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Abstract— The proximity detection mechanism in current 

automatic exposure notification systems is typically based on the 

Bluetooth signal strength from the individual’s mobile phone. 

However, there is an underlying error in this proximity detection 

methodology that could result in wrong exposure decisions i.e., 

false negatives and false positives. A false negative error happens 

if a truly exposed individual is mistakenly identified as not 

exposed. This misidentification could result in further spread of 

the virus by the exposed (yet undetected) individual. Likewise, 

when a non-exposed individual is incorrectly identified as exposed, 

a false positive error occurs. This could lead to unnecessary 

quarantine of the individual; and therefore, incurring further 

economic cost. In this paper, using a simulation platform and a 

notion of proximity detection error, we investigate the 

performance of the system in terms of false exposure 

determinations. Knowledge of how the Bluetooth-based proximity 

detection error impacts such false determinations and 

identification of methodologies that can reduce this impact will be 

helpful to enhance the effectiveness of an automatic contact tracing 

system. Our preliminary results indicate the substantial impact of 

the proximity estimation error on the exposure detection accuracy. 

The results also suggest how proper filtering of distance 

measurements may reduce this impact. 

Keywords- Proximity Detection, Bluetooth, Exposure Notification, 

COVID-19, Contact Tracing  

 

I. INTRODUCTION 

Contact tracing is an epidemiological technique used to 

identify people who have had “contact” with an infected person. 

The Centers for Disease Control and Prevention (CDC) defines 

a “contact” as anyone who has been within 2 meters of the 

infected person for at least 15 minutes, beginning 2 days prior 

to the appearance of his symptoms, and lasting until he was 

isolated [1]. Prior to COVID-19, contact tracing was primarily 

a manual process where people who were in close proximity to 

a known infected person are traced and identified. Once those 

contacts are identified, public health workers will notify them 

of a potential exposure and provide instructions to help prevent 

further spread of the disease. The instructions typically involve 

a period of self-isolation (i.e., quarantine). 

Automatic Exposure Notification is an electronic 

notification protocol based on a proximity detection mechanism 

such as Bluetooth Low Energy (BLE) ranging and privacy 

preserving cryptography. Widespread usage of smart phones 

among the population and the availability of BLE technology in 

those phones have prompted governments and industry to also 

consider automatic exposure notification to combat the spread 

of the virus during a pandemic. Usage of this protocol involves 

installing an app developed and published by authorized health 

authorities. Although the effectiveness of automatic exposure 

notification relies on adoption and utilization of this app by a 

vast number of people in a community, it can potentially offer 

many advantages over the traditional manual contact tracing. 

For example, it is clearly a faster approach to notify possibly 

exposed individuals compared to manual tracing. In pandemic 

situations, time is of an essence and any delay in identifying 

potentially exposed people could have major consequences. 

The automatic notification is also conducted in a private 

manner, giving the exposed person the control on how to 

proceed or engage with the public health officials. The protocol 

can also discover individuals who are not necessarily known to 

the infected person. Such individuals might be hard to locate or 

identify using the traditional manual tracing [2].  

Automated exposure notification can effectively 

complement or assist manual contact tracing process specially 

during pandemics when there are limited resources available. 

The ultimate goal of contact tracing is to accurately notify the 

right people (i.e., people who were truly exposed) to quarantine 

in a timely manner and let other individuals who were not 

exposed to function in the community as usual. In this way, not 

only the spread of the virus is better controlled but also the 

negative economic impacts of general public lockdowns are 

avoided or minimized.  

BLE signal measurement is the most popular mechanism for 

proximity detection in an automated exposure notification 

system. Location-based technologies such as GPS or QR code 

scanning have also been suggested as a mean to estimate 

proximity; however, privacy concerns, spatial 

resolution/accuracy and other practical limitations often create 

challenges to their effective implementation and public 

adoption. The Private Automated Contact Tracing (PACT) 

project led by several laboratories at MIT has developed one of 

the most widely used apps that can be installed on most 

commercially available smart phones [3]. The app uses the BLE 

signal strength to estimate proximity of two individuals holding 

the phones. These distances are used to assess whether 

sufficient contact with an infected individual has been made 

before an exposure notification is sent to the healthy individual.   

In all BLE-based proximity detection mechanisms, there is 

an underlying error in the process that converts the signal 

strength into distance. This error is due to the variations in 

propagation of the Bluetooth signal. The variations are caused 

by many factors such as the surrounding environments, phones 

positions and orientations relative to the individuals carrying 



them, antenna gain patterns of the phones, etc. The 

accumulative effect of the error in the estimated distances could 

lead to wrong decisions in the exposure determination i.e., false 

negatives and false positives. A false negative error occurs 

when an exposed individual is incorrectly identified as not 

exposed. Similarly, a false positive error occurs when a non-

exposed individual is mistakenly identified as exposed. Both 

types of errors have costly implications; and can ultimately 

determine the effectiveness of the Bluetooth-based automatic 

contact tracing in containment of pandemics such as COVID-

19. To the best of the authors’ knowledge, there are no prior 

studies that investigated the impact of this underlying error on 

the binary exposure decision (i.e., exposed/not exposed). In this 

paper, we present a platform that allows for the analysis of the 

system performance under various parameters. This platform 

enables us to gain a better understanding on how the underlying 

technology error propagates through the contact tracing system. 

Preliminary results show the considerable impact of the 

Bluetooth-based proximity estimation error on false exposure 

determination. We also present preliminary results on how 

proper filtering of the estimated proximities could significantly 

reduce the resulting false exposure determinations.  

The rest of the paper is organized as follows. Section II 

presents the statistical model of the error in the estimated 

distance using Bluetooth between two individuals carrying 

mobile phones. Section III describes the simulation platform 

that has been developed to study potential exposures using 

BLE-based proximity detection. Preliminary simulation results 

and analysis are provided in Section IV. Finally, conclusions 

and plans for future work are described in Section V. 

 

II. PROBABILITY DISTRIBUTION OF ERROR IN THE 

ESTIMATED DISTANCE 

Typical exposure notification in automatic contact tracing is 

based on Bluetooth signal measurement between two mobile 

phones. The Bluetooth signal is used to estimate the distance 

(or proximity) between the two people carrying the phones. 

Knowing this proximity and its duration, the CDC guidelines 

[1] are then used to determine the possibility of exposure to an 

infected individual carrying a virus such as COVID-19. The 

main concept behind Bluetooth-based proximity detection is the 

relationship between the Received Signal Strength (RSS) from 

a Bluetooth transmitter and the travelled distance of the 

Bluetooth signal before reaching the receiver. In ideal scenarios 

when there are no objects around (including the people holding 

the phones) and ideal isotropic antennas, the RSS is inversely 

proportional to the square of the distance between a pair of 

Bluetooth transceivers. However, in practice, the reflections, 

scattering and shadowing caused by the objects in the 

surrounding environment will lead to random fluctuations of the 

received signal. In addition to the environment, the bodies of 

the people carrying the phones as well as exact position and 

orientations of the phones will impact the signal transmission 

path and therefore the RSS. These random fluctuations in RSS 

will impact the accuracy of the estimated distance between the 

two mobile phones which consequently result in false positive 

or negative identifications in an automatic exposure notification 

system. Therefore, it is important to understand how this 

inherent error in the estimated distance leads to such potential 

misidentifications.  

In this Section, we present a methodology to obtain a 

statistical model for the error in the estimated distance from a 

pathloss model between two Bluetooth transceivers. To the best 

of our knowledge, there are currently no statistical channel 

models in the literature that represent Bluetooth signal pathloss 

between two mobile phones carried by two individuals in 

various environments. However, in [4, 5, 6], it has been shown 

that the pathloss model for a personal area network using BLE 

has similar characteristics (i.e., loss exponent and shadowing 

variances) to a wireless local area network (WLAN) operating 

at the same frequency band. Therefore, here we start our 

derivation by considering a Lognormal pathloss distribution for 

the Bluetooth channel along with a Gaussian distributed 

shadowing and fading component 𝑋𝜎. It should be emphasized 

that once a more customized pathloss model for the BLE 

channel between two mobile phones is available, a similar 

methodology can be followed to extract the statistical model of 

the estimated distance between those phones. For now, we 

assume that the BLE channel pathloss at distance 𝑑 (i.e., 𝑃𝐿(𝑑)) 

can be expressed as follows: 

 

       𝑃𝐿(𝑑) =  𝑃𝐿(𝑑𝑟𝑒𝑓) + 10𝑛 𝑙𝑜𝑔 (
𝑑

𝑑𝑟𝑒𝑓
) + 𝑋𝜎                (1) 

where  

𝑓𝑋𝜎
(𝑥) =

1

√2𝜋 𝜎
𝑒

−
𝑥2
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𝑑𝑟𝑒𝑓  is a reference distance with a known pathloss, 𝑛 is the 

pathloss exponent, and 𝑋𝜎 is a random variable representing the 

impact of the shadowing, fading and scattering on the wireless 

signal from the surrounding environment. The probability 

distribution associated with 𝑋𝜎 (i.e.,  
𝑓𝑋𝜎

(𝑥)) models the variation in the pathloss at a given distance 

𝑑. However, it can also be used to derive a statistical model for 

the variations in the estimated distance for a given 𝑃𝐿(𝑑). 

Assuming a fixed transmit power, variations in 𝑃𝐿(𝑑) is 

equivalent to variations in RSS. Therefore, a mathematical 

model describing the error in the estimated distance can be 

obtained as follows.  

Consider 𝑑 and 𝑑0 to be the estimated and true distances 

between a transmitter and a receiver. Then, from equation (1), 

we can get: 

                                     𝑑 = 𝑑010−
𝑋𝜎
10𝑛                                (2) 

 

Error in the estimated distance can be defined as: 𝑌 = 𝑑 − 𝑑0 ; 

therefore, random variable 𝑌 can be expressed by: 

 

                  𝑌 = 𝑔(𝑋𝜎) = 𝑑0(10−
𝑋𝜎
10𝑛  − 1)                  (3) 

 



Suppose 𝑓Y(𝑦) and 𝑓𝑋𝜎
(𝑥) represent the probability density 

functions of the random variables 𝑌 and 𝑋𝜎 respectively, 

then:  

 

                             𝑓𝑌(𝑦) =
𝑓𝑋𝜎(𝑔−1(𝑌))

𝑔′[𝑔−1(𝑦)]
                               (4) 

 

Using the Gaussian distribution associated to the random 

variable 𝑋𝜎 and equations (3) and (4), we can obtain the 

following probability density function for the error in the 

estimated distance. 
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(5) 

 

Some of the steps in the derivation of the above distribution 

have been omitted for brevity. As observed, this probability 

density function depends on the pathloss exponent 𝑛 , standard 

deviation of the fading 𝜎 , as well as the true distance 𝑑0. The 

pathloss exponent 𝑛 depends on the environment where the 

Bluetooth transceivers are communicating. For our analysis in 

the next section, we have assumed a pathloss exponent of 𝑛 =
2. Standard deviation of the fading (𝜎) heavily depends on the 

propagation channel. This is the main parameter that impacts 

the accuracy of the proximity detection in a BLE-based 

automatic exposure notification. Fig. 1 shows the probability 

distribution of the estimated error when 𝑑0 = 4 meters, 𝑛 = 2, 

and 𝜎 = 1, 2, 3, 4, 5. Although a distance of four meters is 

clearly outside the exposure threshold, as 𝜎 increases, there will 

be an increasing likelihood that the error in the BLE proximity 

mechanism could push the estimated distance below the 2 

meters radius. Therefore, a person who is clearly outside the 

exposure distance limit could be assumed to be too close to an 

infected person.  

 

Fig. 1: Sample probability distribution of the error in the estimated 

distance at 𝑑0 = 4 

 

III. SIMULATION PLATFORM 

In order to understand the effect of the Bluetooth proximity 

estimation error on automatic exposure notification, a 

simulation platform has been developed to test scenarios 

involving people walking in a plaza, campus area, or 

neighborhood. Initially, a population of agents is created and 

randomly placed within a closed simulation area. A certain 

percentage of the population is designated as being infected and 

contagious. The mobility pattern of the agents will obviously 

play an important role on the exposure possibilities. Mobility 

patterns that allow gatherings of a variable size groups of 

individuals with variable conversation length are also being 

added to this simulation platform. In this paper, we used the 

mobility algorithms in [7] to conduct our initial study. The 

algorithms allow us to select and modify both the individual 

parameters of each agent’s behavior (affecting its speed and 

movement) as well as the goals that each agent is working 

towards. A potential difficulty with dynamic approaches in 

agent mobility algorithms is the possibility of jamming [8]. 

Jamming can occur when all the agents in a simulation have 

similar goals, e.g., all trying to reach the same area within the 

simulation field. To avoid jamming and thus biasing the results 

in our simulations, we periodically randomize the goals of each 

agent. Using this platform, we track the true and estimated 

distances between any two moving agents at fixed time 

intervals. Here, we have chosen one second as the length of this 

time interval. The estimated distance is calculated as the 

summation of the true distance and an error which is due to the 

BLE proximity detection mechanism. The statistical 

distribution of this error was obtained in the previous section 

and shown in equation (5).  

Each healthy agent in the simulation maintains two counters: 

(a) True Exposure Counter (TEC), and (b) Estimated Exposure 

Counter (EEC). The true exposure counter keeps track of the 

total time when the true distance from infected agents has been 

below 2 meters. Likewise, the estimated exposure counter 

shows the total time when the estimated distance from infected 

agents has been below 2 meters. The true and estimated 

exposure counters are updated every second after incorporating 

the population dynamics in the simulation platform. The 

counters are used to make exposure determination for all 

healthy agents at any time during the length of a simulation. 

Comparison of the values of these counters to the 15 minutes 

threshold set by the CDC guidelines will lead to 4 possible 

states for each agent including two types of errors in exposure 

determination. 

A false positive exposure error occurs when the true distance 

counter of a heathy agent is less than 15 minutes while its 

estimated exposure counter is above 15 minutes. Conversely, a 

false negative exposure error occurs when the agent’s true 

distance counter goes above the 15 minutes threshold while the 

estimated distance counter shows the accumulated exposure 

time still below that threshold. The state diagram shown in Fig. 

2 describes possible states for an agent and conditions for 

transitioning among them within the simulation platform.   

 



 

 
 

Fig. 2: State diagram of the agents in the simulation platform 

 

To reduce the number of exposure checks at each time 

interval, we assume a cutoff radius of 10 m around any 

infected/contagious agent in the simulation. This 10 m radius is 

typically considered to be the maximum range of a BLE signal 

in favorable environments [9]. Even if the Bluetooth signal of 

the infected agent’s mobile phone can reach beyond the 10 m 

radius, we can show that the probability of estimated exposure 

will be very insignificant. This can be observed by plotting the 

term Pr(𝑑 ≤ 2 | 𝑑0) using equation (2) (i.e., the conditional 

probability of the estimated distance to be less than 2 meters 

when the actual distance between two agents is 𝑑0). This 

probability for various values of 𝜎 is shown in Fig. 3. As 

observed, there is negligible probability of exposure when the 

separation between two agents is beyond 10 m (i.e., 𝑑0 ≥ 10). 

 
 

Fig. 3: Exposure probability for various values of 𝑑0  

 

IV. SIMULATION RESULTS AND DISCUSSION 

As stated in Section II and observed in Fig. 1, the probability 

distribution of the error in the estimated distance is a function 

of the true distance (𝑑0), standard deviation of the 

shadowing/fading (𝜎) and pathloss exponent (𝑛). Assuming a 

fixed pathloss exponent of 𝑛 = 2, extensive simulations have 

been done using the platform discussed in the previous section 

to investigate the impact of 𝜎 on false exposure determination. 

Fig. 4 shows the maximum average numbers of false 

negatives/positives with the corresponding confidence interval 

of one standard deviation versus 𝜎. The confidence interval of 

one standard deviation is also used for other results in this 

paper. The results presented in this paper consider a population 

of 135 agents moving within an area of size 162 m x 35 m for 8 

hours (i.e., typical length of a workday). These numbers are 

chosen based on a standard laboratory building inside the 

campus area of the National Institute of Standards & 

Technology where the authors work.  

The number of infected individuals at the beginning of the 

simulation is set to 5% of the population. As observed, false 

positive counts noticeably increase as 𝜎 increases. With  𝜎 = 5 

and during 8 hours of simulation, almost a quarter of the 

population will be erroneously identified as “exposed” (i.e., 

false positives). This implies that a significant percentage of the 

population could be required to go to quarantine in addition to 

the detected exposed people. The mobility pattern used in these 

simulations considers agents that are constantly moving. This 

leads to higher probability of agents being outside the 2 m 

radius of each other than inside. Agents that are outside the 2 m 

radius can only result in false positive type of erroneous 

exposure determination. Therefore, higher error intensity (i.e., 

𝜎) will increase the likelihood of agents that are farther away 

from an infected agent to be mistakenly estimated within the 2 

m radius. This is why there is a significant rise in the number of 

false positives with increasing 𝜎. Similar trends in the results 

are also observed with lower percentages of infected agents at 

the beginning of the simulation; however, longer interactions 

between the agents (e.g., multiple days) might be needed.   

 
Fig. 4: Number of false exposure determinations versus 𝜎  

 

Although there is a monotonic increase in the number of 

false positives, the number of false negatives on the other hand 

slightly increases at first and then decreases as 𝜎 increases. This 

may seem counter-intuitive but the reason behind this trend is 

the rapid increase in the number of false positives within the 

population. A false negative can only occur when an agent is 

within the 2 m radius of one or more infected agents for over 15 

minutes but the error in proximity detection causes the EEC to 

fail to register this time beyond the 15 min threshold. The higher 

error intensity 𝜎 should normally increase the likelihood of this 



event; however, with the quick rise in the number of false 

positives, the remaining pool of potentially “not exposed” 

agents that could fall within the 2 m radius will decrease 

rapidly. This in turn results in less probability of transition from 

the “not exposed” state to the “false negative” state” (see Fig. 

2) as 𝜎 increases further. If there were no possibility of false 

positives in the system, then we could expect a monotonic rise 

in the number of false negatives as well. This can be easily 

verified by setting the sensing radius of the BLE signal to 2 m 

instead of the 10 m that was used to obtain the results in Fig. 4. 

With that setting, only false negative exposure detections can 

occur. Fig. 5 shows the change in the number of false negatives 

versus 𝜎 when there are no false positives (i.e., sensing radius 

= 2 m).   

 
Fig. 5: Number of false negatives versus 𝜎 

 

The results in Figs. 4 and 5 have been obtained when the 

instantaneous values of the estimated proximities are used in the 

TEC and EEC calculations. The sequence of these 

instantaneous samples is most likely correlated in time and does 

not constitute an independent and identically distributed 

process. This is because the error samples are related to the 

variation of the received signal strength when the individuals 

holding the phone move around. Knowledge of the temporal 

correlation of the BLE wireless channel can potentially be used 

to determine the correlation between the error samples in the 

estimated proximities. In practice, a filter (i.e., windowing 

function) can be used to exploit this correlation and smooth the 

estimated distances in order to reduce the impact of 𝜎. For two 

stationary agents a simple rectangular window can 

asymptotically reduce the error to zero when the length of the 

window is increased. It is conjectured that the optimal length of 

this window for non-stationary agents depends on the coherence 

time of the BLE channel which in turn relates to the mobility 

pattern of the population under study. 

For the mobility algorithms used in our platform, we have 

observed that a simple 3-point moving-average window will 

significantly reduce the total number of false exposure 

determinations. These results are shown in Fig. 6. Although the 

number of false negatives has relatively increased to an average 

maximum of around 3, the number of false positives has 

dropped significantly. The impact of windowing can also be 

observed by looking at the average total number of false 

exposure determinations (i.e., false positives + false negatives) 

versus time during the 8 hours simulation. Fig. 7 shows this 

impact for 𝜎 = 2.   

 
Fig. 6: Number of false negative and positive determinations versus 𝜎 

after applying 3-point moving average 

 
Fig. 7: Number of false exposure determinations during 8 hours of 

simulation (𝜎 = 2) 

 

V. CONCLUSIONS AND FUTURE WORK 

This paper reports our initial results on the effect of the 

underlying error in Bluetooth proximity estimation on the 

accuracy of the exposure decisions in an automatic contact 

tracing system. Since analytical investigation of this problem is 

not feasible, we have developed an agent-based simulation 

platform which allows for evaluation of a wide range of 

scenarios with a large number of agents. Our preliminary results 

indicate that the proximity estimation error using BLE may 

have substantive effect on the number of false exposure 

determinations. False negative determinations adversely impact 

infection propagation while false positive determinations incur 

economic cost due to the increase in the number of unnecessary 

quarantines. Therefore, it is important to develop strategies that 

can minimize these errors by considering their trade-offs and 

corresponding risks. 



We plan to extend the simulation platform by incorporating 

additional mobility patterns for the agents (e.g., patterns 

involving congregation) and investigate the effect of each 

pattern on the resulting false exposure determinations. A deeper 

study of the windowing function and its potential relationship 

to the dynamics of the agents’ movement (e.g., speed) might 

also be beneficial to minimize the impact of 𝜎 on false 

determinations. The frequency of BLE signal measurement will 

also make an impact on the accuracy of the estimated proximity. 

This is especially important for scenarios where people are 

constantly moving. Although higher measurement frequency 

could potentially lead to higher accuracy in the estimated 

distance, it will drain the battery of the mobile phone and could 

necessitate more frequent recharge when a contact tracing app 

is installed. The impact of the length of the time interval 

between consecutive BLE signal measurements will be studied 

using our platform in continuation of this project. 

Aside from the BLE-based distance estimation, our agent-

based simulation platform also offers the flexibility to evaluate 

other proximity detection mechanisms. Any methodology with 

a corresponding probability distribution for the error in the 

estimated distance can be easily integrated in our simulation 

platform and analyzed for its impact on the resulting false 

exposure determination. In general, the platform can also be 

extended to statistical exposure models that are based on the 

potential relationship between the received signal strength and 

viral load. Such models can more appropriately link the 

received signal strength directly to the exposed amount of the 

viral particles (i.e., droplets and aerosols) [10]. As a result, the 

hard 2 meter/15 min threshold could be replaced by a soft 

distance/exposure time criterion.   
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