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Abstract—This paper studies a problem of jointly optimizing
two important operations in mobile edge computing without
knowing future requests, namely service caching, which deter-
mines which services to be hosted at the edge, and service
routing, which determines which requests to be processed locally
at the edge. We aim to address several practical challenges,
including limited storage and computation capacities of edge
servers and unknown future request arrival patterns. To this end,
we formulate the problem as an online optimization problem,
in which the objective function includes costs of forwarding
requests, processing requests, and reconfiguring edge servers.
By leveraging a natural timescale separation between service
routing and service caching, namely, the former happens faster
than the latter, we propose an online two-stage algorithm and
its randomized variant. Both algorithms have low complexity,
and our fractional solution achieves sublinear regret. Simulation
results show that our algorithms significantly outperform other
state-of-the-art online policies.

Index Terms—Edge Network, Online Optimization, Service
Caching, Service Routing

I. INTRODUCTION

A growing challenge for mobile computing is the prolif-
eration of data/computation-intensive and delay-sensitive ap-
plications, such as cognitive assistance and augmented reality
(AR). On the one hand, running these applications completely
within mobile devices may be infeasible due to the limited
computation, storage, and battery capacity of such devices.
On the other hand, offloading computation tasks of these
applications to remote data centers may result in excessive
end-to-end latency and hence poor user experience.

Such a dilemma has given rise to the popularity of mobile
edge computing [1], [2]. In mobile edge computing, edge
servers are deployed close to wireless base stations. These
servers can host some popular services and process the corre-
sponding computation tasks directly without having to forward
them to remote data centers. Due to their close proximity to
end users, edge servers are able to provide these services with
much lower latency.

Despite the obvious advantage of mobile edge computing,
there remain multiple important challenges that need to be
addressed. First, edge servers can often host (or cache) a small
number of services, and installing new services is typically
time-consuming and expensive since it involves downloading
all necessary data from remote data centers and setting up ap-
propriate virtual machines or containers. Second, edge servers

usually have limited computation power, and hence requests
will suffer queuing delays. So, the edge server needs to decide
whether to process a request locally or not, even it has already
cached the corresponding service. Third, mobile users generate
requests for services in arbitrary and typically time-varying
patterns, which are hard to learn. Thus, edge servers must
decide which services to cache and which requests to process
without knowledge of future requests.

Most existing works only focus on one or two challenges
above. Some studies only address the online caching problem
with unknown request arrival patterns. For example, Paschos et
al. [3], [4], and Gao et al. [5] propose online algorithms with
sublinear regret based on the online gradient ascent and bandit
learning method. Zhao et al. [6] address the installation cost
and analyze the competitive ratio of their algorithm. These
studies fail to take the limited computation power of edge
servers into account. Some other papers consider joint designs
of service caching and request processing by explicitly address
limits on both storage and computation power. For instance,
Li et al. [7] and Xu et al. [8] propose online algorithms
for optimizing service caching and request routing based on
a Lyapunov optimization framework. A weakness of these
caching and routing solutions is that they assume that the
request arrival patterns are predictable or follow a certain
stationary random process.

In this paper, we aim to address all three challenges and
minimize a combination of the queuing latency, forward-
ing latency, and installation costs. By leveraging the natural
timescale separation between service caching and service
routing, we formulate the problem into a two-stage online
optimization problem without knowledge of future requests.

To solve this problem, we propose a low-complexity two-
stage online policy and its randomized variant. The two-stage
online policy consists of two parts: the first part is a low-
complexity algorithm that finds not only the optimal service
routing decision but also the gradient of the current service
caching decision, despite that neither of them have closed-form
expressions, and the second part employs online projected
gradient descent to update the service caching decisions. We
further design its randomized variant to make the probabilistic
caching solution from the two-stage online policy imple-
mentable. We theoretically prove that our two-stage online
policy achieves sublinear regret, while the randomized one at



most triples the installation cost.
Our online algorithms are evaluated through simulations

under various scenarios. We compare them against three other
algorithms, including an offline policy that knows overall re-
quest popularity in advance. Results show that our algorithms
perform much better than other online algorithms and perform
virtually the same as the offline policy.

The rest of the paper is organized as follows. Section II
introduces our system model and problem formulation. Section
III presents our two-stage online algorithm for obtaining
fractional solutions with sublinear regret. Section IV includes
a randomized variant of the algorithm that ensures integer
solutions for the service caching problem. Section V shows
our simulation results under a variety of scenarios. Finally,
Section VI concludes the paper.

II. SYSTEM MODEL

A. System Overview

We consider an edge system with a backhaul connection.
This edge system includes multiple clients, an edge server, and
remote data centers. Clients generate requests for different ser-
vices according to some unknown and unpredictable patterns,
and then send these requests to the edge server. The edge
server may cache some services and process some requests for
these services locally, while forwarding remaining requests to
remote data centers. Requests processed at the edge encounter
a computation latency due to the limited computation capacity
of the edge server, while requests forwarded to remote data
centers encounter a forwarding latency due to network latency.

B. Service Caching and Processing

We assume that time is slotted, and the system runs for
T time slots. The duration of a time slot is chosen so that,
in any given time slot, the patterns for the service requests
(originating from different clients) remain roughly the same.

We use N to denote the total number of different services.
Let xn,t ∈ {1, 0} be a binary decision variable that indicates
whether the edge server caches service n in time slot t, and let
Xt := [x1,t, x2,t, . . . , xN,t]. Since the edge server has limited
storage capacity, we assume that the edge server can cache at
most Z services, i.e.,

∑N
n=1 xn,t ≤ Z,∀t. We call the problem

of determining Xt the service caching problem.
Caching a new service at the edge can be a costly process,

which typically involves downloading codes and databases and
setting up virtual machines or containers. Thus, we assume that
the edge server must decide Xt before time slot t.

At the beginning of time slot t, the edge server observes the
requests from clients and calculates the request arrival rates.
We use λn,t to denote the number of requests for service n
in time slot t, and let Λt := [λ1,t, λ2,t, . . . , λN,t]. We assume
that an upper bound W on the total arrival rate is known, that
is,

∑N
n=1 λn,t ≤W, ∀t.

During each time slot t, the edge server needs to decide
which requests to be processed locally. Due to the limited
computation power of the edge server, it may not be desirable
to process all requests for services that it caches. For a service

n, the edge server will process a fraction yn,t ∈ [0, 1] of the
number of requests locally, and forward the remaining (1 −
yn,t) portion of the requests to the data center. Since the edge
server can only process requests whose corresponding services
have already been cached at the edge, we require that yn,t ≤
xn,t,∀n.

Let Yt := [y1,t, y2,t, . . . , yN,t]. We call the problem of
determining Yt the service routing problem. Since the edge
server can adjust service routing in real time, we consider that
the edge server determines Yt after it observes Λt.

C. Cost and Problem Formulation

The goal of the edge server is to minimize the total cost
of the system, which consists of latency cost and installation
cost, by jointly optimizing Xt and Yt.

First, the latency cost refers to the total latency experienced
by all requests. In the system, when a request is forwarded to
the remote data center, it experiences a forwarding latency,
which is denoted as dn for service n. When a request is
processed at the edge, it experiences a computation latency
due to the limited computation power of the edge server. It is
reasonable to assume that the per-request computation latency
at the edge depends on the total computation load, and can be
described by a convex, increasing, and differentiable function
C(·) with 0 ≤ C(0) ≤ dn,∀n and lims→∞ C(s) =∞. Since
the total computation load at the edge server is

∑N
n=1 λn,tyn,t

in time slot t, the total latency of all requests can be written
as

Lt(Yt) :=

N∑
n=1

λn,tyn,tC
( N∑
m=1

λm,tym,t

)
+

N∑
n=1

λn,t(1−yn,t)dn.

The goal of the edge server at each time slot t is to minimize
this latency cost given the current caching decision Xt, i.e.,
to solve

Gt(Xt) := min
Yt

Lt(Yt), (1)

s.t. 0 ≤ yn,t ≤ xn,t, ∀n. (2)

Second, the installation cost refers to the operation cost
incurred when the edge server caches new services. For
simplicity, we assume that caching every new service incurs a
cost of β. Hence, the total installation cost is β

∑T
t=1 ∥Xt −

Xt−1∥+, where ∥Xt∥+ =
∑N

n=1 max{xn,t, 0}. As a result,
the sequence of determining variables and receiving cost is
illustrated in Fig. 1, and the total cost over T time slots can
be written as

∑T
t=1(Gt(Xt) + β∥Xt −Xt−1∥+).

Fig. 1. Process of online service caching and routing.

Here, it is important to note that the service caching
problem and the service routing problem operate on different
timescales. The edge server needs to decide Xt in time slot



t− 1, without any knowledge about Λt. In contrast, the edge
server can decide the value of Yt after observing the first few
requests in time slot t to estimate the arrival rate Λt.

The edge server aims to find [X1, X2, . . . , XT ] and
[Y1, Y2, . . . , YT ] that minimize the total cost subject to all the
constraints described above. However, since this is a mixed
integer problem due to binary caching decisions xn,t ∈ {0, 1},
we first relax this constraint and allow xn,t to be any real
number in [0, 1]. Under this relaxation, xn,t can be interpreted
as the probability of caching service n at time t, and the
(offline) problem of minimizing the total cost becomes:

min
[Xt]

T∑
t=1

(
Gt(Xt) + β∥Xt −Xt−1∥+

)
, (3)

s.t. 0 ≤ xn,t ≤ 1, ∀n,∀t, (4)
N∑

n=1

xn,t ≤ Z, ∀t. (5)

While the above problem is a convex optimization problem,
solving it requires the knowledge of all request arrival rates,
that is, all Λt, in advance. In practice, however, the edge
server needs to make service caching decision Xt without the
knowledge of future arrival rates, hence the need for an online
algorithm.

The performance of an online algorithm that does not have
any knowledge about future arrivals is evaluated by comparing
it against an offline policy that knows future arrivals. Let us
consider an offline policy that knows the overall popularity of
all services, i.e.,

∑
t λn,t for all n ∈ [1, N ], but not individual

λn,t. In this case, the optimal static caching policy will cache
Z services with largest dn

∑
t λn,t at all times. The assumption

for this offline optimal static policy is widely used in caching
literature; see, e.g., [9]. Let Xo := [xo

1, x
o
2, . . . , x

o
N ] be the

service caching decision of this offline policy. Note that, since
we assume that the edge server can adjust service routing in
real time, the offline policy can determine an optimal routing
decision [Y o

t ] that minimizes the latency cost Lt(Yt) in each
time slot t while satisfying the constraint yon,t ≤ xo

n,∀n.
Let X̂ := [X̂1, X̂2, . . . , X̂T ] and Ŷ := [Ŷ1, Ŷ2, . . . , ŶT ] be

solutions produced by an online algorithm ξ, then we define
the regret of ξ as the difference between its cost and the cost
of the optimal static offline policy:

Reg(ξ) :=

T∑
t=1

(
Lt(Ŷt)− Lt(Y

o
t ) + β∥X̂t − X̂t−1∥+

)
.

It should be noted that the offline policy doesn’t incur instal-
lation costs since it uses a fixed caching decision.

The goal of this paper is to find an online algorithm with
provably small regret under any sequence of arrival rates.

III. ONLINE ALGORITHM

In this section, we present a two-stage online algorithm
that aims to jointly optimize the service caching and routing
decisions asymptotically. After arrival rates are revealed in
each time slot, the first stage computes routing decisions

and produces necessary parameters for the next stage, which
updates caching decisions for the next time slot.

A. Optimal Routing
In this subsection, we consider the service routing problem

at time t described in (1)–(2), given the current caching
decision Xt and arrival rates Λt. Solving this problem with
a general convex optimization solver may, however, incur
high complexity. Surprisingly, we show below that there exists
an O(N) algorithm that not only solves this problem but
also provides a subgradient ∇Gt(Xt), which is important for
dealing with the service caching problem in the second stage.

The main idea of our algorithm is to leverage the special
structure in Lt(Yt). Let

Jt(Yt) := C(

N∑
n=1

λn,tyn,t) +

N∑
n=1

λn,tyn,tC
′
(

N∑
m=1

λm,tym,t).

Then, we have 1
λn,t

∂Lt(Yt)
∂yn,t

= Jt(Yt)−dn, which corresponds
to the marginal benefit of processing one more request for
service n at the edge. Sorting all services so that d1 ≥ d2 ≥
· · · ≥ dN , then we have 1

λ1,t

∂Lt(Yt)
∂y1,t

≤ 1
λ2,t

∂Lt(Yt)
∂y2,t

≤ · · · ≤
1

λN,t

∂Lt(Yt)
∂yN,t

. Based on this observation, we design Algorithm 1
shown below.

Algorithm 1 ServiceRouting

Input: d1 ≥ d2 ≥ . . . ≥ dN , Xt,Λt

Initialize: Yt ← 0
1: for n = 1, 2, ..., N do
2: if Jt(Yt)− dn < 0 then
3: yn,t ← xn,t

4: if Jt(Yt)− dn > 0 then
5: choose yn,t ∈ [0, xn,t] s.t. Jt(Yt)− dn = 0
6: for n = 1, 2, ..., N do
7: if Jt(Yt) ≤ dn then
8: νn ← λn,t(dn − Jt(Yt)), µn ← 0
9: else

10: νn ← 0, µn ← λn,t(Jt(Yt)− dn)
Output: Yt,∇Gt(Xt)← [−ν1,−ν2, . . . ,−νN ]

Theorem 1: Algorithm 1 produces an optimal solution for
the routing problem (1)–(2) and a subgradient ∇Gt(Xt) is
given by

∂Gt(Xt)

∂xn,t
= −νn =

{
λn,t(Jt(Yt)− dn), if yn,t = xn,t,

0, otherwise.

Proof: First, it can be verified that Yt, νn and µn produced
by Algorithm 1 satisfy the KKT conditions of problem (1)–(2),
i.e.,

λn,t(Jt(Yt)− dn)− µn + νn = 0,∀n, (6)
νn(yn,t − xn,t) = 0, µn(−yn,t) = 0,∀n, (7)

µn ≥ 0, νn ≥ 0,∀n, (8)

where νn and µn are Lagrange multipliers associated with the
constraints in (2). Since the problem is convex, it follows that
Yt is an optimal solution.



Second, it follows from [10, §5.6] that Gt is convex in Xt

and that ∂Gt(Xt)
∂xn,t

= −νn,∀n = 1, . . . , N . This completes the
proof.

B. Online Service Caching

For service caching, we adopt the online gradient descent
method with lazy projection in [11], where the update step at
time t is given in Algorithm 2 below. Here, ∇Gt(Xt) is the
subgradient calculated by Algorithm 1, η is the step size, and
θt = [θ1,t, θ2,t, . . . , θN,t] is an internal vector with θ1 = 0.

Algorithm 2 ServiceCaching

Input: θt,∇Gt(Xt), η
1: θt+1 ← θt −∇Gt(Xt)
2: Xt+1 ← the Euclidean projection of ηθt+1 onto the set
{X ∈ RN | 0 ≤ xn ≤ 1,

∑N
n=1 xn ≤ Z}

Output: Xt+1, θt+1

As a result, combining both Algorithms 1 and 2 yields an
online service caching and routing algorithm (OCR) shown in
Algorithm 3 below.

Algorithm 3 Online service Caching and Routing (OCR)
Initialize: η, θ1 ← 0, X1

1: for t = 1, 2, ..., T do
2: Yt,∇Gt(Xt)← ServiceRouting(Xt,Λt)
3: Xt+1, θt+1 ← ServiceCaching(θt,∇Gt(Xt), η)

Next we show that OCR achieves a sublinear regret.
Theorem 2: Let η = O( 1√

T
). Then, Reg(OCR) = O(

√
T ).

Proof: Since Algorithm 3 can be viewed as applying on-
line gradient descent with lazy projection to the problem in (3)
with objective function Gt(Xt) (i.e., without the installation
cost), it follows from [11, Corollary 2.17] that the regret (in
terms of Gt(Xt)) is O(

√
T ) when η = O( 1√

T
), provided that

∇Gt is bounded. In our case, the boundedness holds because

∥∇Gt(Xt)∥22 =

N∑
n=1

ν2n ≤
N∑

n=1

λ2
n,td

2
n ≤W 2 max

i
d2i , (9)

where we have used Theorem 1 and the fact that
∑N

n=1 λ
2
n,t ≤(∑N

n=1 λn,t

)2
= W 2.

It remains to show that β
∑T

t=1 ∥Xt −Xt−1∥+ = O(
√
T ).

To this end, note that ∥Xt − Xt−1∥+ ≤ ∥Xt − Xt−1∥1 ≤√
N∥Xt − Xt−1∥2 ≤

√
N∥η∇Gt(Xt)∥2, where the last

inequality follows from Algorithm 2 and the nonexpansiveness
property of Euclidean projections. Next, using (9) and the
fact that η = O( 1√

T
), we have

∑T
t=1 β∥Xt − Xt−1∥+ ≤∑T

t=1 ηβ
√
N∥∇Gt(Xt)∥2 ≤ Tηβ

√
N maxi di = O(

√
T ).

Thus, we conclude that Reg(OCR) = O(
√
T ).

Finally, we analyze the complexity of Algorithm 3. It can
be seen that the bottleneck is the projection step in the line 2
of Algorithm 2.

We consider the following steps for finding the projec-
tion of ηθn,t+1 onto the set {X ∈ RN | 0 ≤ xn ≤
1,

∑N
n=1 xn ≤ Z}. Let X ′ be the vector of x′

n where
x′
n = min{1,max{0, ηθn,t+1}}. If

∑N
n=1 x

′
n ≤ Z, then X ′

is the projection. Otherwise, the projection, denoted by X∗,

must have
∑N

n=1 x
∗
n = Z. Then, we can employ the algorithm

in [12], which has complexity O(N2), to obtain X∗. Hence,
the overall complexity of Algorithm 3 is O(N2) per time slot.

IV. RANDOMIZED ALGORITHM FOR SERVICE CACHING

The online algorithm for finding Xt as proposed in Al-
gorithm 2 may produce fractional solutions, which can be
interpreted as the probability that the edge server caches each
service. In this section, we propose a randomized algorithm
that satisfies this probability interpretation while guaranteeing
a provably small installation cost.

A. Randomized Algorithm

The basic idea of our randomized algorithm is to simulta-
neously maintain K sample paths, where each sample path
represents a probability mass of 1

K . We then quantize each
xn,t into a multiple of 1

K . Specifically, let XQ
t be the quantized

version of Xt, we then require that KxQ
n,t to be a non-negative

integer and
∑

n x
Q
n,t ≤ Z.

Let rk,n,t be the indicator function that service n is cached
at the edge at time t in the sample path k. Let Rk,t be
the vector [rk,1,t, rk,2,t, . . . ]. In every time slot t, our ran-
domized algorithm receives XQ

t from Algorithm 2. Then, it
constructs Rk,t based on XQ

t and Rk,t−1 to ensure three
properties: First, the probability of caching service n is indeed
xQ
n,t, that is,

∑K
k=1 rk,n,t = KxQ

n,t. Second, the storage
capacity constraint is satisfied for all sample paths, that is,∑

n rk,n,t ≤ Z,∀k. Third, the expected installation cost, which
can be expressed as 1

K

∑
k ∥Rk,t−Rk,t−1∥+, is bounded. Let

∆t := [δ1,t, δ2,t, . . . , δN,t] be the difference between XQ
t and

XQ
t−1. Algorithm 4 shows the complete randomized algorithm,

including decisions on service caching and routing.

Algorithm 4 Randomized Online service Caching and Routing
(ROCR)
Initialize: K, Rk,1 ← 0,∀k, η, θ1 ← 0

1: Choose k∗ uniformly from {1, 2, . . . ,K}.
2: for t = 1, 2, ..., T do
3: Observe Λt.
4: Yt,∇Gt(Xt)← ServiceRouting(Rk∗,t,Λt).
5: XQ

t+1, θt+1 ← ServiceCaching(θt, ∇Gt(Xt), η).
6: Rk,t+1 ← Rk,t,∀k.
7: ∆t+1 ← XQ

t+1 −XQ
t .

8: for n = 1, 2, . . . , N do
9: if δn,t+1 > 0 then

10: Randomly choose Kδn,t+1 sample paths with
rk,n,t+1 = 0, and set rk,n,t+1 = 1 for them.

11: else if δn,t < 0 then
12: Randomly choose |Kδn,t+1| sample paths with

rk,n,t+1 = 1, and set rk,n,t+1 = 0 for them.
13: while ∃k̂ such that

∑
n rk̂,n,t+1 > Z do

14: Find one sample path k′ with
∑

n rk′,n,t+1 < Z.
15: Find a service n̂ with rk̂,n̂,t+1 = 1, rk′,n̂,t+1 = 0.
16: Set rk̂,n̂,t+1 = 0 and rk′,n̂,t+1 = 1.
17: Cache all services with rk∗,n,t+1 = 1.



By the design of Algorithm 4, we obviously have the first
two properties. We show below that Algorithm 4 also enjoys
a provably small expected installation cost.

B. Performance Analysis

First, we consider the influence of Algorithm 4 on the
installation cost, which is shown below.

Theorem 3: The expected installation cost at each time slot
in Algorithm 4 is at most 3β∥XQ

t −XQ
t−1∥+.

Proof: As the installation cost only happens when we
increase rk,n,t, we aim to bound the increase in rk,n,t. Under
Algorithm 4, rk,n,t can be changed either in lines 9–12 or
in lines 14–16. In lines 9–12, the total increase is K∥XQ

t −
XQ

t−1∥+. Moreover, every change in lines 9–12 can result in
at most two changes in lines 14–16. Hence, the total increase
in lines 14–16 is at most 2K∥XQ

t −XQ
t−1∥+.

Thus, the maximum increase in Algorithm 4 is 3K∥XQ
t −

XQ
t−1∥+ over all sample paths. Since each sample path repre-

sents a probability mass of 1
K , the expected installation cost

is at most 3β∥XQ
t −XQ

t−1∥+.
Next, we analyze the complexity of Algorithm 4. Since∑
n X

Q
t ≤ Z and

∑
n X

Q
t−1 ≤ Z, at most KZ variables will

be increased to 1 and at most KZ variables will be decreased
to 0 in Steps 10–12. This is a total of O(KZ) changes. To
implement the while loop in Steps 14–16, we can first divide
all sample paths into three groups: those with

∑
n rk̂,n,t > Z,

those with
∑

n rk̂,n,t = Z, and those with
∑

n rk̂,n,t < Z.
Then, Step 14 is an O(1) operation. Step 16 takes O(N)
time. We note that each increase in Steps 10–12 will result
in at most one iteration of the while loop in Steps 14–16.
Hence, steps 14–16 will be executed at most KZ times and
the overall complexity of this while loop is O(KZN). Thus,
the complexity of Algorithm 4 is O(max{KZN,N2}) per
time slot.

V. SIMULATION RESULTS

In this section, we conduct various simulations to evaluate
the performance of our algorithms OCR and ROCR.

A. Setup

We conduct experiments on following two datasets:
• The first dataset is a synthetic dataset, following a random

replacement model in [3], [13] with N = 103 and
T = 104. In this dataset, all requests follow a Zipf
distribution, while the ranking of services frequently
changes according to Table 2 in [13].

• The second dataset is based on the Google trace data from
[14], containing a sequence of different service requests.
This dataset includes more than three million requests
for N = 9, 218 services within a seven-hour timespan.
As time is slotted in the trace data by 300 seconds,
which is a large jump, we divide each interval into 300
different parts with an equal number of requests following
the original sequence. In this dataset, the popularity
of requests in one time slot changes fast, while some
services are very popular over the whole time period.

Considering the queuing delay, we assume that the edge
server operates like a M/M/1 queuing system [15] with
service rate ϕ, i.e., C(

∑N
i=1 yi,t) =

1
ϕ−

∑N
i=1 yi,t

.
The system parameters are shown in Table I, where the

values of forwarding latency, service rate, and cache limit
follow the parameters of services and base stations in [8].

TABLE I
SYSTEM PARAMETERS

Parameter dn (sec/request) ϕ (request/sec) Z K η
Value [2, 4] [20, 100] [2, 10] 102 0.05

Throughout the evaluation, we compare ROCR and OCR
with the following baseline approaches:

• OGA (Online Gradient Ascent [3]): In each time slot, it
uses [λ1,td1, λ2,td2, . . . , λN,tdN ] as the gradient for the
service caching problem. Since OGA does not consider
the routing procedure, we apply our routing policy in this
algorithm to obtain its best performance. OGA produces
fractional Xt and its cost is based on this fractional Xt.

• OFF (Offline Policy): This is the optimal static offline
policy defined in Sec. II. It caches the same Z services
with the largest

∑T
t=1 λn,tdn in all time slots and applies

optimal routing decisions.
• OREO: (Online seRvice caching for mobile Edge cOm-

puting [8]): This algorithm jointly optimizes service
caching and routing decisions with energy and cost con-
straints. In the context of this work, all energy and cost
constraints in [8] are relaxed to be infinite. As suggested
by [8], we let the arrivals of the current time slot be
the prediction for the next time slot and use the Gibbs
sampling method with parameter τ = 10−2 to update
caching decisions.

We evaluate the performance of all five algorithms with
different values of edge server caching limit Z, service rate ϕ,
and installation cost parameter β. We choose ϕ = 60, Z = 6,
and β = 100 if they are not specified. In addition, we present
the regret of all four online algorithms in each time slot.

B. Evaluation Results

The simulation results for two scenarios are shown in Fig. 2
and Fig. 3, and we can obtain several important observations.

First, our ROCR significantly outperforms OREO in all
settings. Though ROCR and OREO all jointly optimize service
caching and routing, OREO assumes request arrival patterns
are predictable and uses Gibbs sampling for cache updates,
which causes massive installation cost and the surprising
cost increment when we increase the cache size Z. Second,
ROCR also outperforms OGA in all scenarios. While both
algorithms are based on online gradient methods, ROCR can
achieve better performance because it explicitly considers the
processing latency and avoids the redundant cache changes
when the edge server cannot process requests for popular
services locally. Observations above show that any online
algorithm for edge computing needs to address both memory
and computation power constraints of edge servers as well as
the challenge of unknown future requests.
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Fig. 2. Simulation results using synthetic data.
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Fig. 3. Simulation results using the Google trace data.

Third, our OCR has virtually the same performance as the
optimal static offline policy and achieves nearly zero regrets,
which is consistent with our analysis.

Finally, we note that ROCR and OCR have very similar per-
formances in all cases. OCR produces fractional solutions for
the service caching problem, and then ROCR transforms such
fractional solutions into randomized solutions with integer
solutions on every sample path. As discussed in Section IV, by
carefully choosing which services to host at the edge on every
sample path, ROCR is able to incur an installation cost that is
at most three times larger than that of OCR. Our simulation
results further show that the overall costs of ROCR and OCR
are almost identical in practical scenarios.

VI. CONCLUSION

This paper studies the problem of service caching and rout-
ing without any knowledge about future requests. Motivated by
a practical timescale separation, we formulate this problem as
a two-stage online optimization problem that jointly considers
the storage and computation constraints of the edge server,
as well as the installation cost. We propose a low-complexity
online algorithm for this problem that achieves sublinear regret
bounds under a fractional relaxation. We further introduce a
randomized algorithm that is guaranteed to produce integer
solutions with provably small installation cost. Simulation
results show that our ROCR and OCR algorithms have better
performance than other recent proposed policies and achieve
a similar performance as the optimal static offline policy.
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