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The apparent ability of bats to harbor many virulent viruses without showing disease is
likely driven by distinct immune responses that coevolved with mammalian flight and the
exceptional longevity of this order. Yet our understanding of the immune mechanisms of
viral tolerance is restricted to a small number of bat–virus relationships and remains poor
for coronaviruses (CoVs), despite their relevance to human health. Proteomics holds
particular promise for illuminating the immune factors involved in bat responses to
infection, because it can accommodate especially low sample volumes (e.g., sera) and
thus can be applied to both large and small bat species as well as in longitudinal studies
where lethal sampling is necessarily limited. Further, as the serum proteome includes
proteins secreted from not only blood cells but also proximal organs, it provides a more
general characterization of immune proteins. Here, we expand our recent work on the
serum proteome of wild vampire bats (Desmodus rotundus) to better understand CoV
pathogenesis. Across 19 bats sampled in 2019 in northern Belize with available sera, we
detected CoVs in oral or rectal swabs from four individuals (21.1% positivity). Phylogenetic
analyses identified all RdRp gene sequences in vampire bats as novel a-CoVs most
closely related to known human CoVs. Across 586 identified serum proteins, we found no
strong differences in protein composition nor abundance between uninfected and infected
bats. However, receiver operating characteristic curve analyses identified seven to 32
candidate biomarkers of CoV infection, including AHSG, C4A, F12, GPI, DSG2, GSTO1,
and RNH1. Enrichment analyses using these protein classifiers identified downregulation
of complement, regulation of proteolysis, immune effector processes, and humoral
immunity in CoV-infected bats alongside upregulation of neutrophil immunity, overall
granulocyte activation, myeloid cell responses, and glutathione processes. Such results
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denote a mostly cellular immune response of vampire bats to CoV infection and identify
putative biomarkers that could provide new insights into CoV pathogenesis in wild and
experimental populations. More broadly, applying a similar proteomic approach across
diverse bat species and to distinct life history stages in target species could improve our
understanding of the immune mechanisms by which wild bats tolerate viruses.
Keywords: proteome, alphacoronavirus, Desmodus rotundus, ecoimmunology, biomarker
INTRODUCTION

Bats (Order: Chiroptera) are one of the most speciose
mammalian clades (1, 2), and this diversity is matched by an
equally high richness of viruses, many of which are zoonotic (3,
4). Bat species are the confirmed reservoir hosts for Hendra and
Nipah viruses, lyssaviruses, Marburg virus, and SARS-like
coronaviruses (CoVs) (5–8). Yet with few exceptions (e.g.,
lyssaviruses), these pathogens seem to not cause disease in
their bat hosts (9–11). This tolerance of otherwise virulent
infections is likely driven by distinct aspects of bat immunity
that evolved alongside their unique ability of powered flight and
their very long lifespans (12–14). These include but are not
limited to constitutive expression of interferons (IFNs) and IFN-
stimulated genes (ISGs), robust complement proteins, and a
dampened inflammatory response (15–20).

Relationships between bats and CoVs specifically have been of
particular interest for zoonotic risk assessment (21, 22). CoVs are
RNA viruses found across mammals and birds, with at least seven
known human viruses: two and five in the genera
Alphacoronavirus and Betacoronavirus (23, 24). A novel a-CoV
with canine origins was recently detected in humans, but its role in
zoonotic disease remains unclear (25). CoVs are highly diverse in
bats, which are the likely ancestral hosts of a- and b-CoVs (26–
28). The evolutionary origins of highly pathogenic CoVs (i.e.,
SARS-CoV, MERS-CoV, SARS-CoV-2) have also been ascribed to
bats, but spillover has typically involved intermediate hosts rather
than direct bat-to-human transmission (5, 29, 30).

Our understanding of bat–CoV interactions and the bat
immune response to infection remains limited and has
stemmed mostly from experimental studies of a few select
species, including Rousettus leschenaulti, R. aegyptiacus,
Artibeus jamaicensis, and Eptesicus fuscus (10, 11, 28, 31, 32).
In vivo studies have typically found short-term CoV replication
and shedding without substantial weight loss or pathology,
supporting viral tolerance, although some species seem to
entirely resist infection. Tolerance appears driven by innate
immune processes, such as increased expression of ISGs, with
little adaptive immune response. In vitro studies have further
supported bat receptor affinity for CoVs (i.e., susceptibility) but
little host inflammatory response in bats (10, 11, 16, 33).

Despite the clear insights afforded by experiments, model bat
systems are heavily limited by logistical constraints (e.g.,
necessity for specialized facilities, colony maintenance) and
have been mostly focused on frugivorous bats, which are
relatively easy to keep in captivity compared to other dietary
2

guilds (34, 35). Transcriptomics of key tissues (e.g., spleen) has
helped advance the field by identifying immune responses to
infection in a wider array of species (36–38). However, such
approaches are restrictive when lethal bat sampling is limited,
such as when working with threatened species, in protected
habitats, or in longitudinal studies to assess how these viruses
persist in bat populations. Blood transcriptomes overcome such
challenges to a degree and are increasingly feasible (39, 40), yet
such assays are only informative about the immune response in
the blood itself. Proteomics, on the other hand, provides a unique
and more nuanced perspective into the immune system, because
the blood proteome includes proteins secreted from not only
blood cells but also proximal organs such as the liver (41).

Proteomics holds special promise for illuminating the innate
and adaptive immune factors involved in bat responses to
infection, because it can accommodate the small bat blood
volumes typical of field studies (e.g., <10 mL). Recently, we
surveyed the serum proteome of wild vampire bats (Desmodus
rotundus) (42). Owing to its diet of mainly mammal blood, this
species is the primary reservoir host of rabies lyssavirus in Latin
America, and alpha- and betacoronaviruses have also been
identified in this species (43–46). Using only 2 mL sera from
these small (25–40 gram) bats, we identified 361 proteins across
five orders of magnitude, including antiviral and antibacterial
components, 20S proteasome complex, and redox activity
proteins. Mass spectrometry–based proteomics can thus
facilitate the relative quantification of classical immunological
proteins while also providing insight into proteins yet to be fully
recognized for their importance in resolving viral infection
(47–49).

Here, we expand our recent work on serum proteomics in
vampire bats in the context of CoV infection. First, by profiling
the serum proteome of the same host species in an additional
year of study, we provide a more general and comprehensive
characterization of the wild bat immune phenotype. Second,
owing to changes in regulations for importing vampire bat
samples into the United States, we also assess the impact of
heat inactivation, a common method of inactivating bat sera
(50), on the proteome. Lastly, and most importantly, we assess
differences in the serum proteomes of wild bats with and without
acute CoV infection. We aimed to identify up- and
downregulated immune responses of wild bats to CoV
infection, with particular interest in comparisons with results
from experimental infections. We also aimed to guide the
discovery of candidate serum biomarkers of viral infection. By
taking an agnostic approach via discovery proteomics (51), such
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biomarkers could provide new and mechanistic insight into CoV
pathogenesis in wild bats (52).
MATERIALS AND METHODS

Vampire Bat Sampling
As part of an ongoing longitudinal study (53), we sampled
vampire bats in April 2019 in the Lamanai Archeological
Reserve, northern Belize. This same population was sampled in
2015 for our earlier proteomic analysis (42). For the 19
individuals included in this study, we used a harp trap and
mist nets to capture bats upon emergence from a tree roost. All
individuals were issued a unique incoloy wing band (3.5 mm,
Porzana Inc) and identified by sex, age, and reproductive status.
For sera, we collected blood by lancing the propatagial vein with
23-gauge needles followed by collection with heparinized
capillary tubes. Blood was stored in serum separator tubes (BD
Microtainer) for 10−20 minutes before centrifugation. Following
recent CDC guidelines, all sera were inactivated for importation
to the United States by heating at 56°C for one hour. We also
collected saliva and rectal samples using sterile miniature rayon
swabs (1.98 mm; Puritan) stored in DNA/RNA Shield (Zymo
Inc). Samples were held at −80°C using a cryoshipper
(LabRepCo) prior to long-term storage. Bleeding was stopped
with styptic gel, and all bats were released at their capture
location. Field protocols followed guidelines for safe and
humane handling of bats from the American Society of
Mammalogists (54) and were approved by the Institutional
Animal Care and Use Committee of the American Museum of
Natural History (AMNHIACUC-20190129). Sampling was
further authorized by the Belize Forest Department via permit
FD/WL/1/19(09). Serum specimens used for proteomic analysis
were approved by the National Institute of Standards and
Technology Animal Care and Use Coordinator under approval
MML-AR19-0018.

CoV Screening and Phylogenetics
As part of a larger viral surveillance project, we extracted and
purified RNA from oral and rectal swabs using the Quick-RNA
Viral Kit (Zymo Research). With exception of one bat, RNA
from both swab types was available for all sera. We used a semi-
nested PCR targeting the RNA-dependent RNA polymerase gene
(RdRp) of alpha- and betacoronaviruses, following previous
protocols (55). Amplicons were submitted to GENEWIZ for
sequencing. Resulting sequences were aligned using Geneious
(Biomatters; (56), followed by analysis using NCBI BLAST (57).
PhyML 3.0 was used to build a maximum-likelihood phylogeny
of these and additional CoV sequences (58).

To assess possible risk factors for CoV infection (in oral or
rectal swab samples), we fit univariate logistic regression models
with bat age, sex, and reproductive status as separate predictors.
Because the small sample sizes used here could bias our estimates
of odds ratios, we used the logistf package in R to implement
Firth’s bias reduction (59).
Frontiers in Virology | www.frontiersin.org 3
Proteome Profiling
In addition to profiling serum from the 19 bats described above,
we also performed another proteomic experiment to evaluate
effects of heat inactivation with previously analyzed samples
collected in 2015 (42). From four non-inactivated sera, we
submitted an aliquot of each sample to the heat inactivation
process used for our 2019 samples (56°C for one hour). We
then processed the paired non-inactivated and heat-inactivated
sera and the 19 sera in two batches using the S-Trap method for
digestion with the S-Trap micro column (ProtiFi; ≤ 100 mg
binding capacity). Full details are provided in the Supplemental
Information. Briefly, we used 2 mL (approximately 100 mg
protein) of each serum sample for digestion, and a pooled bat
serum was digested across the two batches. Proteins were reduced
with DL-Dithiothreitol (DTT) and alkylation with 2-
chloroacetamide (CAA). Digestion was performed with trypsin
at an approximate 1:30 mass ratio, followed by incubation at 47°C
for one hour. These resulting peptide mixtures were then reduced
to dryness in a vacuum centrifuge at low heat before long-term
storage at -80°C. Before analysis, samples were then reconstituted
with 100 mL 0.1% formic acid (volume fraction) and vortexed,
followed by centrifugation at 10000 x gn for 10 minutes at 4°C. The
sample peptide concentrations were determined via the Pierce
quantitative colorimetric peptide assay with a Molecular Devices
SpectraMax 340PC384 microplate reader.

We used the same LC-MS/MS method earlier applied for
vampire bat serum proteomics (42). Using the original sample
randomization gave a randomized sample order, and injection
volumes were determined for 0.5 mg loading (0.21–0.44 mL
sample). The run order and data key are provided in Table S1.
Peptide mixtures were analyzed using an UltiMate 3000 Nano
LC coupled to a Fusion Lumos Orbitrap mass spectrometer
(ThermoFisher Scientific). A trap elute setup was used with a
PepMap 100 C18 trap column (ThermoFisher Scientific)
followed by separation on an Acclaim PepMap RSLC 2 µm
C18 column (ThermoFisher Scientific) at 40°C. Following 10
minutes of trapping, peptides were eluted along a 60 minute two-
step gradient of 5–30% mobile phase B (80% acetonitrile volume
fraction, 0.08% formic acid volume fraction) over 50 minutes,
followed by a ramp to 45% mobile phase B over 10 minutes,
ramped to 95% mobile phase B over 5 minutes, and held at 95%
mobile phase B for 5 minutes, all at a flow rate of 300 nL per
minute. The data-independent acquisition (DIA) settings are
briefly described here. The full scan resolution using the orbitrap
was set at 120000, the mass range was 399 to 1200 m/z
(corresponding to the DIA windows used), with 40 DIA
windows that were 21 m/z wide, with 1 m/z overlap on each
side covering the range of 399 to 1200 m/z. Each DIA window
used higher-energy collisional dissociation at a normalized
collision energy of 32 with quadrupole isolation width at 21 m/
z. The fragment scan resolution using the orbitrap was set at
30000, and the scan range was specified as 200 to 2000 m/z. Full
details of the LC-MS/MS settings are in Supplementary
Material. The method file (85min_DIA_40x21mz.meth) and
mass spectrometry proteomics data have been deposited to the
March 2022 | Volume 2 | Article 862961
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ProteomeXchange Consortium via the PRIDE (60) partner
repository with the dataset identifier PXD031075.

In our earlier analysis of vampire bat serum proteomes (42),
we used Spectronaut software to analyze our DIA data. Here, we
instead used the DIA-NN software suite, which uses deep neural
networks for the processing of DIA proteomic experiments (61).
To search the bat samples, we used the NCBI RefSeq Desmodus
rotundus Release 100 GCF_002940915.1_ASM294091v2 FASTA
(29,845 sequences). Our full DIA-NN settings are provided in the
Supplementary Material, and search settings and the generated
spectral library (*.speclib) are included in the PRIDE submission
(PXD031075). Briefly, 0.01 precursor false discovery was used,
search parameters were chosen based on DIA settings, trypsin
(cut at K*,R* but excluded cuts at *P) was selected, and fixed
modification of cysteine carbamidomethylation. Since DIA-NN
was made to handle protein inference and grouping assuming a
UniProtKB-formatted FASTA file, and the NCBI RefSeq
Desmodus rotundus Release 100 was used (RefSeq format),
settings were chosen such that DIA-NN effectively ignored
protein grouping, which can be performed on the backend
following ontology mapping.

To additionally search for CoV proteins (42), we performed a
secondary search using the same settings and the addition of a
Coronaviridae FASTA (117709 sequences) retrieved from
UniProtKB (2021_03 release) using taxon identifier 1118 with
all SwissProt and TrEMBL entries. Search settings are included in
the PRIDE submission (PXD031075).

Our identified bat proteins were then mapped to human
orthologs using BLAST+ (62) and a series of python scripts
described previously (42) to facilitate downstream analysis using
human-centric databases (see Supplementary Material for full
details). In those cases where human orthologs do not exist, such
as mannose-binding protein A (MBL1), we used ad hoc ortholog
identifiers. Specifically, eight identified vampire bat proteins are
not found in humans (APOR, Bpifb9a, HBE2, ICA, LGB1,
MBL1, Patr-A, and REG1), and we thus used UniProt
identifiers from chimpanzee, cow, horse, mouse, and pig
(Table S2).

Proteomic Data Analyses
The final data matrix of relative protein abundance for all
identified proteins was stratified into two datasets for
differential analysis: (i) the four 2015 samples analyzed before
and after heat inactivation (Table S3) and (ii) the 19 samples
collected in 2019 analyzed for CoV infection (Table S4). Our
analysis also included a pooled serum sample as a quality control
between the two digestion batches (Table S2), and digestion was
evaluated by the number of peptide spectral matches. For formal
statistical analyses, missing abundance values were imputed as
half the minimum observed intensity of each given protein;
however, for summary statistics (e.g., means, log2-fold change
[LFC]), missing values were excluded (63, 64).

For the inactivation analyses, log2-transformed protein
abundance ratios were used for each paired sample. These
ratios were used in a moderated t-test with the limma package
in R to evaluate protein changes within sera samples before and
Frontiers in Virology | www.frontiersin.org 4
after heat treatment (65), followed by Benjamini–Hochberg (BH)
correction (66).

For the CoV infection analyses, we first reduced
dimensionality of our protein dataset using a principal
components analysis (PCA) of all identified proteins, with
abundances scaled and centered to have unit variance. We
then used a permutation multivariate analysis of variance
(PERMANOVA) with the vegan package to test for differences
in protein composition between uninfected and infected bats
(67). Next, we used a two-sided Wilcoxon rank sum test in
MATLAB to detect differentially abundant proteins between
uninfected and infected bats. We again used the BH correction
to adjust for the inflated false discovery rate. We also calculated
LFC as the difference of mean log2-transformed counts between
uninfected and infected bats. To next identify candidate
biomarkers of CoV infection, we used receiver operating
characteristic (ROC) curve analysis. We used a modified
function (https://github.com/dnafinder/roc) in MATLAB to
generate the area under the ROC curve (AuROC) as a measure
of classifier performance with 95% confidence intervals, which
we calculated with standard error, a = 0.05, and a putative
optimum threshold closest to 100% sensitivity and specificity
(68, 69). We considered proteins with AuROC ≥ 0.9 to be strict
classifiers of CoV positivity, whereas proteins with AuROC ≥ 0.8
but less than 0.9 were considered less conservative; all other
proteins were considered to be poor classifiers (70). Variation in
the abundance of strict classifiers by CoV infection status was
visualized using boxplots. We also visualized the matrix of all
candidate serum biomarkers with the pheatmap package, using
log2-transformed protein abundances (scaled and centered
around zero) andWard’s hierarchical clustering method (71, 72).

Lastly, we interrogated up- and down-regulated responses to
CoV infection using gene ontology (GO) analysis. First, we
programmatically accessed GO terms for all identified proteins
using their associated UniProt identifiers and the UniprotR
package (73). Next, we used the gprofiler2 package as
an interface to the g:Profiler tool g:GOSt for functional
enrichment tests (74, 75). Enrichment was performed for all
candidate protein biomarkers based on AuROC, with up- and
downregulated proteins determined using log2-fold change. We
ranked our proteins by AuROC to conduct incremental
enrichment testing, with the resulting p-values adjusted by the
Set Counts and Sizes (SCS) correction. We restricted our data
sources to GO biological processes, the Kyoto Encyclopedia of
Genes and Genomes (KEGG), and WikiPathways (WP). We ran
the enrichment tests for both our strict and less-conservative
protein classifiers. We note that the eight bat proteins lacking
human orthologs all had AuROC < 0.8 and therefore did not
require any manual GO and pathway mapping.
RESULTS

Bat Demographics and CoV Positivity
Our sample of 19 vampire bats included for proteomic analyses
consisted predominantly of females (84%) and adults (79%). One
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male was reproductively active, whereas four females were
lactating (n = 3) or pregnant (n = 1). Four of the 19 sera
samples had paired oral or rectal swabs test positive through
PCR for CoVs (21.1%); sequences are available in GenBank under
accession numbers OM240577−80. Phylogenetic analyses of the
four sequenced amplicons confirmed all positives in the genus
Alphacoronavirus (Figure 1A). All four vampire bat sequences are
novel a-CoVs and displayed the most genetic similarity (94.6
−97.3%) to human CoVs (HCoVs; HCoV-NL63 andHCoV-229E)
rather than known bat a-CoVs, including those previously found
in other vampire bat colonies and other Neotropical bat species
more broadly (76, 77). In particular, NCBI BLAST did not identify
any closely relateda-CoV sequences from one of the PCR-positive
vampire bat rectal swabs (BZ19-95; OM240579). Univariate
logistic regressions did not find significant (unadjusted) effects
of any bat demographic variables on CoV positivity. Males were
no more likely than females to be infected (OR = 2.31, p = 0.49),
although non-reproductive individuals (OR = 6.16, p = 0.17) and
subadult bats (OR = 5.40, p = 0.13) were weakly more likely to be
positive for CoVs (Figure 1B).
Frontiers in Virology | www.frontiersin.org 5
Serum Proteome Characterization
Bottom-up proteomics using DIA identified 586 proteins in the
19 bat sera samples, with relative quantification covering 5.6
orders of magnitude (Figure 2A; Table S4). The overall number
of identified proteins in our former analysis (i.e., 361 proteins)
(42) and the current dataset was within the same order of
magnitude and had a similar dynamic range (approximately
103−108 in our prior analysis versus 104−109 in the current
analysis). There was also high overlap in identified proteins
between the datasets (91% of the original 361 proteins were
included in our analysis here; Figure S1) and similar protein
ranks (Table S5). Although the prior and current study have low
sample sizes (n = 17 and 19, respectively) and were sampled
across different years, the similarity in protein abundance,
composition, and ranks suggest that these proteomic patterns
(e.g., guanylate-binding proteins, circulating 20S proteasome,
and hyaluronidase-1) are not the result of sampling bias and
are instead likely a consistent vampire bat phenotype, with
improved protein identifications differences driven by
technical advances.
A

B

FIGURE 1 | Phylogeny and distribution of CoV infections in Belize vampire bats. (A) Sequences from PCR-positive oral or rectal swabs (n = 4) were aligned with
genetically similar (NCBI BLAST) and representative CoV sequences from other Neotropical bat species. Nodes display bootstrap support from maximum likelihood
estimation; only values greater than 80% are shown. (B) Prevalence of alphacoronavirus infection in bats with paired sera samples alongside 95% confidence intervals
(Wilson’s method) for key bat demographic variables. Point estimates of infection prevalence (oral and rectal swabs pooled) are scaled by sample size per covariate.
March 2022 | Volume 2 | Article 862961
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Effects of Heat Inactivation
One key difference between analyses here and our prior proteomic
study of this vampire bat population is unknown technical
artifacts from heat inactivation. To assess these possible effects,
we compared proteomes before and after treatment of four serum
samples used in our prior study (42). Using a moderated t-test of
the four paired sera samples, 34 proteins showed significant
changes after heat inactivation (unadjusted p < 0.05), but no
differences remained after BH adjustment (even using a liberal
adjusted p < 0.3). Although we found no statistically significant
changes in protein abundance with heat inactivation, we observed
a mean 28% absolute change across the proteome, with a
maximum mean 500% absolute change. Most proteins (52.6%)
changed less than 17% in response to heat inactivation (Figure S2;
Table S3).
Frontiers in Virology | www.frontiersin.org 6
Mining for CoV Proteins
Given prior proteomic identification of putative viral proteins in
undepleted serum, including CoVs (42), we broadened our
search space to include any CoV proteins. As observing non-
host proteins is a rare event, we used additional stringent criteria
to verify any initial CoV peptide spectral matches (see
Supplementary Material). Of the 749 CoV peptide spectral
matches, none passed these more stringent criteria (Table S6).
Thus we cannot firmly say that viral proteins were identified in
this set of undepleted sera, regardless of CoV status.

Proteomic Differences With CoV Infection
To assess differences in the serum proteome between CoV-
infected and uninfected bats, we first used multivariate tests.
Across the 586 identified proteins, the first two PCs explained
A B

C

FIGURE 2 | Serum protein abundance and biomarkers of CoV infection in vampire bats. (A) Mean abundance of the 586 proteins was plotted with corresponding
rank to illustrate the dynamic range of the serum proteome. The inset displays the distribution of AuROC values for protein biomarkers of CoV infection alongside
cutoffs of 0.8 and 0.9 for strict and less-conservative biomarkers. (B) Comparison of mean protein abundance for uninfected and infected bats across all proteins;
the dashed line shows the 1:1 reference. For both plots, less-conservative and strict biomarkers are shown in dark gray and black, with the latter labeled with gene
symbols (AHSG, alpha-2-HS-glycoprotein; C4A, complement C4A; F12, coagulation factor XII; GPI, glucose-6-phosphate isomerase; DSG2, desmoglein-2; GSTO1,
glutathione S-transferase omega-1; RNH1, ribonuclease inhibitor). Missing values were excluded prior to determining mean abundances. (C) Protein abundance
between uninfected and infected bats for strict biomarkers of CoV positivity; boxplots are overlaid by raw data jittered to reduce overlap.
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25.46% of the variance in serum proteomes (Figure S3). A
PERMANOVA found no difference in proteome composition
by viral infection status (F1,17 = 0.99, R2 = 0.05, p = 0.46),
although variation was greater in infected bats. Using Wilcoxon
rank sum tests, we initially identified 22 proteins with
significantly different abundance in CoV-infected bats
(unadjusted p < 0.05), but no differences likewise remained
after BH adjustment (even using a liberal adjusted p <
0.3; Figure 2B).

In contrast to multivariate and differential abundance tests,
ROC curve analyses identified 32 candidate protein biomarkers
of CoV infection using strict (n = 7, AuROC ≥ 0.9) and less-
conservative (n = 25, 0.9 > AuROC ≥ 0.8) classifier cutoffs
(Figure 2). Considering the strict classifier cutoff, four vampire
bat proteins were positive predictors and were weakly elevated
in CoV-infected bats: RNH1 (ribonuclease inhibitor; AuROC =
0.97, LFC = 0.77), AHSG (alpha-2-HS-glycoprotein; AuROC
= 0.91, LFC = 0.52), DSG2 (desmoglein-2; AuROC = 0.90, LFC =
0.16), and GSTO1 (glutathione S-transferase omega-1; AuROC =
0.90, LFC = 0.98). Conversely, three proteins were instead
negative predictors and were reduced in CoV-infected bats:
C4A (complement C4A; AuROC = 0.97, LFC = -0.45), F12
Frontiers in Virology | www.frontiersin.org 7
(coagulation factor XII; AuROC = 0.93, LFC = -0.51), and GPI
(glucose-6-phosphate isomerase; AuROC = 0.03, LFC = -1.79;
Figure 2C). The total 32 candidate biomarkers provided clear
discriminatory power in differentiating the protein phenotypes
of uninfected and infected bats (Figure 3).

We lastly interrogated up- and down-regulated responses to
CoV infection using GO terms. Across the serum proteome (n =
586), top biological processes (≥ 30 proteins; Figure S4) included
neutrophil degranulation (18.3%), platelet degranulation (8.5%),
post-translational protein modification (8.5%), innate immune
response (7.3%), cellular protein metabolic process (6.5%), blood
coagulation (5.8%), cell adhesion (5.5%), signal transduction
(5.5%), viral processes (5.5%), negative regulation of apoptotic
process (5.3%), inflammatory response (5.1%), and regulation of
complement activation (5.1%). Enrichment analyses identified
multiple functional protein differences between uninfected and
infected bats after SCS correction (Figure 4). When considering
only strict protein biomarkers (AuROC ≥ 0.9), CoV-infected bats
displayed downregulation of the complement system and
regulation of proteolysis. When also considering less-
conservative biomarkers (AuROC ≥ 0.8), infected bats also had
down-regulation of immune effector processes and humoral
FIGURE 3 | Heatmap of log2-transformed abundance for all candidate serum biomarkers of CoV infection (n = 32), scaled to a mean of zero. Rows display
individual bats, while columns display proteins as gene symbols; those with AuROC ≥ 0.9 are marked with an asterix. CoV infection status is shown at the top of the
heatmap. Clustering used Ward’s hierarchical method (71). Missing abundance values are shown as blank.
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immunity. Enrichment analysis of all biomarkers also identified
up-regulated processes including neutrophil-mediated
immunity, overall granulocyte activation, myeloid cell
responses, and glutathione processes, denoting a largely
cellular immune response.
DISCUSSION

Despite an increasing interest in bat–virus interactions, especially
for CoVs given their human health relevance (22, 23), we still
have limited insights into the immune mechanisms involved in
infection of bats (28). Here, we used serum proteomics to broadly
profile the immune phenotype of wild vampire bats in the
presence of relatively common CoV infections. Novel a-CoVs
detected in these bats had little association with serum protein
composition nor abundance, although ROC curve analyses
identified 7–32 candidate biomarkers of CoV infection,
including AHSG, C4A, F12, GPI, DSG2, GSTO1, and RNH1.
Enrichment analyses using these protein classifiers identified
strong downregulation of complement, regulation of
proteolysis, immune effector processes, and humoral immunity
in CoV-infected bats alongside an upregulation of neutrophil
immunity, overall granulocyte activation, myeloid cell responses,
and glutathione processes. Such results denote a mostly cellular
immune response of vampire bats to CoVs and further identify
putative biomarkers that could provide new insights into CoV
pathogenesis in both wild and experimental populations.
Frontiers in Virology | www.frontiersin.org 8
Much bat immunology work to date has understandably
focused on model bat systems under captive conditions (14,
18). However, identifying the immune correlates of infection is
especially important for wild populations, where susceptibility
and tolerance to infection, alongside other immunological
processes, can vary based on habitat quality and host life
history (e.g., reproduction) (78). Such efforts could provide a
mechanistic basis for establishing when and where pathogen
pressure from bats is greatest and thus help predict viral spillover
(79, 80). Unlike some other global profiling techniques,
proteomics has the benefit of leveraging the small blood
volumes that can be obtained non-lethally from most small
bats (e.g., members of the Yangochiroptera, including over
1000 species) and thus is especially amenable to the long-term,
mark–recapture studies required to study bat virus dynamics (52,
81). To facilitate this work, we here built on our prior proteomic
characterization of Desmodus rotundus (42). We identified a core
serum protein phenotype for this species from multiple years of
sampling that could serve as a reference for long-term proteomic
studies, although technical advances (e.g., DIA-NN) likely
contributed to an expanded protein repertoire in the current
study. We also assessed the impacts of heat treatment, a common
inactivation method for sera, given recent shifts in United States
importation regulations. Artifacts from heat inactivation were
not sufficiently conserved to be statistically significant, and most
serum proteins had small changes in abundance before and after
this treatment. Yet given the extent of such changes, we suggest
original samples should typically not be analyzed with heated
FIGURE 4 | Enrichment analyses of the 32 candidate biomarkers of CoV infection, stratified by less-conservative (AuROC ≥ 0.8) and strict (AuROC ≥ 0.9) classifiers.
Biological processes with significant enrichment in CoV-infected bats after SCS correction are displayed, with up- and downregulated processes shown in red and
blue, respectively. Processes are labeled by source.
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samples for comparative purposes. In contexts where sera
inactivation is required, however, heat treatment across
samples should not bias characterization of bat serum
proteomes. Such optimizations could next be applied across
longitudinal timepoints to more broadly study bat–virus
interactions in the wild.

We here focused this initial study on CoVs, which have been
previously characterized as genetically diverse (a- and b-CoVs)
in Neotropical bats, including but not limited to Desmodus
rotundus (43, 45, 82, 83). Our detection of CoVs from a
northern Belize colony of vampire bats in swab samples with
paired sera (4/19) was higher than other CoV surveys in this
species (46, 76, 82, 84), although future studies with larger
sample sizes are needed to test if this represents a true
geographic difference in virus prevalence. Yet despite many
available CoV sequences in GenBank from diverse bat surveys,
all CoVs detected here fell within the genus Alphacoronavirus
but outside of known bat a-CoV clades. Instead, these viruses
were either entirely novel or more closely related to human a-
CoVs, specifically HCoV-NL63 and HCoV-229E, suggesting
greater genetic diversity of CoVs within vampire bats than
previously recognized. Such results could be further
interrogated through whole-genome sequencing of these
viruses (45). Similarly, such results further suggest the
possibility of high zoonotic potential (or spillback from
humans to bats) for vampire bat CoVs, which likely varies
based on geography given the high degree of genetic
differentiation across the broad distribution of Desmodus
rotundus (85–87). Such findings should be confirmed with
larger sample sizes and characterization, including in vitro
assessments and attempts at virus isolation.

Despite identifying CoV infection in a small number of bat
samples, we were unable to detect CoV proteins in the serum
proteomes. Previously, we detected two CoV peptides in sera
from this population, but these were likely at the edge of
detection limits (42). As such detection limits are susceptible to
technical artifacts, including but not limited to sample handling,
protein processing, or instrument performance, heat inactivation
could have affected our ability to identify similar peptides in
these bat samples, especially for bats positive for CoVs by PCR.
Additionally, our ability to detect viral proteins may have been
further restricted by ongoing limitations in applying proteomics
to wild species. In humans, over 3000 serum proteins can be
detected by mass spectrometry after depletion of the most
abundant proteins (41). However, using antibody-based
depletion techniques is not an effective strategy in non-human
mammals (47), such that undepleted serum proteomics in bats
will be limited to the top 300–600 proteins, with false negatives
for low abundance proteins such as those of viruses (88).
Alternatively, lack of detection of CoV proteins in sera despite
detection of CoV RNA in oral and rectal swabs could indicate
tropism, as CoVs have been more readily detected in bat feces
and saliva than in blood (89).

Using our novel a-CoVs, we then tested for differential
composition and abundance of serum proteins between
uninfected and infected vampire bats. In both cases, we
Frontiers in Virology | www.frontiersin.org 9
found negligible overall differences in serum proteomes with
CoV infection. This lack of differences is not necessarily
surprising, because bats and their a- and b-CoVs share a long
coevolutionary history (27, 90). However, such null results
should also be qualified by the challenges posed to differential
abundance tests by sample imbalance, given the small number of
infected relative to uninfected bats (91). To partly address this
imbalance, we used ROC curve analyses to identify proteins with
strict (AuROC ≥ 0.9; n = 7) and less conservative (AuROC ≥ 0.8;
n = 25) classifier ability for infection (47, 92). The unbiased query
of proteins in relation to infection through proteomics can in
turn result in detection of unexpected candidate biomarkers and
new insights into CoV pathogenesis in bats. For example, we
identified increased ribonuclease inhibitor (RNH1) as a putative
biomarker. RNH1 inhibits RNase 1 and blocks extracellular RNA
degradation, possibly resulting in increased tumor necrosis factor
(TNF)–a activation (93). Prior cell line studies of Eptesicus fuscus
have shown limited production of TNF-a upon stimulation (94),
whereas those of Pteropus alecto have suggested an induced
TNF-a response (16). Whether greater abundance of pro-
inflammatory cytokines such as TNF-a occur with CoV
infection in bats would thus be a fruitful area for future work
based on RNH1 differences here. We also identified lower
complement C4A (one of two C4 isotypes) as another putative
biomarker. In humans, lower complement C4A and C3 can
signal elevated autoimmunity (95, 96), and decreased complement
C4 and C3 in COVID-19 patients also corresponds to disease
severity (97). The processes that shape serum complement,
namely complement synthesis, activation, and clearance, remain
poorly characterized in bats (17), but the identification of C4A as a
classifier could suggest specific explorations into how complement
affects CoV infection.

Other candidate biomarkers also had more direct
implications for the antiviral response in bats. AHSG (alpha-2-
HS-glycoprotein) is a negative acute phase reactant (98) and here
was a positive predictor of CoV infection. In humans, elevated
AHSG is accordingly protective against progression of disease
caused by SARS-CoV (99), and decreased inflammation could
also contribute to viral tolerance in bats. We also identified poly
(rC)-binding protein 1 (PCBP1) as a positive, albeit weaker,
predictor of CoV infection (AuROC = 0.87). This RNA-binding
protein is upregulated in activated T cells to control effector T
cells converting into regulatory T cells and thus stabilizes the
innate immune response (100, 101); PCBP1 may also prevent
virus-related inflammation (102). Whereas human patients with
prolonged SARS-CoV-2 infections showed lower PCB1
compared to patients with short-term infections (103), bats
with CoV infection here had elevated PCBP1 and more
generally harbor more PCBP1 than humans (42). Despite
focusing on two different viral genera, such results suggest
both similarities and differences in how bats and humans may
respond to CoV infection. More generally, the list of such
candidate biomarkers identified here can be used to create
accurate, sensitive, quantitative, and bat-specific parallel
reaction monitoring mass spectrometry-based protein assays
(104, 105). Such assays could facilitate more thorough
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investigations into bat immune response to CoV infection.
Further, such putative biomarkers are only observational
correlates of naturally occurring CoV infection, but bats can be
infected by a high diversity of viruses that could elicit similar
immune responses (106, 107). Experimental infection with CoVs
would be an important future step to identify the roles of such
proteins in pathogenesis.

In addition to identifying candidate biomarkers, we also
leveraged these proteins to more generally assess broad up-
and downregulated biological processes with CoV infection
through enrichment analyses. Using all candidate biomarkers,
we found that CoV-infected bats displayed downregulation of
the complement system, regulation of proteolysis, immune
effector processes, and humoral immunity while also showing
upregulated neutrophil-mediated immunity, overall granulocyte
activation, myeloid cell responses, and glutathione processes.
These results in part support findings from limited experimental
infections of select bat species, which have shown little humoral
response to CoVs (11, 31). Yet while Rousettus aegyptiacus
challenged with SARS-like CoVs did not show hematological
changes following infection (31), CoV-infected vampire bats
here had largely upregulated cellular immune responses.
Similarly, experimental studies have suggested bat tolerance of
CoVs to be driven by upregulation of cytokine responses and a
downregulated inflammatory response (11, 16, 33), but we did
not find GO terms related to cytokines or inflammation in our
analyses. Such discrepancies could again result from our ability
to only detect the top 300–600 proteins without antibody-based
depletion, which could cause low-abundance proteins (including
but not limited to IFNs) being especially difficult to characterize
here (88). Alternatively, these differences could reflect distinct
immune responses of bats for a-CoV infection, given that
experimental studies to date have focused on b-CoVs.
Additionally, these findings could also signal immunological
variation within and among bat clades, given that Desmodus
rotundus and the closely related Artibeus jamaicensis may
respond differently to CoVs (11).

Future proteomic analyses across bat species in the wild could
provide a tractable means to broadly characterize host responses
to viruses, including but not limited to hypothesized immune
mechanisms of tolerance in this order of mammals and to
infection with diverse CoVs. By leveraging the benefits of
proteomics to quantify hundreds of proteins from the small
sera volumes that can be obtained from most bat species (41, 42),
such analyses could evaluate whether particular immune
responses to viruses such as CoVs are conserved across bats
(e.g., downregulation of humoral immunity) and which may be a
feature of particular bat clades. In particular, further comparative
proteomic analyses across Neotropical bats, including both
additional members of the Phyllostomidae as well as sister
families such as the Mormoopidae (108), would illuminate
whether vampire bats have particular immunological
relationships with CoVs that may facilitate viral tolerance. As
suggested in our work here on Desmodus rotundus, such studies
could also identify putative biomarkers that may suggest novel
Frontiers in Virology | www.frontiersin.org 10
mechanisms of pathogenesis and facilitate development of
protein-specific assays to improve the resource base for
studying the immunology of wild bats and bat–virus dynamics.
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17. Becker DJ, Czirják GÁ, Rynda-Apple A, Plowright RK. Handling Stress and
Sample Storage Are Associated With Weaker Complement-Mediated
Bactericidal Ability in Birds But Not Bats. Physiol Biochem Zool (2019)
92:37–48. doi: 10.1086/701069

18. Banerjee A, Baker ML, Kulcsar K, Misra V, Plowright R, Mossman K. Novel
Insights Into Immune Systems of Bats. Front Immunol (2020) 11:26. doi:
10.3389/fimmu.2020.00026

19. Jebb D, Huang Z, Pippel M, Hughes GM, Lavrichenko K, Devanna P, et al.
Six Reference-Quality Genomes Reveal Evolution of Bat Adaptations.
Nature (2020) 583:578–84. doi: 10.1038/s41586-020-2486-3

20. Bondet V, Le Baut M, Le Poder S, Lécu A, Petit T, Wedlarski R, et al.
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Macroimmunology: The Drivers and Consequences of Spatial Patterns in
Wildlife Immune Defence. J Anim Ecol (2020) 89(4):972–95. doi: 10.1111/
1365-2656.13166

79. Plowright RK, Peel AJ, Streicker DG, Gilbert AT, McCallumH,Wood J, et al.
Transmission or Within-Host Dynamics Driving Pulses of Zoonotic Viruses
in Reservoir–Host Populations. PloS Negl Trop Dis (2016) 10:e0004796. doi:
10.1371/journal.pntd.0004796
March 2022 | Volume 2 | Article 862961

https://doi.org/10.1038/s41559-019-0913-3
https://doi.org/10.1126/scisignal.aaz0274
https://doi.org/10.1126/scisignal.aaz0274
https://doi.org/10.1021/acs.jproteome.0c00995
https://doi.org/10.1021/acs.jproteome.0c00995
https://doi.org/10.1590/S1413-86702008000600003
https://doi.org/10.1590/S1020-49892009000300010
https://doi.org/10.1128/MRA.00742-20
https://doi.org/10.1111/tbed.14150
https://doi.org/10.1371/journal.pone.0123295
https://doi.org/10.1021/acs.jproteome.8b00416
https://doi.org/10.15252/msb.20156297
https://doi.org/10.15252/msb.20156297
https://doi.org/10.1093/infdis/jiz648
https://doi.org/10.1038/nature19949
https://doi.org/10.1038/nature19949
https://doi.org/10.1021/acs.jproteome.0c00448
https://doi.org/10.1021/acs.jproteome.0c00448
https://doi.org/10.1111/tbed.13754
https://doi.org/10.1644/10-MAMM-F-355.1
https://doi.org/10.3390/v9120364
https://doi.org/10.1093/bioinformatics/bts199
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1093/sysbio/syq010
https://doi.org/10.1002/sim.1047
https://doi.org/10.1093/nar/gkab1038
https://doi.org/10.1038/s41592-019-0638-x
https://doi.org/10.1038/s41592-019-0638-x
https://doi.org/10.1186/1471-2105-10-421
https://doi.org/10.1021/acs.jproteome.5b00981
https://doi.org/10.1371/journal.pone.0249771
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.1654-1103.2003.tb02228.x
https://doi.org/10.1148/radiology.143.1.7063747
https://doi.org/10.1038/nbt1275
https://doi.org/10.1007/s00357-014-9161-z
https://doi.org/10.1016/j.jprot.2019.103613
https://doi.org/10.1093/nar/gkz369
https://doi.org/10.1093/nar/gkz369
https://doi.org/10.12688/f1000research.24956.2
https://doi.org/10.12688/f1000research.24956.2
https://doi.org/10.1186/s12985-016-0581-8
https://doi.org/10.1007/s00248-019-01391-x
https://doi.org/10.1111/1365-2656.13166
https://doi.org/10.1111/1365-2656.13166
https://doi.org/10.1371/journal.pntd.0004796
https://www.frontiersin.org/journals/virology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/virology#articles


Becker et al. Proteomics of Bat CoV Infection
80. Becker D, Eby P, Madden W, Peel A, Plowright R. Ecological Conditions
Experienced by Bat Reservoir Hosts Predict the Intensity of Hendra Virus
Excretion Over Space and Time. bioRxiv (2021). doi: 10.1101/
2021.08.19.457011

81. Plowright RK, Becker DJ, McCallum H, Manlove KR. Sampling to Elucidate
the Dynamics of Infections in Reservoir Hosts. Philos Trans R Soc Lond B
Biol Sci (2019) 374:20180336. doi: 10.1098/rstb.2018.0336

82. Anthony SJ, Ojeda-Flores R, Rico-Chávez O, Navarrete-Macias I,
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