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It is shown that the residual entropy (entropy minus that of the ideal gas at the same temperature and density) is mostly
synonymous with the independent variable of density scaling, identifying a direct link between these two approaches.
The residual entropy and the effective hardness of interaction (itself a derivative at constant residual entropy) are studied
for the Lennard-Jones monomer and dimer as well as a range of rigid molecular models for carbon dioxide. It is
observed that the density scaling exponent appears to be related to the two-body interactions in the dilute-gas limit.

I. INTRODUCTION

Entropy scaling has been extensively studied in recent years
(refer to Ref. 1 for a review) as a means of connecting dynam-
ics and equilibrium thermodynamics. A requirement for ap-
plying this approach to the transport properties of real fluids
is a reliable model for the residual entropy (the difference be-
tween the entropy and the entropy of an ideal gas at the same
temperature and density), which is usually obtained from an
empirical equation of state (EOS), or more computationally
costly molecular simulation methods, limiting the usefulness
of entropy scaling. Representing the residual entropy straight-
forwardly in terms of temperature and density would therefore
be appealing and broaden the range of fluids for which en-
tropy scaling might be applied. The goal of this work is to
demonstrate that this is possible, and furthermore, it reveals
a heretofore unknown link between density scaling2 and en-
tropy scaling approaches in the entire phase diagram.

As a first demonstration of the motivation of this paper, we
overlay shear viscosity data of CO2 as a function of the inde-
pendent variable of each approach in Fig. 1. The dependent
variable is η+ = η/(ρ2/3

N
√

mkBT )× (s+)2/3, where η is the
shear viscosity, ρN is the number density, m is the mass of
one entity (atom or molecule), kB is Boltzmann’s constant, T
is the temperature and s+ is the reduced residual entropy de-
fined later on. The viscosity data were scaled according to the
modified entropy scaling approach introduced in Ref. 3. The
density scaling exponent of 13.5 was taken from Ref. 4. The
quantity η+ combines macroscopic scaling (a requirement for
isomorph theory, see Section I C), and the plus-scaling intro-
duced in Ref. 3. We will revisit each of the elements, but for
now the key point is that the two approaches yield almost lin-
ear relationships in semi-log coordinates.
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FIG. 1. Modified entropy scaling applied to shear viscosity data as a
function of residual entropy (top panel) and density scaling variable
(bottom panel) applied to shear viscosity data for CO2 (open mark-
ers: selected simulation results from this work, points: experimental
data collection from Ref. 3).

A. Entropy Scaling

The observation of a correlation between the variation of
transport coefficients (e.g., self-diffusion coefficient or shear
viscosity) of simple liquids and their residual entropy can
be traced back to Rosenfeld in 19775. In Rosenfeld’s work,
simulation results for different systems were presented and
simple exponential relations between dimensionless values of
self-diffusion coefficient or shear viscosity and residual en-
tropy were proposed. A fundamental observation was that
in order to observe these correlations between transport co-
efficients and residual entropy, the physical quantities need
to be made dimensionless by using macroscopically reduced
units6. In macroscopically reduced units, lengths are mea-
sured in terms of the average interparticle distance ρ−1/3

N , and
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energies in terms of kBT . A tilde above the quantity of inter-
est will indicate in the following that the quantity is expressed
in macroscopically reduced units. Similar results were later
found by Dzugutov7 which was the start of a growing interest
in the entropy scaling approach. While the initial focus was
on understanding the nature of the relationship between resid-
ual entropy and scaled transport properties, this approach has
been shown to be applicable to a broad range of fluids (as long
as they behave classically and do not form strong directional
bonds). The review of Dyre1 in 2018 summarized the progress
in this field up to that date. Since then, additional studies have
considered the physical basis of this approach3,8, and applied
the technique to different systems: the Lennard-Jones fluid9,
refrigerants10,11, and alkanes12,13.

B. Density Scaling

Density scaling is trivially valid for systems interacting via
inverse-power-law (IPL) potentials of the form V (r) ∝ r−n,
where r is the molecular center of mass separation. For this
family of systems, the dynamic and thermodynamic properties
are not functions of T and ρ independently but depend on their
combination Γ = ρn/3/T . As a consequence, the phase dia-
gram of these systems is one-dimensional. IPL fluids exhibit
a one-to-one mapping between Γ and residual entropy (see the
supporting information of Ref. 3) and indeed, between Γ and
all thermodynamic and transport properties with the applica-
tion of an appropriate scaling.

The density scaling approach takes a fluid of interest gov-
erned by a non-IPL potential and expresses its macroscopi-
cally scaled transport properties in the form X̃ = f (ρn/3/T ),
where X is one of shear viscosity, thermal conductivity, or
self-diffusion coefficient, and n is in this case a fluid-specific
constant for the entire phase diagram14. Density scaling is
thus predicated on the assumption that the effective interaction
potential between molecules can be approximated by V ∝ r−n.
Density scaling has been investigated for a wide range of sys-
tems, including Lennard-Jones models, modified Buckingham
fluids, metals15, flexible molecular analogs16, and has proven
to be useful also in glass-forming liquids17. A major concern
for using this approach is the evidence that the density scal-
ing coefficient n has been shown to be not constant both in
computer simulations18 and in experiments19,20.

So, how can entropy scaling and density scaling be recon-
ciled? This work demonstrates that the use of a constant ex-
ponent has the effect of making the unique variable of density
scaling a monovariate function of residual entropy. In other
words, density scaling with a constant effective hardness and
entropy scaling are closely related.

C. Isomorph Theory

Both entropy scaling and density scaling indicate that a
relation between the dynamics of fluids and their thermo-
dynamic properties exists (see for instance Fig. 1), but do
not provide a satisfying explanation for why this is the case.

Rosenfeld’s reference to the hard sphere system in the dense
fluid phase as an explanation for the success of entropy scal-
ing is hard to accept in gas-like phases. The assumption that
repulsion, modeled as IPL interactions, yields density scal-
ing has been challenged, both with simulations and experi-
ments. Simulations showed that X̃ = f (ρn/3/T ) is too sim-
ple an approximation18, and experiments19,20 indicate that, in
general, the density scaling exponent depends on the ther-
modynamic state point. A way to consistently link density
scaling and entropy scaling is provided by isomorph theory,
briefly introduced below. For a more complete overview of
the theory we refer to Refs. 1,21,22.

According to isomorph theory, it is possible to identify re-
gions in the phase diagram of a given liquid in which its be-
havior is simpler. These regions can be identified with simu-
lations by evaluating where the correlation coefficient RRos

23

is greater than 0.9:

RRos =
⟨∆U∆W ⟩√

⟨(∆U)2⟩⟨(∆W )2⟩
(1)

In the definition of RRos, ∆U and ∆W are the deviations of
the instantaneous values of potential energy and virial from
its average value, respectively. The ⟨. . .⟩ syntax indicates
the average of the argument over a canonical ensemble. The
quantity RRos can also be evaluated with experiments un-
der some approximations, as in Fig. 3 of Ref. 24. In the
RRos > 0.9 regions, the phase diagram of the system is effec-
tively one dimensional and the structure and dynamics of the
system are invariant, when expressed in the macroscopically
reduced units introduced earlier, i.e., along curves of constant
residual entropy, which are called isomorphs. These invari-
ances have been verified in several works, both with computer
simulations25 and experiments26.

In this way, isomorph theory provides a clear link between
density scaling and entropy scaling, additionally predicting
the invariance of reduced structure. The weak point of this
approach is that its validity is limited to some regions of the
phase diagram and cannot explain, for example, the validity
of entropy scaling at low densities (i.e. below the critical den-
sity).

Isomorph theory also predicts that the density scaling expo-
nent n/3 depends on the thermodynamic state, as confirmed
by computer simulations and experiments. The density scal-
ing exponent is the slope of the constant residual entropy
curves and can be evaluated from simulations in the canon-
ical ensemble using the fluctuation formula22:

neff = 3
⟨∆U∆W ⟩
⟨(∆U)2⟩ = 3

(
∂ ln(T )
∂ ln(ρ)

)
sr

(2)

where ∆U and ∆W have the same meanings as in Eq. (1). This
quantity can also be evaluated at any state point in experiments
as shown in Ref. 19.

This work will explore the link between entropy scaling
and density scaling in the entire phase diagram of several flu-
ids, i.e. both in the region of the phase diagram where iso-
morph theory can explain this link and close to the gas-liquid
coexistence where this link is not clear. In order to clarify
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this issue, we consider three families of “simple” systems:
the Lennard-Jones monomer, the Lennard-Jones dimer, and
a range of molecular models for carbon dioxide. First we con-
sider the residual entropy calculated for each system, we cal-
culate its density scaling exponent, and finally, we show how
the residual entropy and density scaling are connected.

II. METHODS

A. Thermodynamics

In order to lay out the thermodynamics, we start with the
definitions of the relevant quantities. The residual entropy sr

is defined by

sr ≡ s(T,ρ)− s(ig)(T,ρ) (3)

where s(ig) is the molar entropy of the ideal gas, and s is the to-
tal molar entropy. In practice, this difference is not evaluated
directly, rather the residual Helmholtz energy and its deriva-
tives are used to obtain the residual entropy sr (e.g., see Eq. (6)
of Ref. 3). Furthermore, it is conceptually useful to consider
rather than sr the non-dimensional term s+ defined by

s+ =−sr/R (4)

where R is the molar gas constant. Other residual properties
(residual pressure pr, residual molar Helmholtz energy ar, and
residual isochoric molar heat capacity cr

v) are defined analo-
gously:

pr ≡ p(T,ρ)− p(ig)(T,ρ) (5)

ar ≡ a(T,ρ)−a(ig)(T,ρ) (6)

cr
v ≡ cv(T,ρ)− c(ig)v (T ) (7)

The quantity c(ig)v has only temperature dependence, while the
other ideal gas properties depend both on temperature and
density.

The effective hardness neff is defined by22 (identical to
Eq. (2))

neff ≡ 3
(

∂ ln(T )
∂ ln(ρ)

)
sr
= 3

ρ
T

(
∂T
∂ρ

)
sr

(8)

After some thermodynamic manipulations27, the value of
neff from Eq. (8) can also be written in the equivalent formu-
lation

neff =−3
ρ
(

∂ s+

∂ρ

)
T

T
(

∂ s+

∂T

)
ρ

= 3

1
ρ

(
∂ (pr/R)

∂T

)
ρ

cr
v/R

(9)

As will be shown later, the derivative (∂ s+/∂ρ)T is in gen-
eral positive and (∂ s+/∂T )ρ is in general negative, and thus
neff should be positive for the molecular systems studied here.
Other more exotic systems can yield negative values of neff

28.

With the formalism of Lustig29, the residual Helmholtz en-
ergy derivatives can be obtained simultaneously in one molec-
ular simulation run. In that framework, the density scaling
exponent is defined by

neff =−3
Λ01 −Λ11

Λ20
(10)

in which

Λi j = (1/T )i(ρ) j
(

∂ i+ j(ar/RT )
∂ (1/T )i∂ρ j

)
(11)

In the dilute-gas limit, where two-body interactions are
quantified by the second virial coefficient B2, neff is given by30

lim
ρ→0

neff =−3
T

dB2

dT
+B2

T 2 d2B2

dT 2 +2T
dB2

dT

(12)

which has recently been derived in terms of the pair potential
for an infinite number of spatial dimensions31, where the infi-
nite spatial dimension limit is equivalent to the two-body limit
in Eq. (12).

B. Simulation Details

The Lennard-Jones monomer was simulated using the
RUMD software package32. The potential was cut and shifted
at the distance of 2.5σ and the potential parameters of σ and
ε/kB were set to unity. The temperature was controlled with
a Nosé-Hoover thermostat using τ = 0.2 as relaxation time.
The timestep for the simulation was kept constant in macro-
scopically reduced units dt̃ = 0.001 and the system size was
N = 1000. The values of neff were obtained from the fluctua-
tion formula in Eq. (2). The dependence of neff on the system
size has been studied in appendix B of Ref. 31.

For the other fluids, molecular dynamics (MD) simulations
were performed solving numerically Newton’s equations of
motion with a fifth-order Gear predictor-corrector scheme by
using the molecular simulation tool ms233–36. All simulations
were sampled in the canonical ensemble with the formalism of
Lustig29 to calculate the Helmholtz energy derivatives with re-
spect to density, inverse temperature as well as their combina-
tions. Velocities were isokinetically rescaled to maintain the
specified temperature. All CO2 models given in Table I were
simulated with ms2 as well as the Lennard-Jones (LJ) dimer,
which was set to a fixed bond length of σ . The long-range
interactions were corrected with the usual analytic mean-field
equations33–36. Chemical potential data µi were determined
with Widom’s test particle insertion method37. The shear
viscosity was obtained by applying the Green-Kubo formal-
ism38,39 and the Einstein relations36 for the LJ dimer and the
selected CO2 models of Zhang and Duan, Harris and Yung,
Vrabec, Stoll, and Hasse, Merker et al., Errington and Hell-
mann.

The LJ dimer was studied in the temperature range
kBT/ε = 0.9 to 100 and density range ρσ 3 = 0.00017 to
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0.5 with N = 1372 particles, whereas for transport properties
N = 4000 were used. For that purpose, simulations were equi-
librated by 100 Monte Carlo (MC) cycles and 105 MD time
steps. The production runs were performed for a period of
4 ·106 (transport: 3−5 ·107) time steps with ∆t/(σ

√
m/ε) =

0.0005 (respectively 0.001 near the vapor-liquid equilibrium
region). Intermolecular interactions were explicitly calculated
up to the cutoff radius rc = 4σ .

Each CO2 model listed in Table I was evaluated in the tem-
perature range T = 250 to 10000 K and density range ρ = 0.1
to 25 mol/dm3 with N = 1372 molecules and a cutoff radius of
rc = 14 Å (transport: N = 4000, rc = 17.5 Å). 200 MC cycles
and 5 ·105 MD time steps were used for equilibration and the
production was performed for a period of 4 ·106 (for transport
at least 15 ·106) time steps with ∆t = 0.971 fs (for T = 250 to
600 K: ∆t = 1.942 fs). Besides that, some phase space regions
of the Hellmann CO2 fluid had to be simulated with different
settings. At T = 10,000 K from ρ = 9 to 25 mol/dm3, an
equilibration of 200 MC cycles and 8 ·105 MD time steps was
performed followed by a production of 8 ·106 time steps with
∆t = 0.104 fs.

The use of the formalism of Lustig29 to calculate all ther-
modynamic properties from the same simulation run yields
the neff values directly from its definition in Eq. (10)46.

The first four CO2 models are qualitatively similar; they
consist of three Lennard-Jones sites and point charges at each
site. The next three models use two or three Lennard-Jones
sites, along with a point quadrupole at the center of the
molecule. The exception to this general approach are the mod-
els of Hellmann45 and Errington44,50. In these more advanced
models, repulsion is roughly exponential in its form, and in
the case of Hellmann45, empirical potentials have been fitted
to each site-site interaction term, in order to match first prin-
ciples calculations of the potential energy surface.

The quadrupole moment of CO2 is equal to (−14.31 ±
0.74)× 10−40 C m2, according to recent measurements of
Chetty and Couling51, which is consistent with other recent
analysis52. The quadrupole moment of the molecular mod-
els are given in Table I. There is not a very strong correlation
between the quadrupole moment Q and the representation of
the data considered in this work. The details of the evaluation
of each potential are covered in the source code of potter53.
All calculations were done in SI units to ensure dimensional
consistency.

Second virial coefficients, their temperature derivatives,
and values of neff of these models were calculated with the ap-
proach described in Ref. 30, with the use of the open-source
potter library and multicomplex algebra to obtain B2 and its
temperature derivatives simultaneously. The integrator was al-
lowed to evaluate the integrand as many as 107 times for each
temperature.

III. RESIDUAL ENTROPY

The residual entropy is the independent variable of the
macroscopically scaled transport properties in the entropy
scaling framework and quantifies the loss of microstates of the

system from intermolecular interactions. Residual entropy is
a property that is not accessible experimentally, so it is not
as well understood as other properties like pressure, density,
or speed of sound. A comprehensive study of the residual
entropy obtained from empirical thermodynamic models is
called for.

For the Lennard-Jones fluid, values of s+ can be ob-
tained by thermodynamic integration54 or other sampling-
based methods, and the EOS of Thol et al.55 gives a faithful
representation of this quantity. Figure 2 presents the values of
s+ as a function of temperature and density for the Lennard-
Jones fluid.

100 101

T * = kBT/

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

s+

0.2

0.4

0.6

0.8

1.0

*
=

N
3

FIG. 2. Values of s+ for the Lennard-Jones fluid. Markers are cor-
rected simulation results from Ref. 55 and colored curves are from
the EOS of Thol et al.55 for isochores with more than two data points.
The solid black curve is the vapor-liquid phase boundary

In this work, we compare the values of s+ obtained for
the thermodynamic models for CO2 with each other and with
the empirical EOS of Span and Wagner56. Figure 3 shows
the residual entropy calculated with two molecular models,
those of Hellmann and Merker et al., with the results from
the Span and Wagner EOS overlaid. This result shows that
the Hellmann molecular model provides a much closer agree-
ment with the values of s+ obtained from the EOS of Span
and Wagner than the molecular model of Merker et al. For
T/Tcrit ≲ 20, it is difficult to distinguish the markers (from
the molecular model of Hellmann) and the curve (from Span
and Wagner). To make the comparison more quantitative,
Fig. 4 shows the deviations between the simulation data and
the EOS. The other molecular models generally yield similar
results to that of Merker et al., showing large deviations in
residual entropy relative to the EOS. For the Hellmann model,
for temperatures below the limit of the EOS at 2000 K57,
the mean absolute relative percentage error (MAPE) in s+ is
2.1%. One distinguishing feature of the Hellmann model is
its representation of the effective hardness neff, as shown in
Section V. The differences are already evident at the level of
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TABLE I. Molecular models for CO2 considered in this work.

Author Nsites site-site quadrupole Q×1040 / C m2

Murthy et al.47 3 LJ point charges -12.6
Potoff & Siepmann48 3 LJ point charges -15.1

Zhang & Duan40 3 LJ point charges -12.8
Harris & Yung a41 3 LJ point charges -13.7
Möller & Fischer49 2 LJ point quadrupole -12.2

Vrabec et al.42 2 LJ point quadrupole -12.7
Merker et al.43 3 LJ point quadrupole -13.6
Errington44,50 3 EXP-6 point charges -13.5
Hellmann45 7 empirical point charges -14.2

a: PM2, rigid
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FIG. 3. Results for s+ from the CO2 molecular models of Merker
et al.43 and Hellmann45. The curve for each isochore is given by
the Span and Wagner EOS56. The vertical dashed line indicates the
temperature limit of the EOS at T = 2000 K.

classical calculations based upon the second virial coefficient.
For a state point either above the critical temperature, or in

the gaseous phase for subcritical temperatures, scaled residual
entropy at a given state point can be obtained by an integral
taken at constant temperature

s+ =
∫ ρ

0

(
∂ s+

∂ρ

)
T

dρ (13)

where s+ in the zero density limit (that of the ideal gas) is
zero. This is the typical “thermodynamic integration” ap-
proach familiar to molecular simulation practitioners, formu-
lated in a different fashion. An alternative (and thermodynam-
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FIG. 4. Deviations of s+ calculated from the CO2 molecular models
of Merker et al.43 and Hellmann45 (subscript TW) from the Span and
Wagner EOS56 (subscript S&W).

ically identical) representation of Eq. (13) is

s+ =
∫ ρ

0

1
ρ2

(
∂ (pr/R)

∂T

)
ρ

dρ (14)

The formulation in Eq. (14) highlights the importance of high
quality densimetry data (measurements of density ρ as a func-
tion of temperature and pressure) for the representation of
residual entropy. If the temperature and density dependence
of pressure is well captured by laboratory measurements, the
derivative (∂ pr/∂T )ρ will also be, and the residual entropy
obtained from a highly accurate empirical model fitted to these
data will also be accurate. In the case of CO2 therefore,
we may reasonably assume that the residual entropy obtained
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from the Span and Wagner EOS is probably correct within its
range of validity given the large quantity of high quality den-
simetry data, and the excellent agreement of this EOS with
these data56.

At low density, s+ is governed by the leading term of the
virial expansion as explained in Section S3 in the supporting
information:

lim
ρ→0

s+ =

(
B2 +T

dB2

dT

)
ρN (15)

so the behavior of Θ2 = B2 +T (dB2/dT ) can provide infor-
mation on the quality of the molecular model and that of the
EOS. Figure 5 shows the obtained values of B2 +T (dB2/dT )
for each model and the EOS. The model values were obtained
classically with potter. The quantity Θ2 must be positive for
all temperatures because the entropy must be less than that
of an ideal gas at the same temperature and density (see page
447 of Ref. 58), a constraint fulfilled by all molecular models
and the EOS, but the qualitative behavior of the EOS is in-
correct (compared with the Hellmann model) above approx-
imately 1000 K. The reproduction of dilute gas residual en-
tropy values in the low-density gas (considering values of Θ2)
is thus shown to be a sensitive test for the residual entropy.
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FIG. 5. Values of Θ2 = B2+T (dB2/dT ) from molecular models and
from the Span and Wagner56 (S&W) EOS for CO2.

IV. DENSITY SCALING AND ENTROPY SCALING

To begin our comparison between density and entropy scal-
ing, we follow the approach taken in density scaling: the use
of a constant n for the entire phase diagram in the definition of
Γ. In the case of the Lennard-Jones monomer fluid, there is a
particular value of n which maximizes the correlation between
(ρ∗)n/3/T ∗ and s+. With this optimized value, the Spearman
correlation coefficient between (ρ∗)n/3/T ∗ and s+ is greater

than 0.999, which represents nearly one-to-one relationship.
The MD data also consider the gaseous phase and the critical
region so that most of the phase diagram is covered. In or-
der to assist with the visualization, the value of Γ was scaled
with an exponent to linearize the relationship between Γ and
s+ in Fig. 6. This figure demonstrates that in the case of the
Lennard-Jones monomer, s+ and Γ are directly connected to
each other. The particular surprise in this figure is that the
relation between Γ and s+ holds even in parts of the phase di-
agram where RRos ≪ 0.9. In the dilute-gas limit, this scaling
should break down because the leading term from the virial
expansion is defined as in Eq. (15) which does not follow the
same scaling.
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FIG. 6. Scaled values of s+ for the Lennard-Jones monomer as a
function of the density scaling variable for T ∗ < 20.

For the Lennard-Jones dimer, the qualitative picture is sim-
ilar, as shown in Fig. 7. Again, a constant value of n was
selected that maximized the Spearman correlation between
(ρ∗

s /2)n/3/T ∗ and s+. The addition of the bond to form a
linear molecule does not appear to alter the core conclusion
that a fixed value of n is needed to form a one-to-one relation-
ship between (ρ∗)n/3/T ∗ and s+. For some of the state points
with RRos < 0.3, indicating a breakdown of isomorph theory,
the mapping between the variables is slightly less strong, but
aside from these deviating points, the mapping is nearly as
one-to-one as for the Lennard-Jones monomer. The values of
s+ for the dimer are approximately two times larger than those
of the monomer at the same monomer density and tempera-
ture (microstates are removed by the fixed bond, limiting the
accessible phase space). The state point dependence is shown
in Fig. S1 in the supporting information.
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FIG. 7. Values of s+ for the Lennard-Jones dimer from the present
simulations as a function of the density scaling variable. Note that
the density ρ∗

s is the reduced monomer number density.

For the CO2 model of Hellmann45, the behavior is much the
same as for the Lennard-Jones dimer. Again, n was selected
to maximize the Spearman correlation between ρn/3/T and
s+ for the points with RRos > 0.5. Figure 8 shows the same
type of plot, but with one striking difference. The relationship
between s+ and Γ1/3.3 is qualitatively different; the curvature
is convex in the case of CO2 and concave in the case of the
Lennard-Jones monomer and dimer.
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FIG. 8. Values of s+ from the Hellmann45 model for CO2 from the
present simulations as a function of the density scaling variable. Den-
sity ρ is in units of mol/dm3 and temperature T is in units of K.

V. EFFECTIVE HARDNESS

The analysis above primarily focused on post hoc analysis
of simulation data in order to determine the optimal value of
n for a particular system. What if the optimal value of n is
unknown? A first glimpse of a predictive model for the op-
timal n comes from a consideration of the effective hardness

of interaction neff. The quantity neff entered the vocabulary
of thermodynamics with the advent of isomorph theory. The
effective hardness can be conceptually thought of as the effec-
tive repulsiveness of the interactions between molecules59.

A. Lennard-Jones monomer

We first consider the density scaling exponent neff obtained
from MD simulations for the Lennard-Jones fluid. The re-
sults of these simulations are shown in Fig. 9. The calcula-
tions extend from the dilute gas up to extremely high tem-
peratures and very dense liquid states. The dilute-gas values
obtained from the second virial coefficient30 are also shown,
highlighting that the values approach 12 in the infinite temper-
ature limit. In this high-temperature limit, the interactions are
entirely governed by the repulsive contribution (which is pro-
portional to r−12 for the Lennard-Jones fluid). For densities
and temperatures more aligned with engineering applications,
neff has both temperature and density dependence. Along the
critical isotherm, the values of neff vary from approximately
16 to zero (going towards zero at the critical point); neff is de-
cidedly not constant for even simple systems like the Lennard-
Jones fluid.

0
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0.3
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R
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/ crit

FIG. 9. Values of neff and RRos for the Lennard-Jones monomer fluid.
The thick curve is the value obtained from the closed form solution
for the second virial coefficient published by Sadus60,61, and other
values were calculated from NVT simulations performed with the
RUMD software package32.
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The integration from Eq. (13) may equivalently be written
in terms of neff as

s+ =
1
3

∫ ρ

0

(cr
v/R)neff

ρ
dρ (16)

This expression provides a useful way of thinking about the
relationship between residual entropy and neff. The concep-
tual lesson of Eq. (16) is that if neff and cr

v obtained from an
EOS or molecular model are both correct, the residual entropy
will also be. Conversely, if the values of s+ are thought to
be correct, and the neff is correct, the isochoric heat capacity
should also be correct. However, experimental measurements
of heat capacities for fluids are often characterized by rela-
tively large experimental uncertainties, inconsistency, and in
many cases by a complete lack in the open literature.

At temperatures well above the critical temperature, neff de-
pends only relatively weakly on density31 and the representa-
tion of the residual entropy is therefore largely governed by
the dilute-gas neff. For instance in Fig. 9, for T > 10Tcrit the
variation of neff is within roughly 30% of the infinite tempera-
ture limit of 12. This is why density scaling with a constant n
works reasonably well when studying a narrow region in the
liquid region of the phase diagram, but not otherwise. Fol-
lowing Eq. (16), if a model (equally an empirical equation of
state or molecular model) correctly predicts the correct dilute-
gas value for neff, the liquid phase residual entropy will be
well represented. For liquid states, most of the variation in
neff for the Lennard-Jones monomer corresponds to the region
close to the critical point.

B. Lennard-Jones dimer

Ref. 30 considered the neff in the dilute-gas limit for rigid
linear chains with Lennard-Jones sites. The values of neff in
this work were obtained with a similar method (integration
with potter over three angles and center-of-mass separation),
and are shown in Fig. 10. The fundamental difference between
the Lennard-Jones monomer and dimer is only one of magni-
tude; the qualitative behavior is similar, and the vertical axis is
mostly just scaled. In the infinite-temperature limit, the value
of neff also approaches 12 because at sufficiently high tem-
peratures the dominant interaction is the pairwise repulsion of
two sites governed by an r−12 interaction30.

100 101 102 103 104

T *
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n e
ff

18.7481

12
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0.3

0.4
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0.6
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0.8

* s

FIG. 10. Values of neff for the Lennard-Jones dimer fluid as a func-
tion of temperature and monomer density ρ∗

s (which is twice the
reduced molecular density). The dilute-gas limit (solid curve) was
taken from Ref. 30 and the markers are the simulation data from this
work.

C. Carbon dioxide

The molecular models used in this work for CO2 are lin-
ear and rigid and do not allow for vibrational contributions to
the energy. The dilute-gas limit of neff can therefore be ob-
tained, as described above, from four-fold integration. Clas-
sical values of neff are shown in Fig. 11 for the considered
molecular models as a function of temperature. The ab ini-
tio potential of Hellmann45 can yield very accurate predic-
tions of the dilute-gas thermophysical properties (e.g., second
virial coefficient). As such, and especially given the physi-
cally sound basis of this model, it is believed that the values
of neff from the Hellmann45 model in the dilute-gas limit are
therefore a suitable baseline for a comparison with other mod-
els. The values of neff calculated from the model of Hellmann
are smaller than those of the other models at all temperatures.
The model of Errington (which has a more physically sound
exponential repulsion as compared with the r−12 repulsion of
the other models), is much closer than the other models, which
are mostly consistent, but with larger values. The value of n
for CO2 proposed in the literature for density scaling4 is 13.5
based upon density scaling of shear viscosity data in the liquid
phase, which is near the peak value of 13.24 obtained for neff
from the Hellmann45 model.
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FIG. 11. Values of neff in the dilute-gas limit (from Eq. (12)) ob-
tained by potter for the CO2 molecular models and from the Span
and Wagner56 (S&W) EOS.

Next, the values of neff from the molecular models are plot-
ted as a function of temperature and density. Given the qual-
itative similarities, only the results for the Merker et al. and
Hellmann potentials are shown here; the remainder are in the
supporting information. Many qualitative features of these
results are similar to those of the Lennard-Jones fluid. At
high temperatures (T/Tcrit ≳ 20), neff does not change much
as the density is swept through a large range, and the tem-
perature at the maximum of neff along an isochore does not
depend strongly on the density; it is close to the maximum
obtained from the dilute-gas calculations. The infinite tem-
perature limit for CO2 (unphysically neglecting dissociation)
should be 3/2 (see the appendix of Ref. 62), which holds for
all potentials that are finitely valued at all separations. For the
Hellmann model, the contributions to the potentials are diver-
gent at a center-of-mass separation of zero, and a small hard
core is required for each site-site interaction, which makes the
infinite temperature limit go to infinity (see for instance the
result for the square-well fluid in Ref. 30).

VI. CONCLUSIONS

Density scaling and entropy scaling can be conceptually
aligned by considering density scaling as a mapping onto the
residual entropy. The optimal value of n to maximize the cor-
relation between Γ and s+ appears to be linked to the max-
imum of neff in the dilute gas limit. For the Lennard-Jones
monomer fluid, the maximum is 15.06 (see Fig. 9), and the
optimal scaling value is 15.9. For the Lennnard-Jones dimer
fluid, the maximum values is 18.7 (see Fig. 10), and the opti-
mal scaling value is 17.5. For the Hellman model for CO2, the
maximum value is 13.24 and the optimal scaling value is 12.1.
All scaling values are approximately within one unit of the
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FIG. 12. Results for neff for CO2 from the molecular models of
Merker et al.43 and Hellmann45. The dashed-dotted curve for each
isochore is the same quantity given by the Span and Wagner EOS56.

maximum value of neff. This preliminary observation should
be further studied in order to understand whether this relation-
ship should be expected to hold in general. If so, it could offer
a route to an entirely predictive approach for entropy scaling
that does not require an equation of state or molecular simu-
lation methods.

The persistent challenge of both density scaling and entropy
scaling is that a priori predictions of the functional form of the
relationship between the scaled transport properties and the
independent variable remain out of reach. In some cases (e.g.
see Ref. 9), entropy scaling yields a very simple functional
form (in that case, exponential), but an equation of state is re-
quired. The hope is that the observations in this work about
the relationship between density scaling and entropy scaling
might allow for a new empirical transport property model-
ing approach that is simpler to apply with a strong theoreti-
cal basis. For instance, it was observed for the Lennard-Jones
monomer fluid, and indeed for many other fluids, that there
is an approximately exponential relationship between macro-
scopically scaled viscosity times s+ to the power of 2/3 and
the residual entropy9.
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VII. SUPPLEMENTARY MATERIAL

The supplementary material includes a PDF with:

• Figures like Fig. 3, Fig. 4, and Fig. 12 for the other CO2
models

• Results on change of entropy upon dimerization

• Python snippet for data processing

• Critical region analysis

The complete set of molecular simulation results for CO2,
Lennard-Jones monomer, and Lennard-Jones dimer models
are provided in a zip archive.
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