
Highly Versatile Strategy for the Production of Telechelic Polyolefins
Aaron A. Burkey,† Danyon M. Fischbach,† Charlotte M. Wentz, Kathryn L. Beers, and Lawrence R. Sita*

Cite This: ACS Macro Lett. 2022, 11, 402−409 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: A general and versatile synthetic strategy for
producing practical quantities of a wide range of phenyl-group-
terminated hetero- and homotelechelic semicrystalline polyethenes
and amorphous atactic and semicrystalline isotactic poly(α-olefins)
is reported. The phenyl groups serve as synthons for functionalities
of additional classes of telechelic polyolefins that can be
“unmasked” through simple high yielding postpolymerization
reactions. A demonstration of the value of these materials as
building blocks for structural classes of polyolefin-based synthetic
polymers was provided by syntheses of well-defined polyolefin-
polyester di- and triblock copolymers that were shown to adopt
microphase-segregated nanostructured mesophases in the condensed phase.

Polyolefins are the most widely produced class of polymers
worldwide, valued for their low cost and wide range of

accessible material properties.1 At over 250 million metric tons
produced globally each year, it is also remarkable that the
existing large variety of types and “grades” of polyolefins all
come from a very small set of industrially relevant olefin
monomers through continuous advances made with transition-
metal catalysts, polymerization processes, and reactor designs
for tailoring the molar mass, molar mass distribution (MMD),
tacticity, and copolymer composition, to name a few.2 On the
downside, the ubiquity and importance of polyolefins to
society has now been a large contributor to the increasing
global plastic waste problem.3 In response, there is a critical
need for the design and development of “next generation”
polyolefins that are more amenable to chemical and
mechanical recycling or that can aid in the processing of
combined plastic waste streams by serving as blend
compatibilizers and property modifiers.4 For this purpose,
telechelic polyolefins, which possess reactive functionalities at
each of the polymer chain ends, are an ideal target for
potentially providing access to well-defined block copolymers
that are comprised of two or more dissimilar block domain
types. Unfortunately, in contrast to well-established categories
of telechelic polymers obtained through step-growth polymer-
ization (e.g., polyesters, polyamides, and polyurethanes), the
polymer science and technology of telechelic polyolefins are
surprisingly still largely unexplored areas.5 Ideally, a general
strategy for obtaining telechelic polyolefins should be able to
provide control over (1) molar mass, (2) MMD, as defined by
the breadth, skewness, and modality (e.g., monomodal,
bimodal, or multimodal), (3) tacticity, with this parameter
ranging from being stereorandom (i.e., atactic) to highly
stereoregular (e.g., isotactic), (4) a broad structural scope of

polymerizable olefin monomers, (5) a highly versatile range of
end-group functionalities, and most importantly, (6) the ability
to generate practical quantities of these telechelic polyolefin
products from readily available and inexpensive reagents and
standard reactor and polymerization techniques.6−8 Indeed,
finding a viable solution to the challenge of meeting all of these
goals for the production of telechelic polyolefins is so difficult
that, to the best of our knowledge, it has never been
achieved.9−15 Herein, we now report a general and highly
versatile strategy for the production of semicrystalline
telechelic α,ω-bis(phenyl)-terminated polyethene and either
amorphorus, atactic or semicrystalline, isotactic α,ω-bis-
(phenyl)-terminated poly(α-olefins) via (stereomodulated)
living coordinative chain transfer polymerization (LCCTP)
using a group 4 metal ion-pair initiator, and excess equivalents
of diphenylzinc (ZnPh2) as a chain transfer agent (CTA),
followed by reactive quench with molecular iodine (I2) and
Cu-catalyzed phenylation according to Scheme 1. We further
demonstrate that the phenyl group in these polyolefins can
serve as a synthon for an extensive array of different
functionalities that can be “unmasked” by industrially relevant,
high-yielding transformations, such as the electrophilic
aromatic substitution and reduction chemistry reported in
the present study. Finally, the synthetic utility of these new
classes of telechelic polyolefins is established through the
synthesis of well-defined polyolefin-block-poly(ε-caprolactone)
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di- and triblock copolymers that adopt different microphase-
segregated periodic mesophases in the condensed phase.
The Sita group has previously reported extensively on the

(stereomodulated) living coordinative chain transfer polymer-
ization (LCCTP) of ethene, propene, higher-carbon-numbered
linear and branched α-olefins and α,ω-nonconjugated dienes
to produce a wide variety of new classes of polyolefins with
tunable DPn, dispersity Đ, and MMD profile.2b,16 As presented
in Scheme 1, this LCCTP process utilizes a cyclopentadienyl,
amidinate (CPAM) group 4 metal complex of the general
formula, (η5-C5R5)[(N,N)-κ

2-N(R1)C(R2)N(R3)]M(CH3)2
(M = Zr, Hf) (I), as a preinitiator that is “activated” in situ
with a stoichiometric equivalent of the dimethylanilinium
borate, [PhNH(CH3)2][B(C6F5)4] (B1), to generate an ion-
pair initiator. In the presence of excess equivalents of a main-
group-metal alkyl, such as diethylzinc (ZnEt2) or triethylalu-
minum (AlEt3), serving as a chain transfer agent (CTA),
polymerization proceeds through rapid and reversible polymer-
yl group (chain) transfer between a population of active
transition-metal propagating species and a much larger
population of main-group-metal “surrogate” chain growth
centers. Under the condition where the magnitudes of the
rate and rate constant for reversible chain transfer, νCT and kCT,
are much greater than those for propagation through migratory
insertion at the transition metal center, νp and kp, respectively,
all the active and surrogate species appear to undergo chain
growth at the same rate. As such, all the desired features of a
living polymerization process can still be achieved.17,18

However, the scalability of providing practical quantities of
new polyolefin materials through LCCTP is now largely
dependent on the cost associated with the relatively

inexpensive main-group-metal CTA being employed that, in
the case of ZnEt2 and AlEt3, are available in commodity (rail
car) volumes. Most importantly, upon reactive quenching with
molecular iodine (I2), LCCTP can provide a quantitative yield
of the corresponding iodo-terminated polyolefin product,
which can then be used as a precursor to a much greater
spectrum of end-group functionalized polyolefins (x-PAOs) via
well-established and high yielding synthetic transformations.19

Although reactive quenching of LCCTP provides a means
by which to place a functional group on the terminating end of
the polymer chain, this still leaves open the question of how
best to establish another functional group at the initiating end
for production of either hetereotelechelic (α ≠ ω) or
homotelechelic (α = ω) α,ω-difunctional polyolefins. Con-
ceivably, this goal could be accomplished by employing a CTA
bearing a functional group; however, given the highly reactive
nature of the transition-metal initiator and propagating species
involved in LCCTP, viable choices for the design and synthesis
of such functionalized main-group organometallics are severely
limited.20 Hence, as a general synthetic strategy for the
production of telechelic polyolefins, we sought a CTA that
would not only be chemically compatible, but that further
meets the requirements of being readily (commercially)
available, structurally well-defined, highly efficient in reversible
chain transfer, and highly versatile in providing access to a
range of end-group functionality. Toward this goal, we have
recently reported that a stoichiometric excess of commercially
available ZnPh2 can be used as a highly effective CTA in the
LCCTP of a wide variety of α-olefin monomers to provide the
corresponding phenyl-terminated poly(α-olefins).21 In this
report, we now document that ZnPh2-mediated LCCTP can
be extended as a general strategy for the scalable production of
the hetereotelechelic α-iodo, ω-phenyl-terminated and homo-
telechelic α,ω-bis(phenyl)-terminated polyolefins, II and III,
respectively, according to Scheme 1 and the results of Table 1.
To begin, in a preliminary investigation of the LCCTP of

ethene using the CPAM hafnium dimethyl complex Ia in
combination with B1 to form the initiator and excess
equivalents of either ZnEt2 or diisopropylzinc [Zn(iPr)2] as
CTA, polymerizations were performed at 25 °C and quenched
with an acidic workup upon observation of initial precipitation
of PE from solution.16b In the present work, we have now
determined that an optimum yield and an increase in the range
of accessible Mn (DPn) values for IIa are obtained at the
elevated temperature of 50 °C when using ZnPh2 as CTA
under otherwise identical conditions (cf. run 1, Table 1: Mn =
1.0 kDa, Đ = 1.20, yield = 3.9 g).22 The level of phenyl group
termination in this sample of IIa was determined to be 99% by
1H NMR (800 MHz, 1,1,2,2-tetrachloroethane-d2, 90 °C)

Scheme 1. Production of Hetereotelechelic α-Iodo, ω-
Phenyl-Terminated (II) and Homotelechelic α,ω-
Bis(phenyl)-Terminated (III) Polyolefins

Table 1. Hetereotelechelic Polyolefins (II) Obtained by LCCTP Using ZnPh2 as CTA and Reactive Quench with I2
a

run II I Mb (equiv) ZnPh2
d (equiv) yield (g) Mn

e (kDa) Đe Tg
f (°C) Tm

f (°C) mmmmg (%)

1 I-PE-Ph (IIa) Ia E (nd)c 20 3.9 1.0 1.20 nd 102
2 I-aPP-Ph (a-IIb) Ia P (nd)c 40 11.8 14.0 1.08 −7 nd
3 I-aPMP-Ph (a-IIc) Ia 4M1P (713) 10 4.3 6.2 1.08 19 nd
4 I-iPP-Ph (i-IIb) Ib P (nd)c 5 4.3 9.9 1.30 −10 100 55
5 I-iPP-Ph (i-IIb′) Ib P (nd)c 10 3.5 4.9 1.18 −16 71 36
6 I-iPMP-Ph (i-IIc) Ib 4M1P (1188) 10 1.4 11.2 2.23 18 219 nd

aFor details of polymerization conditions for each run, see SI. bE = ethene, P = propene, 4M1P = 4-methyl-1-pentene. cGaseous monomer held
constant at 5 psi. dRelative to I. eDetermined by GPC using polystyrene standards (1,2,4-trichlorobenzene, 135 °C for IIa and IIc; THF, 40 °C for
IIb). fDetermined by DSC. gDetermined by 13C{1H} NMR (200 MHz, 1,1,2,2-tetrachloroethane-d2, 90 °C).
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spectroscopy, which when compared to the theoretical value,
confirms the high effectiveness of ZnPh2 as a CTA in which
both phenyl groups participate in exchange with the transition-
metal initiator or propagator. High temperature size exclusion
chromatography (HT-SEC) provided further support for the
living character of this LCCTP process by revealing a narrow,
monomodal MMD with a Đ value of 1.20.22

Given the Cs-symmetric nature of Ia, propagation with an α-
olefin monomer (i.e., R ≠ H) has previously been shown to
proceed in a stereorandom fashion, and reactive quenching
with I2 is accordingly expected to provide a high yield of the
corresponding atactic α-iodo, ω-phenyl poly(α-olefin) product
a-II of Scheme 1.16,19 The results presented in Table 1 for runs
2 and 3 confirmed this expectation with proof of the
production of atactic α-iodo, ω-phenyl polypropene (I-aPP-
Ph, a-IIb) and atactic α-iodo, ω-phenyl poly(4-methyl-1-
pentene) (I-aPMP-Ph, a-IIc) when propene and 4-methyl-1-
pentene were, respectively, employed as the α-olefin
monomer.22 In each case, a very narrow and monomodal
MMD was established by ambient-temperature SEC, while 13C
NMR spectroscopy confirmed an atactic microstructure that
renders these materials amorphous with only a glass transition
temperature, Tg, being observed by differential scanning
calorimetry (DSC; see Table 1).22,23

As further detailed with the results of runs 4 and 5 of Table
1, we also now report the first example of stereomodulated
LCCTP of propene that was achieved using varying excess
equivalents of ZnPh2 as a CTA in combination with the chiral
(racemic) C1-symmetric CPAM zirconium dimethyl complex
Ib as preinitiator and the borate B1 as co-initiator (see Scheme
1).24 More specifically, under LCCTP conditions, rapid and
reversible chain transfer that occurs between the two
enantioforms of the transition-metal propagating species and
the main-group-metal surrogates serves to introduce a level of
incorporation of racemic (r) dyad stereoerrors as a function of
the relative rates of chain transfer vs stereoselective
(isoselective) propagation.16e,g,23,24 Hence, an increase in the
initial ZnPh2/Ib ratio should lead to a decrease in both Mn and
%mmmm, which is observed (cf. run 4 vs run 5, Table 1). Note
also that the magnitude of %mmmm has a direct impact on the
melting transition temperature, Tm, of the two different i-IIb
and i-IIb′ products. Finally, to round out this initial set of
heterotelechelic polyolefins, the stereoselective LCCTP of 4-
methyl-1-pentene (4M1P) as the α-olefin monomer using
excess equivalents of ZnPh2 as CTA and the Ib/B1 initiator
combination was conducted to provide an excellent yield of α-
iodo, ω-phenyl-terminated isotactic poly(4-methyl-1-pentene)
(i-IIc) according to run 6 of Table 1. Curiously, both the SEC
and HT-SEC determined MMD of this material is unchar-
acteristically broad and multimodal with a Đ value of 2.23 (see
Figure S100), even though this LCCTP is living by all other
criteria. We currently believe that this feature is an artifact
arising from incomplete solubilization of the highly crystalline
iPMP within the limited solvents that can be used in this
analytical method. Isotactic poly(4-methyl-1-pentene) (iPMP)
is a commercially important high-melting thermoplastic with a
Tm of 250 °C that has been known for some time since first
being reported by Natta and co-workers in 1956.25,26 However,
in spite of this and the fact that 4M1P is readily available
through alkali-metal-catalyzed dimerization of inexpensive
propene, the synthesis and systematic investigation of other
stereochemical grades of PMP have been surprisingly almost
absent from the literature.27 Recently, the Sita group has

shown the value of end-group functionalized aPMP for
providing the amorphous hydrophobic domain of amphiphilic
sugar−polyolefin conjugates that adopt thermotropic canonical
double gyroid and noncanonical Frank-Kasper A15 and σ
phases in the condensed state.19a,c,d It is of some interest,
therefore, to explore the properties and synthetic utility of
heterotelechelic and telechelic PMP of varying stereoregularity
in the future.
With respect to the goal of telechelic polyolefins, as noted

previously, the phenyl end group is attractive as a synthon that
can be used to expand the range of end-group functionality
through a host of postpolymerization processes. Accordingly,
we sought to establish the high-yielding conversion of the
hetereotelechelic polyolefins II into the corresponding α,ω-
bis(phenyl)-terminated homotelechelic products III. As shown
in Scheme 2 and Table 2, this goal was easily achieved in each

case through Cu-catalyzed phenylation of the iodo end group
using commercial phenyl magnesium halide (Grignard)
reagents in tetrahydrofuran (THF) or toluene solution at an
elevated temperature.22,28 In this preliminary investigation,
only the synthesis and characterization of Ph-PE-Ph (IIIa),
atactic Ph-aPP-Ph (a-IIIb), isotactic Ph-iPP-Ph (i-IIIb),
atactic Ph-aPMP-Ph (a-IIIc), and isotactic Ph-iPMP-Ph (i-
IIIc) are being reported, but there is no conceivable limitation
on extending this methodology to a much broader range of
telechelic poly(α-olefins). It is also important to point out here
that, in the case of telechelic IIIa, each polymer chain is
symmetric with respect to possessing two identical benzyl
(PhCH2) end groups. In contrast, for any telechelic poly(α-
olefin), such as IIIb and IIIc, the two benzylic carbon atoms
are now differentiated, with the initiating one being tertiary
due to originating from 1,2-migratory insertion of monomer,
while the terminating one is secondary as the result of
phenylation (see Scheme 1).29 While this structural difference
between the two benzylic positions is not anticipated to have
any significant effect on the rate of electrophilic substitution of
the aromatic rings, it is possible that one could make use of this
fact to develop selective orthogonal transformations of one
benzylic position over the other in the future. Finally, identical
benzyl end groups for III would presumably arise if
noncommercially available dibenzylzinc (ZnBn2) is employed
as the CTA, and we are investigating this hypothesis.

Scheme 2. Synthesis of Acetophenone-Terminated (IV and
VI) and Benzylalcohol-Terminated (V and VII) Polyolefins
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Friedel−Crafts (FC) acylation of phenyl side chains of
polystyrene using acetyl chloride (AcCl) in combination with
aluminum trichloride (AlCl3) as a Lewis acid catalyst has
previously been reported as a strategy for introducing para-
acetophenone groups [AcPh = p-C6H4-C(O)CH3].

29 As
Scheme 2 and the results of Table 2 further reveal, similar
FC acylation of the series of α,ω-bis(phenyl)-terminated
telechelics, IIIa, a-IIIb, and i-IIIb, proceeded with near
quantitative yield in each case to correspondingly provide
AcPh-PE-PhAc (IVa), AcPh-aPP-PhAc (a-IVb), and AcPh-
iPP-PhAc (i-IVb and i-IVb′) [AcPh = p-C6H4-C(O)CH3]. All
these telechelic polyolefins were then reduced in high yield
using lithium aluminum hydride (LiAlH4) in THF to provide
the respective telechelic α,ω-bis(benzylalcohol)-terminated
polyolefins, HOBn-PE-BnOH (Va), HOBn-aPP-BnOH (a-
Vb), and HOBn-iPP-BnOH (i-Vb and i-Vb′) [BnOH = p-
C6H4−C(OH)CH3] according to Scheme 2. It is notable that
the trends in Tm values for each of the telechelic polypropenes
within the two series of different isotacticity remain constant
(cf., last column of Table 2 for i-IIIb to i-Vb and i-IIIb′ to i-
Vb′). As a final consideration, we were interested in
determining if FC acylation could also be successfully carried
out with the heterotelechelic α-iodo, ω-phenyl-terminated
polyolefins, IIa−c, and this proved to be the case as the results
of Table 2 attest. In this regard, the observed high degree of
chemical inertness of the iodo functional group of II to the FC
acylation reaction conditions was unexpected, but it might now
also provide the foundation for synthetic transformations
leading to other classes of hetereotelechelic polyethene and
poly(α-olefins). Finally, the iodo terminal group can be easily
removed by hydride reduction using LiAlH4 as demonstrated
with the conversion of I-aPMP-PhAc (a-VIc) to aPMP-BnOH
(a-VII) according to the last row of Table 2 and Scheme 2.
With a variety of end-group functionalized (x-PAO),

heterotelechelic (y-PAO-x), and homotelechelic polyolefin
(x-PAO-x) precursors now available in practical quantities,

we were interested in determining their synthetic utility for the
design and production of well-defined amphiphilic di- and
triblock copolymers, and specifically, those that might undergo
microphase segregation.30 Toward this end, there is consid-
erable interest in the development of polyethene-block-poly(ε-
caprolactone) (PE-b-PCL) block copolymers that can
potentially serve as compatibilizers for polyethene/polyester
blends.31 Since these previous materials possess two different
types of semicrystalline block domains, in the present work, we
sought to increase the knowledge base by pursuing the
synthesis and characterization of the thermotropic phase
behavior of well-defined PAO-b-PCL block copolymers that
incorporate an amorphous, atactic poly(α-olefin) domain of
varying Tg value. Scheme 3 presents syntheses of the di- and

triblock copolymers, aPMP-b-PCL (VIII) and PCL-b-aPP-b-
PCL (IX) that were achieved through the Sn(II)-catalyzed
ring-opening polymerization of excess equivalents of ε-
caprolactone using aPMP-BnOH (a-VII) and HOBn-aPP-
BnOH (a-Vb), respectively, as macroinitiators. Character-
ization of these materials using a suite of analytical and

Table 2. Telechelic Polyolefins, III−V, and Hetereotelechelic Polyolefins, VI and VII, via Postpolymerization Reactionsa

initialb reagents finalb % yield Mn
c (kDa) Đc Tg

d (°C) Tm
d (°C)

I-PE-Ph (IIa) PhMgCl Ph-PE-Ph (IIIa) >99 1.0 1.18 nd 104
Ph-PE-Ph (IIIa) AcCl/AlCl3 AcPh-PE-PhAc (IVa) 99 0.8 1.30 nd 107
AcPh-PE-PhAc (IVa) LiAlH4 HOBn-PE-BnOH (Va) >99 0.8 1.27 nd 110
I-aPP-Ph (a-IIb) PhMgBr Ph-aPP-Ph (a-IIIb) 88 14.0 1.08 −6
Ph-aPP-Ph (a-IIIb) AcCl/AlCl3 AcPh-aPP-PhAc (a-IVb) 95 13.6 1.11 −9
AcPh-aPP-PhAc (a-IVb) LiAlH4 HOBn-aPP-BnOH (a-Vb) >99 13.7 1.11 −7
I-iPP-Ph (i-IIb) PhMgBr Ph-iPP-Ph (i-IIIb) 61 9.8 1.30 −10 98
Ph-iPP-Ph (i-IIIb) AcCl/AlCl3 AcPh-iPP-PhAc (i-IVb) >99 6.9 1.43 −10 101
AcPh-iPP-PhAc (i-IVb) LiAlH4 HOBn-iPP-BnOH (i-Vb) >99 7.6 1.45 −7 102
I-iPP-Ph (i-IIb′) PhMgBr Ph-iPP-Ph (i-IIIb′) 76 5.1 1.21 −16 72
Ph-iPP-Ph (i-IIIb′) AcCl/AlCl3 AcPh-iPP-PhAc (i-IVb′) >99 4.2 1.27 −12 65
AcPh-iPP-PhAc (i-IVb′) LiAlH4 HOBn-iPP-BnOH (i-Vb′) 98 4.0 1.64 −9 73
I-aPMP-Ph (a-IIc) PhMgBr Ph-aPMP-Ph (a-IIIc) 88 5.5 1.20 28
I-iPMP-Ph (i-IIc) PhMgBr Ph-iPMP-Ph (i-IIIc) 81 12.7 3.84 19 219
I-PE-Ph (IIa) AcCl/AlCl3 I-PE-PhAc (VIa) 97 0.9 1.23 nd 105
I-aPP-Ph (a-IIb) ′′ I-aPP-PhAc (a-VIb) 96 14.5 1.07 −7
I-iPP-Ph (i-IIb) ′′ I-iPP-PhAc (i-VIb) 98 8.9 1.33 −9 96
I-iPP-Ph (i-IIb′) ′′ I-iPP-PhAc (i-VIb′) >99 4.0 1.30 −18 70
I-aPMP-Ph (a-IIc) ′′ I-aPMP-PhAc (a-VIc) >99 5.9 1.10 14
I-iPMP-Ph (i-IIc) ′′ I-iPMP-PhAc (i-VIc) 97 12.1 2.28 21 218
I-aPMP-PhAc (a-VIc) LiAlH4 aPMP-BnOH (a-VII) >99 6.3 1.20 26

aFor experimental details of each transformation, see the SI. bAcPh = p-C6H4−C(O)CH3, BnOH = p-C6H4−CH(OH)CH3.
cDetermined by SEC

using polystyrene standards (1,2,4-trichlorobenzene, 135 °C for IIa and IIc; THF, 40 °C for IIb). dDetermined by DSC.

Scheme 3. Synthesis of Polyolefin-block-poly(ε-
caprolactone) Di- and Triblock Copolymers
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spectroscopic tools confirmed, among other things, the
expected structural composition, molar mass, MMD, block
mole fractions, and thermal phase transitions (cf., for VIII: Mn
= 7.1 kDa, Đ = 1.26. f PCL = 0.24, Tg = 16 °C, Tm = 87 °C; and
for IX:Mn = 23.5 kDa, Đ = 1.36, f PCL = 0.35, Tg = −4 °C, Tm =
54 °C).22 Importantly, as presented in Figure 1, the immiscible

nature of the PAO and PCL block domains manifest in strong
microphase-segregated morphologies in the condensed phase
with periodic nanostructures that are consistent with the PCL
mole fraction (f PCL).

30 Thus, for VIII, a body centered cubic
(BCC) spherical mesophase is observed in sub-100 nm-thick
ultrathin films by phase-sensitive tapping mode (ps-tm) AFM,
and within the bulk by variable temperature small-angle-X-ray-
scattering (VT-SAXS), with scattering peaks appearing at q/q*
= 1, 2 , and 3 (q* = 0.056 Å−1) for a domain spacing of
11.1 nm at 100 °C (see Figure 1a−c). In contrast, for IX with a
slightly larger f PCL value, the ps-tm AFM of a sample annealed
at 200 °C for 18 h and then rapidly quenched in liquid N2 now
revealed a “fingerprint” surface morphology for ultrathin films
that is consistent with either a lamellar (LAM) mesophase with
the lamellae oriented perpendicular to the surface,19b or a
hexagonally packed cylindrical (HEX) mesophase in which the
cylinders are aligned parallel to the surface (see Figure 1e).32

In fact, VT-SAXS of the bulk confirmed the existence of a
LAM phase appearing below 100 °C, with scattering peaks at
q/q* = 1, 2, 3, and 4 (q* = 0.033 Å−1) that correspond to a
domain spacing of 19 nm, and above 150 °C, a HEX phase is
seen to emerge with a new set of scattering peaks appearing at
q/q* = 1, 3 , and 4 (q* = 0.026 Å−1) that are associated
with a cylinder-to-cylinder distance, dc, of 23.7 nm at 200 °C
(see Figure 1f). Epitaxial thermotropic LAM → HEX phase
transitions are well-known for other classes of di- and triblock
copolymers.30,33 We recognize that other factors, such as
overall molar mass of the block copolymers and the nature of
the PAO domain (i.e, aPMP vs aPP) are also playing key roles,
and accordingly, more thorough investigations of the
thermotropic phase behavior of these and other classes of
PAO-polyester block copolymers are currently in progress.
Clearly, the results presented in this preliminary report

represent only the tip of the iceberg of the extensive
investigations and innovations that are now possible for
exploring the science and technology of new classes of well-
defined polyolefin-based block copolymers that can be easily
derived from a broad array of telechelic polyolefins in which
the polyolefin domain can be systematically varied in a
programmed fashion through the general and versatile
synthetic strategy presented herein. Additional results of such
studies will be reported in due course.
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VIII obtained at 100 °C. (d) SEC trace (RI detector = black solid
line, UV detector = red dotted line) of PCL-aPP−PCL triblock IX.
(e) ps-tm AFM phase map of a 100 nm thick film of IX on a c-Si
substrate annealed to 200 °C followed by a rapid quench into liquid
N2. (f) 1D SAXS profile of the LAM phase of IX obtained at 80 °C
(bottom) and a mixed HEX (major)/LAM (minor) phase observed
upon heating the same sample to 200 °C (top).
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