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ABSTRACT: Lipid bilayers are a key component of cell
membranes and play a crucial role in life and in bio-
nanotechnology. As a result, controlling their physicochemical
properties holds the promise of effective therapeutic strategies.
Ionic liquids (ILs)a vast class of complex organic electrolytes
have shown a high degree of affinity with lipid bilayers and can be
exploited in this context. However, the chemical physics of IL
absorption and partitioning into lipid bilayers is yet to be fully
understood. This work focuses on the absorption of the model IL
[bmim][Cl] into 1,2-dimyristoyl-sn-glycero-3-phosphocholine
(DMPC) lipid bilayers across their gel, ripple, and fluid phases.
Here, by small-angle neutron scattering, we show that (i) the IL
cations are absorbed in the lipid bilayer in all its thermodynamic
phases and (ii) the amount of IL inserted into the lipid phase increased with increasing temperature, changing from three to four IL
cations per 10 lipids with increasing temperature from 10 °C in the gel phase to 40 °C in the liquid phase, respectively. An
explicative hypothesis, based on the entropy gain coming from the IL hydration water, is presented to explain the observed
temperature trend. The ability to control IL absorption with temperature can be used as a handle to tune the effect of ILs on
biomembranes and can be exploited in bio-nanotechnological applications.

■ INTRODUCTION

Cell membranes play a key role in life. They are composed of a
variety of proteins, protein complexes, and several other
molecules, such as saccharides, all of which are embedded in a
bilayer structure composed of hundreds of different lipids.1−3

The chemical and physical properties of this lipid bilayer
regulate a variety of processes, including membrane protein
function, cell recognition by the immune system, and cell
division.4−7 For example, the inhomogeneous distribution of
lipids along the bilayer surface is at the origin of the well-
known raft domains, in which proteins and other molecules
cluster to carry out specific biochemical functions.8,9 On the
other hand, the asymmetric distribution of lipids between the
two bilayer leaflets is key to several signaling pathways,
including cell apoptosis.10,11 Moreover, tumor cells have
different lipidomic compositions in comparison to their
healthy counterparts, and lipid composition controls the
fluidity and viscoelastic properties of the membrane, which
in turn alters protein functions, cell division, and cell
migration.12−15 As a result, alterations of the cellular lipid
membrane composition and organization can lead to cell
malfunction, as observed in several pathological conditions,
including cancer.16−18 In this context, several novel therapeutic
strategies targeting the lipid components of cell membranes
have been proposed.19 From a different perspective, lipid-based

nanoparticles are also used as carriers for drug delivery.20−27 A
very timely example is provided by the new mRNA-based
Covid-19 vaccines, in which the mRNA segmentscontaining
the information to build the Spike proteinsare encapsulated
in lipid nanoparticles (LNPs).28−33 It is then the affinity of
these lipid nanoparticles with the cellular lipid membranes in
our bodies that enables the diffusion of the mRNA segments
into the cytoplasm. In summary, lipid bilayers are involved in
several key processes at the cellular level and used in a variety
of bio-nanotechnological applications. As a result, being able to
control the physicochemical properties of these supramolecular
structures holds the promise of effective therapeutic
approaches. In this context, ionic liquids (ILs) can play a
novel and important role.34−36

ILs are a relatively new and vast class of organic electrolytes
composed of an organic cation and either an organic or
inorganic anion. They possess a variety of intriguing properties,
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including being liquid around room temperature and having a
low vapor pressure, which can be controlled by tuning their
chemistry.37,38 Motivated by the potential use of ILs at the
industrial scale, several studies have focused on their
cytotoxicity, which was found to range from moderate to
high depending on the IL.39 Cytotoxicity, however, requires
affinity. This has motivated, in turn, a series of investigations
aimed at understanding the chemical−physical origins of these
interactions, to be then exploited in applications.35,40−45 In this
context, several biochemical and chemical physics studies on
the effects of ILs on proteins, biomembranes, saccharides, and
cells have been carried out in the last decade.46,47 It has been
shown, for example, that ILs are able to stabilize proteins,48,49

to either favor or inhibit the formation of amyloids,50,51 to
disrupt biomembranes,52−55 and to kill bacteria and cancer
cells at doses that are not lethal to healthy cells.56,57 Among all
of these studies, one of the major focuses has been devoted to
the investigation of the interactions between ILs and model
biomembranes, mimicked by lipid bilayers.52−54,58−66 It has
been shown, in this context, that IL cations, dispersed at low
doses at the water−bilayer interface, diffuse into the lipid
region of the bilayer,61,62 causing variations in the lipid
dynamics63,64 and bilayer mechanoelasticity.45,62,65,66

Reasonably, these observed effects on lipid bilayers are
directly connected to the amount of IL absorbed in the lipid
bilayer. However, very little is known about IL absorption in
these systems. Although the IL concentration in a solution can
be easily controlled, there are no studies that link the IL
concentration in solution to the IL concentration absorbed in
the lipid phase. This latter, however, is the key information.
Knowing the IL concentration in the lipid phase as a function
of its concentration in solution, system temperature, lipid
phase, and lipid and IL types is necessary to facilitate basic and
applied research in the field. To start to tackle this lack of
knowledge, we present here the first set of experimental data
showing the effect of temperature and lipid thermotropic phase
on IL absorption in lipid bilayers at a fixed IL concentration in
the solvent phase. To do so, small-angle neutron scattering
(SANS) was employed to investigate the absorption of one of
the most studied ILs, i.e., [bmim][Cl] (1-butyl-3-methylimi-
dazolium chloride), in 1,2-dimyristoyl-sn-glycero-3-phospho-
choline (DMPC) lipid vesicles dispersed in water, at a
concentration below the critical micellar concentration
(CMC) of the IL. DMPC has been chosen among other
lipids and lipid mixtures because (i) PC-based lipids are the

most abundant lipid type in cell membranes, and (ii) among
the other PC-based lipids, DMPC is fluid at physiological
temperatures.
SANS is a widely used neutron scattering technique to

determine nanoscale structures.67−71 Its basic principles are
very similar to those of small-angle X-ray scattering (SAXS);
however, their ability to resolve structures differs, making them
two complementary techniques.72−76 SANS has been success-
fully used to study lipid vesicles in different environments and
conditions as, for example, to determine (i) the effect of
temperature, pressure, and pH on the phase behavior of
(DMPC) lipid vesicles;3,77−82 (ii) the degree of asymmetry
and domain formation in mixed lipid vesicles;83−89 (iii) the
absorption of antimicrobial peptides and drugs in lipid
vesicles;90−95 and (iv) the structure of lipid-based drug-
delivery carriers. Several recent reviews provide a good
overview of the use of SANS in biophysics.96−101 However,
even though SANS has been used in many studies of lipid
vesicles, there are noneto the best of our knowledgeon
the absorption of ILs, making our present study the first SANS
investigation of this kind.
The neutron scattering lengththe ability to “see” a

chemical elementdepends on the composition of the atomic
nuclei, making neutrons sensitive to different isotopes of a
given element. This ability is unique for neutrons and has been
exploited in a variety of investigations.102−105 We have taken
advantage of it in the present study. For instance, to determine
the IL absorption with the best spatial resolution achievable,
the experiment was designed to have the highest possible
neutron scattering contrast between the IL and the lipid tails.
This was achieved using tail-deuterated lipid (d54-DMPC) and
heavy water (D2O) as the solvent. The tail-deuterated d54-
DMPC vesicles have significant neutron scattering contrast
between (i) headgroups and acyl chains, (ii) headgroups and
D2O, and (iii) acyl chains and IL, providing the best spatial
resolution condition to resolve the structure of the lipid vesicle
itself (i.e., outer heads−2 tails−inner heads) and measure the
IL absorption.

■ MATERIALS AND METHODS

1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid
powders were purchased from Avanti Polar Lipids (Alabaster,
AL) and used without further purification. Two different lipid
variants were used: (i) a fully protiated lipid (h-DMPC) and
(ii) a tail-deuterated lipid (d54-DMPC), with main gel-to-fluid

Table 1. Theoretical Scattering Length Densities (SLD) Calculated by Dividing the Neutron Scattering Length, b, of Each
Molecular Component by Its Volume at 30 °Ca

material formula volume (Å3) b (10−4 Å) SLD (10−6 Å−2)

h-DMPC C36H72NO8P 1101 3.1 0.282
h-DMPC, tails C26H54 754 −2.91 −0.386
d54-DMPC C36D54H18NO8P 1101 59.31 5.387
d54-DMPC, tails C26D54 754 53.3 7.069
DMPC, head C10H18NO8P 347 6.01 1.732
d54-DMPC:h-DMPC n/a n/a n/a 4.85
d54-DMPC:h-DMPC, head n/a n/a n/a 1.732
d54-DMPC:h-DMPC, tails n/a n/a n/a 6.287
heavy water D2O 30 1.9 6.35
[Bmim][Cl] C8H15N2Cl 268.57 2.538 0.951
[Bmim]+ C8H15N2 167 1.580 0.94

aThe neutron scattering length, b, of each molecular component has been computed by summing up together the coherent neutron scattering
cross-sections of each chemical element in the component. The d54-DMPC:h-DMPC lipid mix SLDs are for the 9:1 lipid ratio used in this study.
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phase transition temperatures of TM = 24°C and TM = 20°C,
respectively. DMPC can also form a ripple phase, with a gel-to-
ripple phase transition temperature of TM′ = 14 °C.106,107 The
1-butyl-3-methylimidazolium chloride ([bmim][Cl]) ionic
liquid was purchased from IoLiTec, Germany, and used
without further purification. The CMC of this IL in water is 5
mol/L (hereafter indicated by M).52 D2O 99.9% was
purchased from Cambridge Isotope Laboratories (Andover,
MA). Table 1 reports the list of the materials used and some of
their properties relevant in this study, e.g., volume and
scattering length density (SLD).
The h- and d54-DMPC powders were mixed at the desired

ratio and co-dissolved in chloroform at a concentration of 20
mg/mL and dried under nitrogen gas flow and then under
vacuum for 1 h. D2O was added to the dried lipid films to
reach a concentration of 100 mg/mL. DMPC unilamellar
vesicles were prepared by extruding the lipid suspension
through a heated mini-extruder (Avanti Polar Lipids)
containing porous polycarbonate membranes with a pore
diameter of 100 nm a total of 21 times at 60 °C and were used
as “neat samples” following further dilution to 1 mg/mL. Two
different types of DMPC unilamellar vesicles were prepared:
(i) d54-DMPC in D2O to be used for the IL-doped cases and
(ii) d54-DMPC:h-DMPC (9:1 molar ratio) in D2O to be used
for the neat cases. For the “IL-doped samples”, [bmim][Cl]
was then added to reach a 0.1 M IL concentration, and the
samples were allowed to equilibrate for 1 h before use. The
samples were stored at 60 °C until the measurements. The
sample quality and stability were confirmed using dynamic
light scattering, which gave the same hydrodynamic radius for
neat and IL-doped samples. This is in line with a set of
previous studies showing that, below their CMC, ILs do not
alter the overall bilayer structure.52 These earlier investigations
include differential scanning calorimetry studies showing that,
at these concentrations, [bmim]-based ILs reduced the DMPC
main gel-to-fluid phase transition temperature by 1 to 2
degrees only.63,64

SANS measurements were performed using the NGB 30 m
SANS instrument at NIST Center for Neutron Research.108

The scattering vector range of 0.002 Å−1 < Q < 0.4 Å−1 was

covered, in which ( )Q sin4
2

= π
λ

θ , where λ and θ are the

incident neutron wavelength and scattering angle, respectively.
To do so, the incoming neutron wavelength was fixed to 6 Å
(wavelength spread of 13.8%), and data were collected at three
different sample-to-detector distances, i.e., 1, 4, and 13 m. The
samples were contained in 1 mm path-length quartz cells and
were measured at four temperatures in the range of 10−40 °C.
The temperature was controlled with a recirculation bath with
an accuracy of 0.1 °C. Data reduction was performed using the
Igor Pro reduction macros supplied by NIST to correct for
detector sensitivity, instrumental background, empty cell
scattering, sample transmission, and solvent background,
providing 1D I(Q) vs Q SANS profiles.109 Data analysis was
performed with the SasView software package.110

■ RESULTS AND DISCUSSION

Results. Taking advantage of the neutron scattering
contrast in our samples, the unilamellar lipid vesicles were
modeled using a form factor for polydisperse sphere with a
core and three shells containing (i) a D2O polydisperse core,
(ii) an inner lipid head layer, (iii) a lipid tails double layer, and
(iv) an outer lipid head layer exposed to the solvent, as

sketched in Figure 1. The scattering intensity from dilute
vesicles using a polycore three-shell model is given by111
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where A is the scaling factor; bkg is the constant incoherent
background; and Vi, di, and ρi are the volume, thickness, and
scattering length density (SLD) of the core and the three
shells, respectively.
The data were fit by eq 1, and the thicknesses of both outer

and inner head regions and of the tail region of the bilayer
were fixed to well-accepted values. More specifically, (i) for the
fluid phase conditions (i.e., T = 30 and 40 °C), the thickness
measured in our previous neutron reflectometry experiments
on supported neat DMPC lipid bilayer61 was used for T = 30
°C and accordingly corrected to take into account the thermal
expansion of the lipids at T = 40 °C;112 these values were also
in good agreement with other literature values;113 (ii) for the
gel and ripple conditions (i.e., T = 10 and 15 °C), other
literature values114,115 were used to take into proper account
the effect of the temperature. These values are given in Table
2. In the fits of the IL-doped cases, the thicknesses of the
headgroup and tail regions of the bilayer were fixed to the neat-
case values. This choice was motivated by the fact that the few
angstrom variations in the bilayer thickness measured on the
same system in our previous neutron reflectometry experi-
ments could not be resolved in the SANS data;61 this
assumption, however, may not be valid for other lipids and
ILs.116 To take into account that the vesicle radius was not the
same across the whole vesicle population, we have performed
our fits by convoluting eq 1 with a Gaussian distribution of
vesicle radii. This has been done in practice by incorporating a
core radius polydispersity ratio, which was 0.3 for all of the fits
and in line with previous SANS studies. Figure 2 shows the
experimental data along with the associated fits for all of the
measured conditions. By simply looking at the figure, a
difference between neat and IL-doped systems was clearly

Figure 1. Cartoon of an IL-doped lipid bilayer, with ILs in red and
lipids in green. The system has been modeled with a core multishell
model, where the bilayer structure was described by three shells
corresponding to (i) outer lipid headgroups, (ii) lipid tails, and (iii)
inner lipid headgroups. To determine the IL absorption with
reasonably good accuracy, the experiment was designed to have a
high neutron scattering contrast between ILs and lipids in the lipid tail
region.
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visible at all of the measured temperatures, meaning that there
was a measurable effect of the IL on the lipid bilayer
composition.
The fit results are reported in Table 2 for both the neat and

IL-doped samples at the four investigated temperatures. As
discussed above, the thicknesses of outer and inner lipid head
regions and of the tail region for the IL-doped samples were
fixed to the neat values. The rationale behind this choice is that
previous neutron scattering experiments,61 as well as computer
simulations62 have shown that low concentrations of the short-
tail [bmim][Cl] IL induce a small 1−3 Å decrease of the
bilayer thickness only, and this small decrease could not be
resolved within the resolution of the SANS data. As a result,
our analysis assumed that the bilayer thickness was not affected
by the ILs. The validity of this assumption was confirmed by
looking at the associated errors. The uncertainty on the overall

bilayer thickness did not change between the neat and
associated IL-doped samples, and its average across all samples
and conditions was 5 Å, which is a common uncertainty in
values extracted from modeling SANS data and of the same
order of thickness variation expected to be triggered by the
presence of ILs in the lipid bilayer.
Holding all thicknesses fixed at the neat values, the aim of

our SANS experiments was to measure the variation in the
SLDs of the lipid bilayer induced by the IL and quantify the
number of absorbed ILs. In doing so, we focused on the fit
values of the SLD of the tail region, as there was the greatest
neutron scattering contrast between the lipid tails and ILs, i.e.,
7.1 × 10−6 Å-2 vs 0.9 × 10−6 Å−2, respectively (Table 1). The
head region, contrarily, is highly influenced by the hydration
water and, for probing the effects of the IL in there, more
detailed modeling and additional data at different SLD

Table 2. Lipid Bilayer Structural Parameters Obtained by Fitting the SANS Data of Neat and IL-Doped DMPC Unilamellar
Vesicles at 10, 15, 30, and 40 °Ca

fit parameters neat 10 °C
IL-doped 10

°C neat 15 °C
IL-doped 15

°C neat 30 °C
IL-doped 30

°C neat 40 °C
IL-doped 40

°C

inner head layer thickness, t1 10* 10* 10* 10* 9.6* 9.6* 9.6* 9.6*
inner head layer SLD, SLD1 2.8 (0.3) 3.9 (0.2) 3.5 (0.3) 4.4 (0.3) 3.0 (0.8) 4.9 (0.4) 3.0 (0.8) 4.9 (0.6)
tail layer thickness, t2 34* 34* 34* 34* 29* 29* 28* 28*
tail layer SLD, SLD2 6.51 (0.05) 6.82 (0.05) 6.42 (0.04) 6.69 (0.04) 6.29 (0.05) 6.54 (0.03) 6.29 (0.05) 6.5 (0.03)
outer head layer thickness, t3 10* 10* 10* 10* 9.6* 9.6* 9.6* 9.6*
outer head layer SLD, SLD3 3.0 (0.3) 4.3 (0.2) 3.7 (0.3) 5.0 (0.2) 3.4 (0.9) 5.1 (0.4) 3.4 (0.9) 4.9 (0.5)
χ2/N 1.5 1.1 1.5 1.0 1.7 1.5 1.5 1.5
aThe uncertainties, reported in parentheses, are standard deviations. The “stars” represent parameters that were fixed to the literature value during
the analysis. All of the lengths are in Å, and the SLD are in 10−6 Å−2. The core radius polydispersity ratio is 0.3 for all of the fits.

Figure 2. SANS data (circles) collected on neat (green) and IL-doped (red) tail-deuterated DMPC lipid vesicles at (a) 10 °C, (b) 15 °C, (c) 30
°C, and (b) 40 °C together with the fitting curves obtained using the polydisperse core three-shell model of eq 1. Fit results are reported in Table 2.
The inset shows the zoomed view of the 0.04−0.2 Å−1 Q-range region. Error bars represent one standard deviation.
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contrasts would be needed. By looking at the results of the
fitting reported in Table 2, it is possible to conclude that the
presence of the IL altered the SLD of the lipid tail region in a
measurable manner at all of the investigated temperatures.
Since the [Cl]− anion was neither properly resolved by SANS
nor was it expected to be able to penetrate the lipid tail
hydrophobic region (due to its high coordination with water
molecules), the observed variation in the SLD was attributed
to the presence of IL cations in this region. The rationale was
as follows. In the neat case, the lipid tail region only contained
the lipid tails and was described by the “neat” SLD. If IL
cations diffused into the lipid tail region, the scattering length
density contrast of this region would change depending on the
relative amounts of IL cations and lipids. As a result, (i) by
computing the volume of the lipid tail region from the
associated SLD measured for the neat sample and (ii) by
assuming the additivity of lipid and IL volumes (i.e., the ideal
mixing approximation), the number of IL cations absorbed in
the lipid region was computed from the SLD of the lipid tail
region measured for the IL-doped sample. The changes in the
SLD accounted for approximately three and four IL cations
every 10 lipids at 10 and 40 °C, respectively (Figure 3 and
Table 3).

Discussion. The absorption of IL cations into lipid bilayers
has been reported in a few earlier experimental and
computational studies; however, these studies have been

primarily focused on lipid bilayers in their fluid phase. Notably,
our SANS results of the fluid phase (i.e., 30 and 40 °C) are in
good agreement with these earlier studies, including our own
previous investigations performed by neutron reflectivity61 and
by full-atom molecular dynamics simulations.62 However, to
the best of our knowledge, neither the IL absorption in lipid
bilayers in their gel phase nor its temperature dependence have
been investigated. The temperature range used in our SANS
investigation here presented has been chosen to cover gel,
ripple, and fluid phases of the DMPC lipid bilayers, with the
aim to allow us to shed light on both IL absorption in gel-
phase lipid bilayers and its temperature dependence. From
Figure 3, it is possible to conclude that the IL cations are also
absorbed in the gel and ripple bilayer phases. This is the first
major result of our SANS study. This is in agreement with two
recent studies showing that ILs can affect lipid bilayer
properties also in their gel thermotropic phase.116,117

The second major result is the temperature dependence of
the IL absorption within the fluid phase. Even though the error
bars are large, the trend in Figure 3 suggests that the number of
IL cations absorbed in the lipid region increases with
increasing temperature. Since the effect of IL on lipid bilayer
properties (e.g., on bilayer elasticity) is expected to be
positively correlated with the number of ILs absorbed in the
lipid phase, this trend suggests that the IL-induced effects will
be positively correlated with the system temperature. This is in
agreement with a neutron spin-echo (NSE) study we have
recently carried out on DMPC lipid vesicles doped with the
[bmim][Cl] IL.66 In this NSE study, it was shown that the IL
increased the bending rigidity of the lipid vesicles and that this
increment increased with temperature. In light of the SANS
results presented here, we can now link the bilayer bending
rigidity increase with the temperature observed earlier by
NSE66 to an increase in the number of ILs diffused into the
lipid region with the temperature. More generally, if the
temperature dependence of IL absorption in Figure 3 is also
seen for other lipid and IL combinations, varying the
temperature can offer a good handle to control the IL
absorption and, in turn, the effect of IL on biomembranes.
One possible reason behind this observed behavior is that

there is an entropic contribution to the system free energy,
favoring the configuration in which the IL cation is inserted
into the lipid region rather than the configuration which is fully
exposed to the solvent. Even though the configuration with the
IL cation placed in the lipid region would appear the most
ordered configuration, the associated overall entropy of the
system could still be higher in this configuration than in the
less ordered configuration in which the IL cation is in the
solvent. In this case, the source of entropy could come from
the water molecules forming the IL hydration shells. More
specifically, while in solution, the IL is surrounded by water
molecules forming its hydration layer, and the removal of these
water molecules increases the overall entropy of the system
(Figure 4). In summary, the temperature dependence of the IL
absorption into the lipid bilayer in its fluid phase reported in
Figure 3 could be driven by the IL hydration water entropy
gain, as similarly observed for several other biophysical
processes, including tubulin polymerization and protein
fibrillation.118−122

■ CONCLUSIONS AND REMARKS FOR THE FUTURE
To summarize, the absorption of a model IL, [bmim][Cl], in
unilamellar DMPC lipid vesicles was successfully studied by

Figure 3. Number of IL cations per 10 lipids absorbed in the lipid
bilayer as a function of the temperature, across gel, ripple, and fluid
lipid phases.

Table 3. Number of [bmim]+ IL Cations Absorbed in the
DMPC Lipid Bilayer at Different Temperatures Covering
Gel, Ripple, and Fluid Lipid Bilayer Phasesa

temperature (°C) lipid phase IL cations/10 lipids

10 gel 3.4 (0.5)
15 ripple 3.7 (0.5)
30 fluid 4.0 (0.5)
40 fluid 4.3 (0.5)

aThe uncertainties are reported in parentheses and represent one
standard deviation.
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means of SANS at a few selected temperatures, chosen to cover
the gel, ripple, and fluid phases of the lipid vesicles. The results
showed that (i) the IL cations were absorbed in the lipid
bilayer also in its gel and ripple phases and (ii) the number of
ILs inserted into the lipid phase increased with increasing
temperature, changing from three to four IL cations for each
10 lipids at 10 and 40 °C, respectively. Tentatively, an
explicative hypothesis based on the entropy gain from the IL
hydration water was suggested to explain the observed
temperature trend in the fluid phase, which needs further
studies to be corroborated. The ability to control IL absorption
with temperature can be used as a handle to tune the effects of
ILs on biomembranes, for example, on their mechanoelastic
properties,45,66 and can be exploited in bio-nanotechnological
applications.35

SANS proves to be a powerful technique for the study of IL
absorption in lipid bilayers. Future studies quantifying IL
absorption should focus on different lipids and ILs. As far as
ILs are concerned, [Cnmim]-based ILs would offer the
possibility to study the effects of IL chain length on the IL
absorption. Other studies should focus on the effects of the IL
anion and consider magnetic ILs123,124 and ILs based on amino
acids,125 both of interest in bio-nanotechnology. On the lipid
side, zwitterionic, charged, saturated, and unsaturated lipids of
different chain lengths as well as ionizable lipids126 should be
considered. In parallel to temperature dependence, future
studies should consider the effect of the IL concentration in
solution on IL absorption in the bilayer, from which the mixing
free energy can be also computed. Moreover, the effect of IL
water nanodomains should be also taken into account.127
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