,
are not central to the respective themes. In contrast,
items which were previously not loaded into any PCA
component, such as X01 and X03, play important roles
in the network structure, as confirmed by their central-
ity measure and placement in the network. These items
should be reconsidered and included in the survey distri-
bution.

Overall, we have successfully developed a methodology
by which NA can be used to investigate Likert-style sur-
veys: NALS. We have demonstrated NALS through the
use of responses to the ASES survey, and compared it

to a similar and widely used methodology, PCA. A code
repository has been created to facilitate use of NALS
by other researchers [13]. The novelty of this approach
brings a new way to understand how individuals collec-
tively view interrelated aspects of complex phenomena,
opening new avenues for investigations in PER and re-
lated fields.

A. Limitations and future work

We have made many decisions in developing our ap-
proach to creating the network and the analysis of that
network. Particular decisions have implications for how
the methodology unfolds, thus it is important to under-
stand the limitations of our approach. In addressing
these limitations, we also propose various threads for fu-
ture research based on the affordances of NALS.

The final step in creating the network involves identi-
fying the backbone of the full survey item network. In
this paper, we use the LANS algorithm to do so, how-
ever there are many choices of backbone algorithms and
this choice may effect the resulting network. We urge
the pursuit of future investigations into the effect of dif-
ferent backbone algorithms in order to understand how
they influence the interpretation of the networks.

When analyzing the ASES network, we use the
weighted degree as our sole centrality measure. Future
work should be conducted to understand how more com-
plex centrality measures can be used to aid interpreta-
tion of the Likert-style survey networks. We also chose a
single method of cluster detection, the fast-greedy algo-
rithm. For small networks, such as the ASES network,
algorithms that optimize for modularity will always find
the same partition. For larger surveys that include many
more items, it is important to understand the results of
different algorithms and take these different partitions
into consideration.

Although the approach is widely applicable, we have
only demonstrated it for a single survey. The specific
features of the network we have investigated and the
meaningful results may not be found in every instance.
We encourage other researchers to implement NALS on
other Likert-style surveys in order to better understand
the bounds of our technique.
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Appendix A: Item content by clusters

Table II provides additional context for each cluster
identified through NA. It includes the code for each sur-
vey item along with the exact text that is used in the
ASES instrument. The items are grouped by cluster with

the thematic cluster titles at the beginning of each group-
ing. The principle component that each item was loaded
into via PCA is provided, with numbers corresponding
to those used by Sachmpazidi and Henderson [4].

TABLE II: Cluster membership from the fast-greedy cluster algorithm. The first column indicates the question code while the
second gives the item description, along with a shorthand name. The component assignment, PC, is given in the last column.

Code Item content PC

C1: Social and scholarly exploration support

I01 Socializing: The department hosts social activities (e.g., a welcome dinner, regular lunches) that are valuable
in allowing me opportunities to share my thoughts and struggles with my peers, and discuss research areas.

3

I02 Shared space: The department offered a space where students can build an academic and social community
(e.g., student offices, rooms for tutoring, rooms for student leader organizations).

3

I03 Accommodations: People in my department were supportive and caring about my accommodation needs
when I first moved in to town.

3

E06 Peer mentor: I have or had a senior peer mentor that provided invaluable resources and inducted me into
departmental and/or laboratory cultures.

1

X01 Research match: I had or have support and flexibility from my department in finding my research interests. N/A

X02 Research exploration: I had or have the opportunity to rotate through different research labs without making
a commitment in order to find my research match.

N/A

X03 Research survey: I attend(ed) a research seminar surveying the areas of expertise within the department. N/A

E09 Research flexibility: My research mentor was very flexible with my research assignments when I was struggling
with one or more courses.

1

I07 Coursework support: Whenever I face(d) a challenge succeeding on coursework, someone from my department
helped me overcome it.

3

C2: Mentoring and research experience

E01 Research meetings: I have frequent meetings with my mentor to discuss on my research progress and any
challenges I face.

1

E02 Academic planning: My mentor(s) helped me selecting courses and develop my academic plans. 1

E03 Informal meetings: I have informal meetings with my mentor(s) where I get assistance or support with any
issues I face (for example, on issues such as life-work balance, develop social network, set future goals, access
health care resources, etc.).

1

E04 Academic integration: My mentor(s) helped me integrate into the program and the physics community. 1

E05 Apprenticeship: My mentor(s) taught me what it means to be a research physicist and a scholar. 1

X04 Meetings consistency: My research group meets at least once per week. N/A

E07 Journal discussions: In my research group meetings, we devote time in reading and discussing about the
current state of knowledge in the field.

1

E08 Regular feedback: I have regular meetings with my research mentor and receive feedback on a regular basis. 1

E10 Project matching: The research project I am working on matches my research interests. 1

E11 Presentations: I have presented or am planning to present my research at a group meeting or in a journal
club.

1

C3: Professional and academic development

I04 Academic assessment: In the beginning of my program, I took a precourse assessment that was designed to
measure my incoming preparation.

3

I05 Academic personalization: I was offered a personalized coursework plan in my graduate program. 3

I06 Structured collaboration: The faculty, postdocs or experienced TAs lead guided group-work sessions to
encourage students work collaboratively on concepts covered in core courses.

3

D01 Networking: I attend mini-conferences where students from nearby universities can share research progress
and learn networking skills.

2

D02 Planning support: At the beginning of each semester, my faculty advisor(s) and I developed time-
management plan that help me identify areas where my time could be used more effectively.

2

D03 Time management training: My department hosts a seminar that focuses on time management skills. 2

I08 Tutoring: My department makes tutoring available to graduate students. 3

D04 Teaching training: I attend activities for graduate students that include trainings or professional development
on best practices for effective teaching.

2

(Table continued)
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TABLE II: (Continued)

Code Item content PC

D05 Postdoc training: I attend activities for graduate students that include trainings or professional development
on the role of a postdoc.

2

D06 Career training: I attend trainings that focus on how to maximize my chances of finding a career that is a
good fit for my interests and skills.

2

D07 Mentoring training: I attend training on learning about mentoring skills as future faculty or postdoc. 2

D08 PI training: I attend training on organizing a research laboratory. 2

D09 Networking training: I attend activities where I can learn about effective networking. 2

C4: Financial support

S01 Tuition: My tuition is covered for my entire program. 4

S02 Health: My college, department, or program offers me health benefits. 4

S03 Life: I have no financial concerns about completing my degree. 4
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