
Building Interpretable Machine Learning Models to Identify
Chemometric Trends in Seabirds of the North Pacific Ocean
Nathan A. Mahynski,* Jared M. Ragland, Stacy S. Schuur, and Vincent K. Shen

Cite This: Environ. Sci. Technol. 2022, 56, 14361−14374 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Marine environmental monitoring efforts often rely on the
bioaccumulation of persistent anthropogenic contaminants in organisms to
create a spatiotemporal record of the ecosystem. Intercorrelation results from
the origin, uptake, and transport of these contaminants throughout the
ecosystem and may be affected by organism-specific processes such as
biotransformation. Here, we explore trends that machine learning tools reveal
about a large, recently released environmental chemistry data set of common
anthropogenic pollutants measured in the eggs of five seabird species from the
North Pacific Ocean. We modeled these data with a variety of machine learning
approaches and found models that could accurately determine a range of
taxonomic and spatiotemporal trends. We illustrate a general workflow and set
of analysis tools that can be used to identify interpretable models which
perform nearly as well as state-of-the-art “black boxes.” For example, we found
shallow decision trees that could resolve genus with greater than 96% accuracy using as few as two analytes and a k-nearest neighbor
classifier that could resolve species differences with more than 94% accuracy using only five analytes. The benefits of interpretability
outweighed the marginally improved accuracy of more complex models. This demonstrates how machine learning may be used to
discover rational, quantitative trends in these systems.
KEYWORDS: environmental monitoring, reproducibility, exposure, biorepository, STAMP

■ INTRODUCTION
Ubiquitous contamination by anthropogenic pollutants in the
North Pacific Ocean has been widely acknowledged as an issue
of concern. Finding proper indicators of global trends is
complicated owing to the complex nature and size of the
ecosystem.1 This is of particular importance in geographic
areas (e.g., Alaska in this work) where subsistence hunting
provides a significant nutrition source to indigenous peoples,
exposing human populations to environmental pollutants.2

Seabirds are an important group of upper trophic-level marine
organisms in which lipophilic contaminants accumulate due to
biomagnification. Analyses of seabird tissues, particularly eggs,
have historically played important roles in temporal and spatial
environmental monitoring of persistent organic pollutants and
mercury in North America and Europe.3−7 Egg contents serve
as repositories of chemical information reflecting the environ-
ment in which these seabirds lived at the time eggs were laid.8

Seabirds are widely dispersed over the North Pacific Ocean, so
they can act as biomonitors of this body of water.
In 1999, the U.S. Fish and Wildlife Service Alaska Maritime

National Wildlife Refuge, the U.S. Geological Survey Biological
Resources Division, and the U.S. National Institute of
Standards and Technology (NIST) implemented the Seabird
Tissue Archival and Monitoring Project (STAMP) to monitor
contaminants in Alaska’s marine environments, which was

expanded to include the U.S. Pacific Islands in 2010. This
multiagency project aimed to collect, process, and bank seabird
eggs under standardized protocols to avoid external contam-
ination9−11 with the ultimate goal of using these seabird eggs as
biomonitors for environmental contaminants. To date, over
2588 seabird egg clutches from 11 species and 55 different
colonies throughout the North Pacific Ocean12 have been
processed, and the homogenized egg contents archived in
liquid nitrogen vapor freezers at the NIST Biorepository.13

Contaminant information at this scale proves invaluable to
wildlife managers and citizen stakeholders alike in under-
standing potential exposure-driven environmental and human
health risk factors.14 Understanding chemometric patterns in a
given region enhance the understanding of contaminants in
that ecosystem, which may reflect large-scale oceanographic
changes.15

Machine learning has recently revolutionized modeling
capabilities in many scientific disciplines, but state-of-the-art
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models for dense, tabular data, such as random forests16 and
gradient-boosted trees,17,18 tend to be “black boxes”.19−21

While they may perform well, the reasons behind their
performance are generally opaque. A variety of model-agnostic
explanation methods such as permutation feature importan-
ces,16,22 local interpretable model-agnostic explanations
(LIME),23 and Shapley additive explanations (SHAP)24,25

have been developed to explain the inner workings of such
models. Other “glass box” models, such as (shallow) decision
trees or explainable boosting machines,26 do not require
explanation because their internal structure is naturally
comprehensible. Explanations or interpretations of models
are generally required to engender trust between the user and
the model and are essential to understanding the scientific
reasoning behind why a model behaves the way it does. In
high-risk situations, such as when health factors are involved,
there is a strong preference for simple, easily understandable
models, even if they are not as powerful as the best black-box
models. Model selection is further complicated by the so-called
“Rashomon Effect”21 which occurs when multiple, high-
performing models make similar predictions but for different
reasons. This occurs when different models identify different
trends in data, which often results when features (in this work,
individual contaminant levels) are highly correlated or there
are more features than necessary to perform a prediction
task.21,27 Models of highly-monitored complex chemical
systems, such as the environment, are often susceptible to this.
To this end, in order to explore the utility of machine

learning methods on data commonly generated as a part of
environmental monitoring efforts, we develop interpretable
models to elucidate chemometric trends in oceanographic
biomonitors relevant to wildlife conservation and management
efforts. Here, we illustrate a standard, systematic workflow that
can be used to train, compare, select, and explain different
approaches enabling the development of rational models,
which are simple to deploy and scientifically defensible. This is
the first quantitative modeling effort to be performed on the
STAMP database, and demonstrates the utility of machine
learning on it; however, this work is not intended to be an
exhaustive analysis. Typically, publicly available data are

focused on specific project needs and are too heterogeneous
to provide the scale needed for this study. We leveraged the
combination of sample metadata housed by the NIST
Biorepository and analytical chemistry data produced by
NIST and its partners to classify seabird eggs based on their
chemometric signatures. Our results suggest that chemometric
data used for the identification and classification of tissue
samples may be captured with simultaneously high-performing
and interpretable machine learning models; these models
provide scientific insight into the observed trends, and this
workflow may serve as an invaluable tool in future analyses of
such data.

■ MATERIALS AND METHODS
Data. All data preprocessing, analysis, and visualizations

described here were performed in Python 3.7. Results were
plotted with seaborn v0.11.1,28 matplotlib v3.3.4,29 dtreeviz
v1.3.7 (https://github.com/parrt/dtreeviz), and cartopy
v0.18.030 packages. We analyzed the STAMP data set
consisting of persistent bioaccumulative contaminants found
in the eggs of seabirds from the North Pacific Ocean collected
between 1999 and 2010. The instrumentation and data set
preparation are described in detail in ref 31, so we will only
summarize the key points here. The original data set contained
a total of 487 samples which were collected and heteroge-
neously analyzed for 174 ubiquitous contaminants including
brominated diphenyl ethers, polychlorinated biphenyls
(PCBs), per- and polyfluorinated alkyl substances, organo-
chlorine pesticides (OCPs), mercury, butyltins, and stable
isotope ratios.
Measurements in this data set are a result of various different

historical investigations and thus are not homogeneous across
all samples. Consequently, a subset of this data was selected
that contains no missing values, and thus represents a uniform
set of information. This subset contained only OCPs, PCBs,
and mercury measurements. The species available in this
subset currently include Common murre (Uria aalge,
Pontoppidan 1763), Thick-billed murre (Uria lomvia, Linnaeus
1758), Glaucous gull (Larus hyperboreus, Gunnerus 1767),
Glaucous-winged gull (Larus glaucescens, Naumann 1840), and

Figure 1. Machine learning methodology used in this study. (a) Example pipeline composed of 3 steps is shown. Training follows the blue arrows,
while testing on new data follows the green arrows. (b) Nested strategy employed to estimate the performance of different pipelines and their
uncertainty. Paired t-tests are performed on the R × K total validation values to assess the statistical significance of any differences. A pipeline is
chosen, usually as a balance between performance and simplicity, and retrained using a single CV loop before being sent for further analysis by
explanation tools, if the pipeline’s model is not naturally interpretable already.
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Laysan albatross (Phoebastria immutabilis, Rothschild 1893).
The number of species present, and analytes tested for, may be
expanded by additional analysis in the future but is beyond the
scope of the current work which aims to interrogate existing
data from this recently-released data set.
The subset of 5 seabird species represents 3 different genera

nesting at numerous colonies and contains a total of 461
samples each tested for 49 different analytes or sets of analytes
after the preprocessing described in ref 32. A complete list of
these analytes, which are sometimes combined into a single
feature due to, for example, coelution, is available in the
Supporting Information. While there are instances where
analytes were not detected, in this subset a test was always
performed. When a nondetect occurred, the value was
randomly imputed to a value below the limit of detection.
Imputing to fixed values, such as zero, can artificially bias
classification and regression models. Random values tend to
destroy artificial statistical correlation with target variables,
such as the origin of a sample, which may lead to more
conservative models.
Machine Learning Pipelines. In this work, we focus on

training various machine learning models for classification
tasks. Henceforth, a “class” refers to a category and should not
be confused with the same term used to describe the formal
biological taxonomy of seabirds. To systematically investigate
different machine learning algorithms and preprocessing steps,
we employed a construct known as a “pipeline” in the
imbalanced-learn v0.7.0 package.33 A pipeline is essentially a
series of steps that may be chained together in a sequence to
produce a composite model. Figure 1a illustrates an example
pipeline composed of three steps: class-balancing (SMOTE),
standardization, and a final predictive model. When training
data is provided to the pipeline the initial steps both fit and
transform the data. Fitting stores internal parameters that
enable the transformation; for example, standardization
measures the mean, x̅ and standard deviation, s, of the
sampled data so that a feature may be autoscaled, =x x x

snew .
When testing or validation data is provided, no fitting is
performed; only the transformation is performed to pass data
from one step to the next. This final step is always the
predictive model which is trained on the data that was
transformed by the preceding steps. All models used in this
work are available in the scikit-learn v0.22.234 and XGBoost
packages.18

The pipeline construct also allows preprocessing steps to be
added or removed. One common step is to balance the classes
when the number of samples from each category is very
different. The synthetic minority oversampling technique
(SMOTE)35 was sometimes used to balance the classes by
interpolating between pairs of observations to create synthetic
data; we combined it with the edited nearest neighbors
approach (SMOTEENN)36−38 to reduce noisy synthetic
samples that result from interpolation toward extreme points,
which could be outliers. However, in tree-based models bias
from imbalanced classes can also generally be prevented by
weighting the data inversely proportional to the observed
frequency of a given class. The use or disuse of this is an
example of a hyperparameter that is tuned during cross-
validation (CV). All hyperparameters associated with each
pipeline were optimized by using a grid search with stratified
CV, where the relative proportion of classes is kept constant
across all folds.

Training and Evaluating Pipelines. We considered 9
different models in pipelines: a simple decision tree,39 random
forest,16 a gradient-boosted tree as implemented in
XGBoost,18,40 linear discriminant analysis (LDA) and quad-
ratic discriminant analysis,41 LDA for dimensionality reduction
followed by logistic regression,41,42 support vector classifiers
with linear and radial basis function kernels,41 naiv̈e Bayes,43,44

and k�nearest neighbors (KNN).41 Hyperparameters for, and
descriptions of, these models can be found in the scikit-learn34

and XGBoost documentation.18 Autoscaling was included in all
pipelines.
Pipelines were trained and evaluated using a nested

approach graphically illustrated in Figure 1b. An initial outer
loop splits the data into R repeats with disjoint held-out test
sets; the remaining data is then split into K-folds (inner loop)
to perform CV. The inner loop uses K − 1 folds of data
(Train) to fit the pipeline with one set of hyperparameters and
then tests the performance on the remaining fold (Validation);
this is repeated K times to determine an average. The K scores
from the model with the best average score are retained. This
entire process is repeated on each of the R different data splits
to obtain a total of R × K validation set performances, which
reflect how well a pipeline and its hyperparameters can be
optimized given different possible training sets. Each outer
loop effectively ignores the held-out 1/R fraction of the data
(Test) which serves only to help decorrelate the different
repeats by ensuring they do not use the exact same set of data.
Conventional nested CV45 uses this test data to obtain an
unbiased estimate of the generalization error, whereas this
scheme is essentially repeated “flat CV” whose K performances
may be biased; however, extensive studies on real-world data
sets using the models we employ in this work suggest this bias
does not significantly affect the ranking of these classifiers.46

Each of the R pipelines may have slightly different
hyperparameters, so the final production model is obtained
by performing a single CV (outer) loop on the entire data set
at the end; with no held-out data to compare against, its
accuracy, a, and uncertainty are reported as those obtained for
that pipeline during the nested loop process. The data shuffling
and splitting are the same for all pipelines; thus, each pipeline
trains on the same R × K training sets. This allows us to
perform a paired t-test to ascertain if one pipeline outperforms
another in a statistically significant manner. For each task we
attempt such as training models to predict species, we
performed a 1-sided test (H d: 00 , >H d: 01 ) for each
pipeline against the one with the best mean performance. Here,
d̅, is the mean difference in accuracy, di,j = ai,j

best − ai,j
other,

between the two pipelines

=
× = =

d
R K

d1

i

R

j

K

i j
1 1

,
(1)

=
× = =

s
R K

d d1
1

( )
i

R

j

K

i j
2

0 0
,

2

(2)

Since data folds overlap between the runs, the R × K
validation scores are not completely independent, which leads
to high Type I error in a standard t-test.47 To account for this,
we used Bouckaert and Frank’s corrected repeated K-fold CV
test,47,48 which employs Nadeau and Bengio’s correction49 to
combat this effect. In the original formulation, the K-fold CV is
assumed to be repeated on the same (entire) data set R times;
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however, the nested formulation helps further decorrelate the
R different repeats which also helps counteract this effect. The
final t-statistic is

=
+×( )

t d

s
R K

1
1

2
(3)

where ρ = ntest/(ntest + ntrain) = 1/K.
We make the practical conclusion that any pipeline for

which we fail to reject H0 is essentially as good as the best
performer, whereas the rejection of H0 occurs when there is
statistical evidence that the first pipeline is better. We generally
search for the “simplest” model that does not statistically
underperform the best model or is at least very close.
Simplicity is subjective and is left to the user to decide the
relative merits of simplicity versus accuracy. Unless otherwise
stated we used R = 5 and K = 2 with a significance level of α =
0.05.
Other Preprocessing. All preprocessing steps which

require information about the target variable, such as the
species when performing SMOTE, are considered supervised
since they incorporate information about the final goal of the
model. All supervised methods are included in the pipelines so
that any bias from the observed training data is accounted for
in the CV. We performed 2 unsupervised preprocessing steps
before beginning the analysis. Imputation of nondetects to
random values below their limit of detection is the first
example of this. The second is to remove correlated analytes.
This is described in detail in ref 31 and in the Supporting
Information, but it essentially involves performing agglomer-
ative hierarchical clustering with Ward’s linkage50 on the
Spearman rank-order correlation, rS, between analytes. This
results in an unsupervised clustering of the analytes; the
number of clusters changes based on the threshold distance, t,
allowed between different clusters. When t = 0, all analytes are
unique and are alone in their own “cluster;” as t increases,
clusters of multiple analytes form in which members are
considered to contain similar information. As a result, we select
a single analyte from each cluster.
This strategy enables one to choose, for example, a set of

analytes that fall into categories of similar types (e.g., all
PCBs), or those that can all be measured on the same
instrument. It can also be used to prioritize analyte selection
when some are missing from parts of agglomerative data sets
(e.g., from different analytical methods), or prioritize selection
by ad-hoc choices (e.g., preferentially selecting analytes with
known health impacts) backed by pattern similarity. This
enables models to be built using a set of variables that are
practically simpler and potentially more cost-effective to
obtain. To perform selection, analytes are categorized and
the entropy of a selection is

=S f fln( )
i

N

i i

cat

(4)

where Ncat is the total number of different categories, and f i is
the fraction of selected analytes that belong to category i.
Given a set of clusters and categorized analytes, we searched

for an optimal selection by minimizing S with a Monte Carlo
method. We initially selected a random set of analytes;
subsequently, perturbations were proposed by selecting a
random cluster and a new random analyte within it. This new

set of choices was accepted with a probability given by a
Metropolis criteria51

= [ ]p S S Tmin 1, exp( ( )/ )new current (5)

where T is a parameter that controls how often a more
disordered set of analytes is chosen; for a more ordered set Snew
< Scurrent so that p = 1 which is always accepted. After 1000
rounds with T = 0.1 a final selection was made. This process
was repeated 5 times to ensure the selection with the lowest
Scat was found.
In this work, we labeled analytes by the categories described

in the Data section, such as OCP, PCB, mercury, stable isotope
ratio, and so forth. The 49 analytes used in this work fall
exclusively into the first 3 categories with PCBs being the most
numerous; consequently, as the number of clusters decreased
(increasing t), PCBs tend to dominate the features chosen.
The SI contains a complete list of analytes chosen as the
number of clusters was systematically decreased from 49 to 5.

■ EXPLANATION TOOLS
SHAP. After a pipeline has been developed and decided

upon, it should be explained. SHAP24,25 is a framework, based
on cooperative game theory, to explain the output of any
model by fairly allocating credit to each of the features in the
model. A SHAP value for a feature (e.g., level of PCB 110)
represents the average change in the model’s output (e.g.,
probability of class membership) due to the value of that
feature. For example, a random forest can be used to predict
the probability, |p X(C ), that a sample originates at a given
colony, C. A SHAP value can be computed for each analyte in
the observation, x ∈ X⃗, which indicates how much of the
probability is due to x. The average probability of the class plus
the sum of the SHAP values for an instance yields the model’s
output, |p X(C ). The mean absolute SHAP value across all
observations in a set serves as an indicator of which features
play a predominant role in determining the likelihood a sample
originates from a colony. While SHAP values do not
necessarily indicate causality, they are a powerful tool that
reveals how the model is using its features (in this case,
analytes) to make its predictions. Importantly, it is model-
agnostic, so it may be used as a unified approach to explain all
models, and SHAP itself has been shown to be a generalization
of a number of other feature-based explanation techniques,
such as LIME23 and quantitative input influence.52

Jensen−Shannon Divergence. When performing classi-
fication, groups of individual analytes, which uniquely
“fingerprint” a class are both interesting and useful in highly
explainable models. A fingerprint emerges when the distribu-
tions of an analyte for two categories (such as different species)
are disjoint, or nearly so. Decision trees naturally make use of
such analytes to split nodes into different sets in decreasing
impurity. Such a tree will try to choose the numerically optimal
analyte to split a node; however, there may be other analytes
that could yield splits that are nearly as good but are much
more naturally understandable or preferable for another
reason. We computed the Jensen−Shannon divergence
(JSD)53,54 to identify analytes that naturally distinguish a
class from others to identify such alternatives. The JSD is a
convenient metric for quantifying the difference between two
distributions, P and Q; it is a symmetrized form of the
Kullback−Leibler divergence (KLD) and is bounded between
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0 (identical distributions) and 1 (no overlap) when a logarithm
with base 2 is used.

= +
P Q

P M Q M
JSD( )

KLD ( ) KLD ( )
2

2 2
(6)

whereM = (P + Q)/2 is the mean of the two distributions, and
the KLD with base n is defined as

=P Q P x
P x
Q x

KLD ( ) ( )log
( )
( )n

x
n

i
k
jjjj

y
{
zzzz

(7)

This is a useful tool for intuitively suggesting when an
analyte used by a decision tree, or similar model, might be
exchanged for a different analyte to construct a slightly
different, more interpretable model with nearly identical
performance.
When computing a one-vs-all (OvA) JSD for an analyte, Q

was computed as a normalized histogram using data from all
the classes except the one in question, for example, a
combination of PCB 100 for murre and gulls if we are
focusing on albatross; the distribution of that class, P, was also
normalized, and the JSD between the two was computed. This

Figure 2. Summary of data set labeled by genus. (a) Class imbalance found in the data, with over 70% coming from murres. (b) PCA performed on
the entire data set illustrates that a three-dimensional separation may be possible. (c) LDA on the entire data set illustrates that a single dimension,
or discriminant, is sufficient to separate the genera.

Figure 3. Decision tree model trained on a SMOTEENN-balanced data set to predict genus. The optimal tree depicted was determined by
stratified, 10-fold CV and has an estimated accuracy of 97.94 ± 0.67%. Predictions for the entire (unbalanced) data set are illustrated, and a jittered
strip plot of data at each node is shown; the value (ng/g wet mass) each node is split at is given in red.
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OvA JSD indicates how uniquely the analyte is distributed for
the class in question relative to all others. We also computed a
pairwise JSD between two classes (e.g., murre versus
albatross); in this case, two normalized distributions are
compared, and no combination is required.

■ RESULTS AND DISCUSSION
Classifying Genus. First, we examined what, if any,

chemometric differences exist between seabirds based on their
taxonomy. Three genera are present in the data: Uria (murre),
Larus (gulls), and Phoebastria (albatross). There is a
substantial amount of class imbalance, as illustrated in Figure
2a; Uria comprises 73.5% of the data, with 17.1% coming from
Larus and the remainder from Phoebastria. Principal
component analysis (PCA), after autoscaling the data, revealed
that 3 dimensions were sufficient to naturally separate the
genera in a visually intuitive fashion; however, this
unsupervised approach proved to be less efficient than LDA,
which was able to separate the data in only a single dimension
(cf. Figure 2b).
We performed 10-fold, stratified CV with LDA and

computed the leading coefficients, or scalings, on the analytes
in the top linear discriminant, LD 1, to understand how
substantially they affect the classification. The full results are
shown in Supporting Information Figure S1, which illustrates
that the levels of PCBs 153, 132, and 170 play the most
important role in determining LD 1; however, given the
proximity of Larus to Uria along this dimension, we cannot
discount the combined importance of the other analytes in
accurately determining a sample’s position along this axis.
While another classifier, such as logistic regression, may
perform well when trained on the dimensionally compressed
data by creating “vertical” partitions between the classes in
Figure 2c, the LDA classifier itself, which does not rely on any
such reduction, yielded a 98.70 ± 1.44% accuracy (one
standard deviation) across the 10-fold tests.
To classify new data, however, would still require the

measurement of 49 different analytes. Decision trees are a
nonlinear alternative, which we found required far less

information to achieve comparable performance. Moreover,
the significant class imbalance can be addressed in situ in tree-
based models by adjusting class weights to be inversely
proportional to their observation frequency. We considered
simple tree classifiers in 3 cases: (1) when no class balancing
was performed, (2) when balanced by weighting points
inversely proportional to their class frequency, and (3) when
SMOTEENN was used to balance the data by creating
additional synthetic observations. 5 × 2 nested, stratified CV
was used to optimize these pipelines’ hyperparameters and
estimate the generalization error. All three pipelines performed
similarly, with validation set accuracies of 96.69 ± 1.15%, 97.12
± 1.36%, and 97.94 ± 0.67%.
Taking the last approach, we performed 10-fold, stratified

CV on the data set to identify the optimal hyperparameters for
such a tree; remarkably, the optimal depth was found to be
only 3. This tree is depicted in Figure 3. The imbalanced tree
from case (1) was found to be nearly identical, differing
primarily at the stump, where it used trans-chlordane instead of
mirex (cf. Supporting Information Figure S2). This is quite
rational as mirex distinguishes the minority Phoebastria class
very well from the other two as shown in Figure 3, whereas
trans-chlordane is effective at the same task for Uria.
Chlordane components have been previously found to
correlate with arctic seabird phylogeny, distinguishing thick-
billed murre from other nonmurre species.55

These simple decision trees tend to result when there are
analytes that uniquely “fingerprint” a single class of interest in
an OvA fashion. For genus classification, mirex and PCB 110
serve as excellent fingerprints within this specific set of species;
however, deeper trees can make use of multiple serial
comparisons and could be designed around analytes that
show only good pairwise rather than OvA separability. We
used the JSD to compare the distribution of each analyte for a
given genus to the distribution of the other genera; the results
are shown in Figure 4. Good fingerprints have an OvA JSD
close to 1. Clearly, the distribution of PCB 110 for Larus
deviates strongly from the other genera indicating that it is a

Figure 4. OvA JSD for analytes that best distinguish one genus from the others in the data set. An arbitrary threshold of 0.7 is shown in red as a
guide to the eye. The leading analyte for Phoebastria is mirex, already shown in Figure 3; the second analyte, HCB is shown here for comparison
(OvA JSD = 0.92). The best analyte for distinguishing Uria is trans-chlordane, with a level typically much lower than Larus and Phoebastria (OvA
JSD = 0.83).
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good candidate. Similarly, the Uria are well characterized by
their trans-chlordane measurements (cf. Figure 4).
For the Phoebastria, however, there are many analytes that

can be used to distinguish them from the other genera; this is
unsurprising given that these samples were collected from 4
colonies in Hawaii (Barking Sands PMRF and North Shore,
Kauai, and Kaena Point and Kaneohe MCBH, Oahu) whereas
Uria and Larus samples originate from Alaska. While these
albatross feed in Alaskan waters, they breed in Hawaii. The
leading fingerprint for Phoebastria is an elevated level of mirex,
which was historically used as an insecticide on pineapple
plantations in Hawaii. Although registration was canceled in
1977, stockpiles were still found as late as 2000.56,57

Still, there are numerous other analytes that could serve as
fingerprints for Phoebastria. For example, 5 × 2 nested,
stratified CV was used to train a pipeline using SMOTEENN
with a decision tree model using only mirex, PCB 110, and
trans-chlordane, which resulted in a performance of 96.75 ±
0.90%. Comparatively, another tree trained similarly, but with
HCB instead of mirex, yielded 96.75 ± 0.64%. Both were
limited to a depth of 4, but are nearly identical to each other in
terms of performance and to the tree given in Figure 3. HCB is
characteristically lower in Phoebastria than Uria or Larus; HCB
has high mobility and is expected to migrate from the area of
release toward the poles based on global fractionation theory.58

The Uria and Larus species are distributed more closely to the
poles than the Phoebastria, in line with this theory’s prediction.
In principle, only N − 1 analytes that are excellent at OvA

comparisons are required to separate N classes; for example, if
we start with a group of 3 classes (A, B, and C) and the first
comparison splits away class A, we need only one more
comparison to split B and C apart. Indeed, trees trained to use
only 2 of these analytes (such as PCB 110 and trans-chlordane
or mirex and PCB 110) yielded nearly identical performances.
The latter resulted in 96.64 ± 0.83% when constrained to have
only 3 leaf nodes (one for each class, cf. Supporting
Information Figure S3); note that this tree is very similar to
the first 2 levels of the tree in Figure 3. We conclude that this
tree is not unique in its simplicity and performance; further,
the JSD provides clear intuitive guidance as to which analytes
could be used in simple models as chemometric fingerprints
for these genera. While PCB 110 and mirex may be analyzed in
a single run using electron impact gas chromatography−mass

spectrometry (GC−MS), trans-chlordane is more accurately
measured using negative chemical ionization GC−MS. Thus,
machine learning may be capable of providing insights that
reduce analytical efforts and costs; for example, if the goal is
only to separate genera or investigate general contaminant
trends rather than monitor for specific analytes of interest, such
approaches may provide an adequate understanding with less
data collection.
Classifying Species. In this data set, we have at most 2

different species present from the same genus (cf. Figure 5a).
Therefore, the leaves of a very good genus classification tree
are expected to have at most 2 species present, which suggests
that as little as one additional comparison would be required to
split them apart and create a species classifier. However, Figure
5b shows the result of LDA when compressing the data into
three dimensions, which illustrates a pathological problem
regardless of dimensionality or the complexity of any model we
used. While the Laysan albatross separates well from the other
species, and the two gull species show signs of separating from
each other along the LD 3 axis, the two murre species are
largely indistinguishable.
While an OvA JSD can identify analytes that uniquely

differentiate a species from all others, a pairwise comparison
illuminates the maximum degree to which we might expect a
single pair of classes to be differentiable. Figure 5c illustrates
this; most species are highly distinguishable from each other,
with the exception of the two murres. In the case of murres,
the most discriminating analyte was found to be PCB 206,
which is quite poor. Supporting Information Table S1 contains
more details; the analytes generally align with the genus-level
classification results. Polynomial feature engineering was not
found to improve the situation.
Of course, more advanced models may be able to leverage

patterns that emerge from complex combinations of many
analytes. To this end, we considered a range of models,
summarized in Figure 6. Tracks in Figure 6 which are grayed
out indicate where the one-sided null hypothesis that the
model’s mean performance is indistinguishable from the best
performing one was rejected. For the models considered,
ensemble methods (gradient-boosted trees and random
forests) performed the best; yet, these models are bounded
above by an accuracy of roughly 80%. Using SMOTEENN to
synthetically balance the data set during training did not

Figure 5. Predicting a sample’s species. (a) Class imbalance observed for the 5 species present. (b) LDA on the standardized dataset; colors
correspond to (a). (c) Maximum pairwise JSD between pairs of species. The analyte each JSD corresponds to is given in Supporting Information
Table S1.
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improve these results. This upper bound is rational given that 3
of the 5 species are relatively easy to distinguish (gulls and
albatross); assuming a model can identify those with nearly
perfect accuracy, while the murre species are essentially
guessed randomly with a 50% accuracy, a weighted average
is roughly 80%. When the two murre species were combined
into a single class, classification models achieved accuracies in
excess of 97%, as expected. Once again, ensemble methods
performed the best, though a KNN classifier performed nearly
as well as the leading gradient-boosted tree.
Classes of contaminants tend to have similar physical and

chemical properties, and thus, tend to be correlated when
measured in the environment.58,59 We performed hierarchical
clustering based on Spearman rank-order correlations60 and,
from these clusters, selected features that maximized their
categorical similarity. We performed the same tests for a variety
of subsets of analytes, summarized in Figure 6c. When the
murre species were kept separate, the mean accuracy generally
decreased as features were removed. When they were
combined, however, it made almost no difference. This is
not surprising since the OvA JSD calculations suggest that

decision trees can be very successful in separating N = 4
categories with as little as N − 1 = 3 features; indeed, tree-
based models were found to be among the best models.
The best 4 models (gradient-boosted tree, random forest,

support vector classifier, and KNN) tended to remain the best
models regardless of the number of analytes used or whether
or not the murre species were combined, though their relative
rank fluctuated (cf. Supporting Information Figure S7); since
we failed to reject the null hypothesis for these pipelines, we
treat the performance of these as models as essentially
equivalent. Of these, the KNN model is the most naturally
interpretable. When 10-fold, stratified CV was performed on
the data set to optimize the KNN hyperparameters, we found
the optimum corresponds to k = 1 (first nearest neighbor) with
a Manhattan distance, rather than a Euclidean one. The
generalization performance estimated from the 5 × 2 nested,
stratified CV in Figure 6b is 96.86 ± 0.76% when all 49
analytes are used. However, when only 5 analytes are used
(PCBs 18, 105, 107, 110, and 201), the accuracy only drops to
94.69 ± 0.83%; in fact, the KNN model is the best performing
one when only these 5 analytes are allowed (cf. Supporting
Information Figure S7).
Furthermore, we note that when no more than 13 analytes

were allowed, the decision tree model performed only slightly
worse than the leading 4 models (95.28 ± 1.13%) and turned
out to have a particularly simple, balanced structure. A class-
balanced decision tree was retrained on 67% of the data set
with 10-fold, stratified CV; it is shown in Figure 7, and had a
performance of 95.42% on the remaining held-out data. At a
depth of 2, the tree has already split the data into the 4 classes
quite well (92.81% accuracy on the test set); one additional
level improves the tree, but it is quite interpretable and uses
many of the analytes suggested in Figure 4.
Overall, these results suggest that because we could not

detect a significant chemometric difference between the two
murre species, it is reasonable to consider these congeneric
species as a single class for oceanographic and environmental
monitoring; these species are known to exhibit differential
foraging behavior,61 though apparently, this had no discernible
impact on chemometric signatures found in this work. This
suggests local environmental factors at the collection site have
a more pronounced effect than differential foraging on the egg
contaminant levels of the 49 analytes focused on in this study
(OCPs, PCBs, and mercury); other analytes, such as stable
isotope ratios, are expected to reflect this information. We will
examine this in more detail in the next section. The success of
the KNN classifier further suggests that this data set represents
a good reference set that may be of use to wildlife managers, as
techniques such as those described here become more
commonplace.
Classifying Colony. Next, we examined trends in the

geographic origin of samples. There are 35 total colonies in the
data set; however, many contain only a small number of
observations, which make them difficult to characterize with
any statistical certainty. We chose a threshold of 10 samples
and considered only the data from colonies with at least this
many entries, limiting the data from 461 samples to 350,
distributed across the leading 13 colonies shown in Supporting
Information Figure S8a. Furthermore, given the chemometric
trends that enable the prediction of taxonomy, we wish to
avoid drawing any conclusions about geographic trends that
are simply due to sampling from species-specific colonies. For
example, all albatross samples originate from Hawaii. As shown

Figure 6. Performance summary of different machine learning models
trained to classify species. Error bars correspond to one standard
deviation from a 5 × 2 nested, stratified CV. (a) Results when all
species are considered separate classes. (b) Results when the two
murre species were merged into a single class. Gray bars indicate the
rejection of the null hypothesis (α = 0.05) that a model’s mean
performance is no worse than the best. (c) Performance and standard
deviation of the best model when trained on a different number of
features.
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in Supporting Information Figure S8b, gull and albatross
samples in this reduced data set originate from a limited set of
colonies. Murre, however, are both the most numerous and
widely distributed, so we restricted our analysis to only the
murre data (11 colonies). As shown previously, there is

essentially no detectable chemometric difference in this data
set between the congeneric murre species, so we may
reasonably consider them as a single class.
We computed the OvA JSD for all analytes when datapoints

were grouped by colony; total mercury, in particular, stood out

Figure 7. Decision tree trained to predict species if the murres are considered a single class. 10-fold, stratified CV was performed on a 67:33 train/
test split of the data. Note that the 4 classes are already well separated after 2 levels. Predictions for the entire (unbalanced) data set are illustrated,
and a jittered strip plot of data at each node is shown; the value (ng/g wet mass) each node is split at is given in red.

Figure 8. The geographic distribution (plate carreé projection using cartopy30) of mercury across murre colonies with at least 10 samples. The
mean plus or minus one standard deviation is reported. A box-and-whisker plot shows the distribution at each location. Colonies are ordered by
their mean, not their median values. The OvA JSD was computed (using 25 bins) for each analyte at each colony; the top 5 averaged across all
colonies is reported in the inset.
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as having a relatively unique level at different locations. The
inset in Figure 8 shows the largest OvA JSD values for analytes
when averaged across all colonies (cf. Supporting Information
Figure S9). Buldir Isl. is volcanically active, so its high mercury
content is unsurprising. The next three colonies, Middleton
Isl., St. Lazaria Isl., and East Amatuli Isl. are all along the Gulf
of Alaska; the following three, Cape Denbigh, Bluff Isl., and
Sledge Isl., are found in Norton Sound. The remaining
colonies are located throughout the Bering Sea. Broadly
speaking, with the exception of Buldir Isl., colonies located
near or along the mainland of Alaska have elevated levels of
mercury relative to those further offshore. In Alaska, this trend
holds even if we examine all data, regardless of species or
number of samples per colony (cf. Supporting Information
Figure S10). Notably, samples taken from Nome have the
second highest mean level, second only to Buldir Isl. It has
been speculated that outflow from the Yukon River and
associated cinnabar deposits, combined with elevated carbon
output, may increase the methylation and therefore bioavail-
ability of mercury in this area.62

The analyte with the second highest mean OvA JSD is 4,4′
DDE. In this case, St. Lazaria Isl. exhibits particularly high
levels, but in general, colonies along the Gulf of Alaska tend to
have similar values, which are elevated relative to those in the
Bering Sea. If we consider results from all species and all
colonies, those near Norton Sound tend to be more varied.
4,4′ DDE is the major metabolite of the pesticide DDT. While
banned in the Stockholm Convention, exceptions have been
granted for the control of malaria in high-risk areas. Certain
physical and chemical properties of 4,4′ DDE, combined with
enhanced wet and dry deposition in the eastern Gulf of Alaska,
suggest elevated levels are expected at St. Lazaria. In fact, many
analytes have elevated levels at this colony, consistent with this
expectation.63,64

Stable isotope ratios of carbon (δ13C) and nitrogen (δ15N)
were also measured, though their low frequency and
asymmetric distribution disqualified them from consideration
as features in previous taxonomy models. Carbon did not
reveal discernible geographic trends (cf. Supporting Informa-
tion Figure S14); however, nitrogen revealed a breakdown of
the region into 3 broad categories: Norton Sound, offshore in
the Bering Sea, and other coastal areas (cf. Supporting
Information Figure S15). While δ15N measurements have
been previously used to describe the trophic level of seabirds,
we posit that this is a result of baseline differences in food
webs, as previously found for Thick-billed murre.65−67

Figure 8 illustrates that total mercury, and perhaps 4,4′ DDE
(cf. Supporting Information), can be used to make a simple
decision tree model, but clearly does not provide enough
information to uniquely fingerprint each colony on its own. As
in the case of murre, we can search for more advanced models
when features suggested by the JSD are insufficient; however, a
random forest was found to consistently outperform all other
models, so we selected this for further investigation.
Figure 9a shows the results of 5 × 4 nested, stratified CV to

assess performances of various models; the random forest
achieved 78.77 ± 3.16% when only 33 of the 49 analytes were
included in the model, following decorrelation. The accuracy
was nearly identical when all 49 analytes were included, but
removing more analytes (down to 13) caused the mean
accuracy to drop more than 6%. An 80:20 train/test split was
performed where 5-fold, stratified CV was used to optimize a
class-balanced random forest’s size on the training set. The

optimal forest contained 270 trees and had an 82.54% accuracy
on the test set; the confusion matrix is shown in Figure 9b.
While roughly 80% accuracy was considered insufficient for
species classification, due to the small number of different
classes; here, it is clear that the errors tend to be geographically
correlated. For example, St. Lawrence, St. George, and St. Paul
Islands are neighboring colonies in the Bering Sea; the model
makes most of its mistakes when it confuses these three with
each other. Furthermore, Sledge Isl. and Bluff Isl. are neighbors
in Norton Sound, while St. George and Bogoslof Isl. are
neighbors further south.
Thus, the model reflects geographic trends reasonably well,

though specific regions may be somewhat diffuse and difficult
to precisely define. Proximal colonies were similar enough to

Figure 9. Classifying murre colonies. (a) Performance of different
models estimated by nested, stratified 5 × 4 CV when 33 decorrelated
analytes were used; one standard deviation is shown as the error. The
color scheme follows the convention in Figure 6. (b) Confusion
matrix for a random forest model trained on 80% of the data and
tested (shown) on the remaining 20%. (c) Overall SHAP summary of
the importance of the top 10 analytes in the model is shown in (b).
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suggest that they may be combined to improve sampling power
if the goal is to monitor regional water bodies, allowing for
other colonies to serve the same purpose when colonies
targeted for monitoring efforts cannot be sampled (e.g., due to
weather disruptions, sampling impacts on colony health, and
unproductive years). We used the SHAP methodology to
explain the random forest’s probability of assigning a sample to
a colony; this provides insight into the way the model
determines characteristic regional differences.24,25

Figure 9c shows the overall summary of the top 10 features,
determined by the mean absolute SHAP value summed over all
the colonies. The levels of total mercury and PCB 194 are
exceptionally important and have rational origins. We found
that St. Lazaria Isl. has a uniquely elevated level of PCB 194
(cf. Supporting Information Figure S13) compared to other
colonies and has an OvA JSD of 0.90, the highest of any
analyte for any colony (cf. Supporting Information Figure S9).
Simply put, the model tends to rely on the level of PCB 194 to
decide if a sample originates from St. Lazaria Isl., then uses the
total mercury content to narrow down the remaining
possibilities. As shown in Figure 8, most colonies have a fairly
unique mean mercury level, though its distribution may
overlap with several neighbors. The remainder of the analytes
are used to differentiate between these neighbors, creating
complex but unique fingerprints. The identification of a
different analyte (PCB 194) that can provide a good signature
for St. Lazaria Isl. is critical to the model, since mercury levels
at this colony display the broadest distribution of any colony
(cf. Figure 8); this would likely confuse any model relying on
mercury levels alone, necessitating additional discriminating
information.
Analyzing Temporal Trends. The models found in this

study are premised on the bioaccumulation of anthropogenic
contaminants. Due to ongoing pollution or, conversely,
regulatory restrictions and environmental remediation efforts,
it is not clear whether the trends in the features (analytes) of
our models are biased based on the year in which they
originate since it is plausible that they may increase or decrease
over time. To establish whether or not the models we have
developed are expected to be applicable to timeframes outside
the sampling window (1999−2010), we sought to establish if
there exist any significant temporal trends.
We have already shown chemometric trends that correlate

with taxonomy and geography, so we chose to consider only
samples from individual colonies for individual species to avoid
the confounding factor that data was not analyzed evenly over
time or sample location (cf. Supporting Information Figure
S17). Based on the available data, only St. Lazaria Isl. had
sufficient data for reasonable analysis. This is a murre colony
from which 89 samples were available; 53 were Common
murre and 36 were Thick-billed murre (cf. Supporting
Information Figure S8b). As suggested by our previous results,
we ignored this difference. We computed the Spearman rank-
order correlation between the mean analyte level and the
collection year. This is a nonparametric measure of the
monotonicity of the relationship between the two, which
allows us to assess if an analyte’s level is generally increasing (rS
> 0) or decreasing (rS < 0) over time. We also computed the p
value for a two-sided hypothesis test whose null hypothesis is
that the year and mean mass fraction are uncorrelated (rS = 0).
We caution this is generally only reliable for large data sets, but
we found it to give reasonable results.

We chose a significance level of α = 0.05 and used this as a
threshold; only analytes with p < α were considered to have
significant trends. Figure 10 shows the results. No analytes

were found to have rS > 0 with significance, which is
encouraging. Of the original 49 analytes, only 11 were found to
be decreasing over time at St. Lazaria Isl.; however, samples
collected from 1999 to 2000 were analyzed using GC−electron
capture detection (ECD), while in subsequent years GC−MS
was used. The GC−ECD method may have resulted in
measurements that appear elevated relative to GC−MS, which
is expected to skew the results. This trend is more apparent
when not plotted in the log scale (cf. Supporting Information
Figure S18). Repeating the calculation on data only from the
year 2001 and later (79 out of 89 total measurements), we
found that the downward trend of only the final 5 analytes in
Figure 10a was significant (second column in legend, 4,4′
DDE�PCB 209). We also note that 4,4′ DDT exhibited a
significant upward trend if the earlier data was removed, but
not if that data was included.

Figure 10. Mean mass fractions of analytes measured in murres from
St. Lazaria Isl. exhibiting a statistically significant trend over time.
Error bars correspond to one standard deviation. (a) Analytes
trending downward as determined by their Spearman rank-order
correlation, rS, using data from all available years. (b) Only analyte
with a statistically significant rS > 0 when data from the years 1999
and 2000 are removed.
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In all cases, however, the trends are very weak; error bars in
Figure 10 show one standard deviation of the measurements
made for a given year. This is consistent with the expectation
that these p values are not expected to be as reliable for such a
small (roughly 10 year-averaged values) set of measurements.
Moreover, this agrees with the earlier preliminary investigation
of seabirds in this area, which was unable to discern any
temporal trends.62 St. George Isl. had the second most
observations; repeating this analysis for those murres yielded
similar results (cf. Supporting Information Figure S19), though
the specific analytes exhibiting a trend varied relative to St.
Lazaria Isl. Regardless, analytes playing significant roles in
models described earlier in this work were generally not among
those exhibiting a significant temporal trend. While local
variations are certainly possible, this suggests that overall
environmental levels for analytes important to these discrim-
inatory models are reasonably stable, justifying the use of these
pollutants as features to distinguish taxonomy and geographical
origin.
We further note that the differences which arise in this

analysis due to differences in measurement technique highlight
the importance of biobanking efforts. As a difference was
observed that may be due to analytical variations, despite
proper use of reference materials (SRM 1946 Lake Superior
Fish Tissue),68 additional aliquots of all samples are banked at
the NIST Biorepository and are available to be reanalyzed in
the future. This enables the determination of whether trends
are accurate or are an artifact of changing instrumentation and
analytical methodology.
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