
A Digital Twin Implementation Architecture for Wire + Arc Additive 

Manufacturing based on ISO 23247 

 
Duck Bong Kim 1, Guodong Shao 2, Guejong Jo 3  

 
1 Department of Manufacturing and Engineering Technology, Tennessee Technological University, Cookeville, TN 38505, USA  

2 Systems Integration Division Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 

20877, USA 
3 UVC Co Ltd, Simin-daero 248beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14067, Republic of Korea 

 

Abstract 

Digital twin (DT) is an enabling technology characterized by integrating cyber and physical spaces. It is well-fitted to 

additive manufacturing (AM) since it can benefit from digitalized assets and data analytics for the process control. 

Wire + arc additive manufacturing (WAAM) is being increasingly recognized, due to its fabrication of large-scale 

parts. Although many DT applications have been implemented in different industries, the applications for WAAM 

are unexplored. This paper proposes a generalized DT implementation architecture for WAAM based on ISO 23247 

to address integration and interoperability issues. A case study of machine learning-based anomaly detection for 

WAAM is peformed. 
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1 Introduction 

As a large-scale, metal additive manufacturing (AM) process, wire + arc additive manufacturing (WAAM) consists of 

wire as the feedstock, a welding arc as the energy source, and robot arms or a computer numerical control (CNC) 

router for the movement. WAAM has the advantages of inexpensive initial setup, high deposition rates, and cost-

efficient fabrication [1]. However, WAAM suffers from inherent uncertainties and complexities related to non-

equilibrium thermal cycles caused by the layer-upon-layer nature of the process, which is similar to other metal AM 

processes [2]. Defects (e.g., voids and cracks) and unwanted features (e.g., heterogeneous microstructures) can 

deteriorate mechanical properties and surface roughness.  

 

The AM community has been seeking viable solutions to these problems based on the digital twin (DT) concept [3]. 

The idea is to embed the knowledge gained from advanced sensor technologies into DTs to monitor and control 

WAAM operations. DT can be used to respond to variabilities that impact process repeatability, part reproducibility, 

and quality assurance [4]. Definitions of DT have been provided by NASA [5] and other researchers [6-8]. In this 

paper, we adopted the one defined by ISO for “Digital twin in manufacturing” as “a fit-for-purpose digital 

representation of an observable manufacturing element (OME) with synchronization between the OME and its 

digital representation [9].” In this context, OMEs are WAAM-related equipment and products. The digital 

representations are physics-based and data-driven models and simulations to help make adaptive and responsive 

control decisions. 

 

Considering the means of digital representation, data analytics (e.g., physics-based, data-driven, and physics-

informed data-driven modeling) have become effective tools for implementing the digital twin concept  with two 

reasons [10,11]. First, the increasing availability of cost-effective and accurate sensing technologies (e.g., machine 

vision) that can be easily integrated into production plants has facilitated process monitoring and control [12]. 

Second, the advances in computing capabilities have made real-time/remote data analysis more feasible. DT can 



address the WAAM complexities, inherent uncertainties, instabilities, and defects through data analytics by enabling 

real-time analysis and control of the process. However, two obstacles need to be addressed. First, performing 

multidisciplinary modeling and simulation requires iterative analyses based on a vast, structural-and-material, 

design-space exploration. In addition, the abundance of process parameters demands an exponentially increasing 

number of input data samples, called the “curse of dimensionality”. Second, implementing a DT for the WAAM 

process and parts involves integrating multiple systems across different platforms, the interoperability issues [3].  

 

An approach to reducing the large computational effort in physics-based modeling is to use an inexpensive but less 

accurate model, called a surrogate model. Various surrogate modeling techniques can be applied, such as polynomial 

chaos models, Kriging (or Gaussian process), and neural networks [13], resulting in the interoperability issues. In 

order to address them, a system architecture that enables the use of appropriate technologies and standards is 

necessary. Building a bridge by creating a DT will reduce the number of trial-and-error tests, mitigate defects, reduce 

the time between the design and production, and make manufacturing metallic products cost-effective.  

 

In this paper, a DT implementation architecture for WAAM is proposed based on ISO 23247 and the digital thread 

concept [14,15]. It aims to enable manufacturers to leverage DTs for real-time decision-making and control of the 

WAAM process. It provides a means to navigate the complex set of standards, technologies, and procedures that 

can support the implementations. The architecture is designed to be generic, reusable, and customizable 

irrespective of implementation to support relevant AM use cases. The remainder of this paper is organized as 

follows. Section 2 introduces the proposed DT implementation architecture. Section 3 demonstrates our case study 

based on the architecture: anomaly detection in the WAAM process. Section 4 presents the discussion and 

conclusion. 

 

2 DT Implementation Architecture for WAAM 

Figure 1 shows the proposed DT implementation 

architecture for WAAM processes. It includes features 

required by DTs, such as connectivity, adaptability, 

predictability, intelligence, real-time process 

monitoring and control, and humans-in-the-loop [16]. 

It consists of a digital twin (DT) and a physical twin (PT). 

Each layer has one or multiple entities, each comprises 

sub-entities, and the sub-entities are made from 

modules. The entities are the observable 

manufacturing elements (OME), data collection and 

device control entity (DCDCE), core entity (CE), and 

user entity (UE). The proposed architecture allows 

users to (1) represent the characteristics and real-time 

status of the WAAM process, (2) monitor and control 

using data analytics , and (3) collect and transfer the 

shop floor data to provide efficient decision-making 

support.  

 

The flow of information in this architecture is as 

follows. The data from the WAAM setup, including the 

process and part signatures, are acquired through 

sensors and test equipment. After being identified and 

pre-processed in the data collection sub-entity, they 

are fed to the part and process sub-entity. This data 

   

    

           
       

         

     
         

            
         

          
          

         
          

  

             

          
         

             
        

          
            

          
        

           
     

         
       

    
        

        

        
        

     
            
             

      
        

      
        

      
           

         
        

      
          

  
                      

          
          
        

        

                       

                       

 
 
 
   

   
 

 
   

 
 
      
 
   

                                         
                                        

                          

                 

                 

                          

           

         

 
 
       
  

  
 
         

  

Figure 1  Digital twin implementation architecture for  a 
WAAM process. 



can be geometrical, mechanical properties, and one-dimensional (1D), 2D, and 3D signatures. In the edge computing 

environment, different data processing can occur. If required, extra processing on the data can be performed in 

other computing environments, such as fog and cloud, where the data will be used by cloud- or edge-based users 

for decision-making based on models and simulations. The information flow is bi-directional throughout the entire 

architecture to enable real-time process monitoring and control. The PT and DT layers, their entities, and sub-entities 

will be discussed in the following subsections. 

 
2.1 Physical Twin 

The PT layer consists of the OMEs composed of the WAAM experimental setup and four sub-entities that support 

data collection (i.e., (1) sensors and signatures and (2) parts and test equipment) and device control (i.e., actuators 

and radio frequency identification (RFID) tags). The sensors can be (1) built-in (e.g., power measurement and the 

position tracking systems for a robot) and (2) attached ones (e.g., a pyrometer, a high  dynamic range (HDR) camera, 

a thermocouple, and voltage/current). In addition, the OMEs in the WAAM setup are responsible for carrying out 

the tasks and transmitting the real-time data to the DCDCE entity. This real-time communication will enable the 

detection of failures to be corrected or compensated for by changing and sending additional process-parameter 

commands in a timely manner, i.e., as the parts are being produced in a closed-loop control system structure.  

 

2.2 Digital Twin 

The DT layer consists of three entities, i.e., DCDCE, CE, and UE. The DCDCE comprises three sub-entities: data 

collection, signatures (part, process), and device control. In the data collection sub-entity, the collected data is pre-

processed. This may include data augmentation, classification, feature extraction, data cleansing, data integration, 

and data reduction. The signatures (part, process) sub-entity includes modules for geometrical accuracy, 

microstructure, and mechanical properties of the manufactured part. The form of signatures can be (1) 1D, such as 

current and voltage, (2) 2D, such as the data extracted from an HDR camera, and (3) 3D, such as the data from a 

coordinate measuring machine (CMM). The device control sub-entity includes data identification and process control 

modules.  

 

The second and most influential entity is CE, which is responsible for the overall operation and management of DT 
in WAAM. It consists of three computing environments: edge, fog, and cloud. The edge computing environment has 
six main modules to help represent the OMEs: (1) Visualization of the process can be used to avoid a collision or 
unwanted robot movements. (2) Simulation approaches (e.g., Kinetic Monte Carlo (KMC), and Crystal Plasticity Finite 
Element Modeling (CPFEM)) can be used to understand the underlying physics and simulate the process. (3) 
Surrogate models, simpler versions of the process that mimic the mechanisms of complex models, can be used to 
reduce the time required for computation and decision-making. Using the design of experiment (DOE) and machine 
learning (ML)-based surrogate modeling, the AM community has characterized the relationships among process-
structure-property-performance. But identifying these relationships is highly challenging due to the cost of obtaining 
sufficient data. To address this issue, physics-informed, data-driven WAAM models, which focus on the mechanical 
behavior of the parts, are used to derive a near-optimal design strategy and optimize the WAAM performance. (4) 
Information model is also employed to organize the flow of information, (5) diagnosis and prognosis, and (6) decision 
support that enables process alteration based on execution results of simulations and models. The fog computing 
environment, a means of secure communication between the edge and cloud computing environments, includes 
three modules: (1) user authentication/authorization, (2) message encoding that can be performed to limit the 
information access to specific users, and (3) database. The cloud computing environment comprises four different 
modules: (1) big data analysis enhances the accuracy of the modeling and simulation, e.g., in data-driven surrogate 
models, transfer learning can be used to train the models in a source domain and use it in a target, preferably related, 
domain; (2) remote monitoring and control enable process alteration and observation from remote locations; (3) 
model enhancement can also be performed; and (4) cloud databases can also be generated for future applications. 
 



The last entity in the proposed hierarchical architecture is UE, where various human and system interactions can 
occur. In the UE, the interaction can be either on the cloud or edge. Technicians, shop floor managers, operators on 
the edge, and designers, planners, and managers on the cloud can use the processed data received from computing 
environments to send control commands. These commands can update process parameters such as current and 
voltage to obtain near-optimal part properties and process signatures. These include better surface roughness, 
fewer defects, higher mechanical performance, and geometrical accuracy.  
 

3 Application scenario: real-time anomaly detection for WAAM 

The proposed architecture can be employed for real-time anomaly detection to improve process repeatability, part 

reproducibility, and model interoperability in WAAM, as shown in Figure 2. In this application scenario, the 

communications are based on Open Platform Communications United Architecture (OPC UA). It is embodied based 

on the server-client concept, where the server publishes, and the client subscribes to data content. In terms of 

information, the structure consists of an address space model, base information model, domain-specific information 

model, and data layers. 

 

The sensors are used to acquire voltage and current data from the process, and cameras are employed to collect 

HDR and thermal images from the experimental setup [17]. The data from WAAM parts are also extracted using the 

tensile test and CMM. The DCDCE entity receives the process and part signatures, including 1D data including current 

and voltage, 2D including HDR and thermal images, and 3D data including CMM and surface roughness data. In 

addition, test data such as the strain-stress curve is provided to this entity. These data are correlated to the nodes 

in the address space of OPC UA data and grouped with their corresponding components in the information model 

on the servers. When other clients require data, the server encodes it into standardized messages (e.g., Binary or 

XML) and sends them to the clients.  

 

The OPC UA data is then pre-processed, and the convolutional neural network (CNN)-based, real-time anomaly 

detection and prediction DTs are generated. Then 

employing the standard approach defined in [9] and 

demonstrated in [17], the model is converted to 

DeepNetwork Predictive Model Markup Language 

(PMML) file format. The data will be fed into the server 

through the transport mechanism, where the model is 

converted to an OPC UA object and stored in a model 

repository [18]. Online analysis is performed to check any 

abnormality; if needed, the correction-process 

parameters will be obtained and fed back to the OME.  

 

The approach used in this study is compared to other 

approaches [6,19] that have not used OPC UA and PMML 

for digital twin implementations in Table 1. OPC UA 

addresses the interoperability and data sharing issues of 

integrating the models and information in different 

platforms since it is known as a cross-platform, open-

source standard for data exchange. It is designed as a 

real-time communication standard that provides open, 

deterministic, real-time communication between 

automation systems, enabling real-time anomaly 

detection. Since it is a client-server-based 

communication secured through user authentication and 

authorization, it can ensure data security. In addition, 

Figure 2. Flowchart of anomaly detection and process 
control in WAAM based on PMML and OPC UA. 



PMML provides analytic applications to describe and exchange predictive models produced by data mining and 

machine learning algorithms. It supports common models such as logistic regression and feedforward neural 

networks. 

 
Table 1. Comparisons between the proposed approach and the other approaches. 

Criteria Proposed approach Other approaches 

Interoperability OPC UA enables better integration of 

different platforms.  

May need a customized interface for model 

transactions on different platforms. 

Real-time 
Anomaly 
Detection 

OPC UA allows near real-time use of the as-

processed data to detect anomalies and 

address them a timely manner. 

Anomaly detection can only be done by a 

predictive model developed using historical 

datasets. 

Data Sharing Seamless data sharing through OPC UA data 

transfer and PMML model sharing. 

May need to develop customized system 

interfaces. 

Security Vulnerabilities need to be analyzed, and 

new risk mitigation strategies are required. 

Vulnerabilities and risk mitigation strategies 

are well-defined. 

 

4 Summary  

In this paper, a generalized DT implementation architecture for WAAM is proposed based on ISO 23247 and the 

digital thread concept. The implementation architecture will enable manufacturers to leverage DTs for real-time 

decision-making and control of WAAM applications. It also provides the means to navigate the complex set of 

standards, technologies, and procedures that can be used for digital twin implementations. A case study for real-

time anomaly detection was also performed to demonstrate the applicability of the proposed architecture. In the 

near future, a practical case study will be performed, based on this architecture.   
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