
Generating Cyber-Physical System Risk Overlays for Atack and
Fault Trees using Systems Theory

Matthew Jablonski, Duminda Wijesekera
George Mason University

Fairfax, VA, USA
mjablons@gmu.edu,dwijesek@gmu.edu

ABSTRACT
We describe a formalized systems theoretic method for creating
cyber-physical system (CPS) risk overlays that augment existing
tree-based models used in CPS risk and threat analysis processes.
This top-down approach objectively scopes the system’s threat
surface for some risk scenario consequence by analyzing its under-
lying control attributes and communication fows between relevant
internal hardware and software sub-components. The resulting
analysis should assist with the qualitative selection of causal events
when utilizing attack and fault tree models, which have tradition-
ally conducted this event selection using subjective and bottom-up
methods. Objectively scoping the tree-based model analysis using a
proven systems theoretic approach should also improve defensive
and safety planning during the system development life cycle. We
provide a control system case study using attack-defense trees and
show how this approach may also be reduced to attack trees, fault
trees, and attack-fault trees.

ACM Reference Format:
Matthew Jablonski, Duminda Wijesekera and Anoop Singhal. 2022. Gen-
erating Cyber-Physical System Risk Overlays for Attack and Fault Trees
using Systems Theory. In Proceedings of the 2022 ACM Workshop on Secu-
rity and Trustworthy Cyber-Physical Systems (SaT-CPS ’22), April 27, 2022,
Baltimore, MD, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/3510547.3517922

An incident occurring in a cyber-physical system (CPS) may be
due to a fault, a complex series of logical or physical failures, or an
intentional disruption or control alteration that afects the safety
ensured by the physical components. Safety and security experts
manage these risk scenarios by analyzing the possible chains of
events that lead to such failures and constraining the system’s
behaviors through standard-based design and other best practices.

Tree-based risk models, such as fault trees [16], attack trees [11,
12], and attack-defense trees [1, 3, 4, 6, 7], are modeling tools used
to qualitatively and quantitatively assess CPS risks. These tools
take input from the system’s architecture along with data from
safety and security standards and frameworks to produce an output
graph of possible issues that may arise for further analysis. The
benefts from the analyzed output are due to the simplistic relational
view of possible issues that experts may use in risk management

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SaT-CPS ’22, April 27, 2022, Baltimore, MD, USA.
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9229-7/22/04.
https://doi.org/10.1145/3510547.3517922

Anoop Singhal
National Institute of Standards and Technology

Gaithersburg, MD, USA
anoop.singhal@nist.gov

planning. They also have a variety of well-researched methods for
quantitative analysis of risk.

A general problem with these models recognized in systems the-
ory is that although they are useful in relating identifed events that
realize some risk, they provide little guidance for event selection [9].
They do not provide a comprehensive approach in identifying paths
that some threat actor(s) may take to realize a given consequence
within a complex system. As such, event selection by analysts is
subjective and prone to human error or bias due to their limited
experience.

In practice, CPS issues arise due to the related complexities of
having multiple control systems synchronized at diferent levels
of granularity within the overall system. As these systems control
networked physical equipment, diferent events may result in sim-
ilar impacts to the functioning state of the system and/or other
physical efects. Such a state change may be considered intentional
(through attacks) or accidental (through faults) which are respec-
tively handled as security or safety risks or some combination. In
addition, humans-in-the-loop involvements may create additional
paths in terms of errors and delays. Tree-based risk models may be
used to identify and analyze these complex event relationships if
an objective approach is frst taken to properly scope their analysis.

We address these shortcomings in tree-based risk models by
adapting a system theoretic approach to frame the search space
within a system for event selection. To meet this objective, our
approach may be described in three steps: (1) Utilize Systems Theo-
retic Process Analysis (STPA [15]) to identify the operational space
of undesirable activity of a CPS system by combining attack sur-
faces with the space of safety- and reliability-related faults, which
we term a threat surface. (2) Identify Potential Hazardous Control
Action (PHCA) attributes to select tactically relevant events. (3) Use
a top-down construction method to convert the threat surface to
paths within a tree-based risk model, which we term a CPS risk
overlay.

A high-level visualization of our approach is shown in Figure 1.
Here, we take some generic CPS, analyze its threat surface through
a systems theoretic approach, and generate a CPS risk overlay,
which may be further analyzed through a tree-based model to
identify and address faults and attacks. In this work, we formalize
our approach and demonstrate the application of a risk overlay
towards attack-defense trees. We provide a reduction method that
applies the attack-defense tree modifcations towards other tree-
based models, specifcally discussing attack trees, fault trees, and
attack-fault trees. We analyze an elevator control system as a case
study.

https://doi.org/10.1145/3510547.3517922
https://doi.org/10.1145/3510547.3517922
https://doi.org/10.1145/3510547.3517922
mailto:anoop.singhal@nist.gov

−

− −

−

−
−

Figure 1: Converting a CPS threat surface for some system-relevant consequence to a CPS risk overlay.

The rest of the paper is written as follows. Section 1 presents
related work. Section 2 describes the construction of our risk over-
lay, and Section 3 describes how attack-defense trees (ADTrees)
may be augmented to improve analysis when using risk overlays.
Section 4 shows our case study of applying the risk overlay method.
Section 5 concludes the paper.

1 RELATED WORK
Leveson et al.’s Systems Theoretic Process Analysis (STPA [10]) is
an accident causality model that uses a systems theoretic approach
to identify threats to control systems and is based on their work
on Systems-Theoretic Accident Model and Processes (STAMP [9]).
Originally intended for safety risk analysis, STPA was extended
to security risk analysis in STPA-Sec [17]. We utilize a formalized
STPA process, derived from [15], for identifying the threat surface
of a particular consequence and then construct a CPS risk overlay
for existing tree-based models. We formalize this method to describe
a repeatable and objective that may be adapted towards tree-based
risk models. Other methods, such as Consequence-Driven, Cyber-
Informed Engineering (CCE [2]), take a similar systems theoretic
top-down approach in system analysis for security research, and
we see our work as an augmentation that assist with the integration
of tree-based risk models within such approaches.

We leverage Kordy et al.’s ADTree model [7] as an example tree-
based model that facilitates the inclusion of defensive actions within
their qualitative and quantitative analysis. By assigning attribute
values to basic attacker and defense actions, ADTrees facilitate the
quantifcation of risk scenarios using bottom-up calculations [1].
Additional ADTree semantics and extensions introduced in litera-
ture include propositional semantics, those induced by De Morgan
lattices, multiset and equational semantics [7], semantic extensions
handling repetitions of node labels using twin and cloned nodes [3],
semantic extensions incorporating sequential conjunctions [4], and
the equivalence of ADTrees with two-player binary zero-sum exten-
sive form games [6]. To the best of our knowledge, no current work

applies systems theory and ADTree attributes to safety and secu-
rity risk analysis in CPSs, which we show through our augmented
model called CPS-ADTrees.

2 CONSTRUCTING A CPS RISK OVERLAY
We now describe the CPS risk overlay construction process for
a given risk scenario within a CPS. In the rest of paper uses the
general vector notations for an �-dimensional vector at time step � ,

→such that ���−
�, � =< ���0, � , . . . , ����−1, � >.

2.1 Consequence Identifcation
The events that we want to prevent are those that impact its busi-
ness or mission objectives [9], where each identifed consequence
may be the top node in a tree-based model, represented as ���� =
−→ →
�������� �������� . The vectors − are the top node’s attributes rep-

� �
resenting � notional output control actions that constitute the risk
scenario. We use these attributes to identify the related threat sur-
face.

2.2 Threat Surface Identifcation
We analyze the consequence of the chosen scenario by looking
for events that can be triggered by the system if the identifed
scenario were to occur. This search identifes the threat surface by
analyzing the data handling processes within system components

�������� and communication interfaces relative to −→ . The result of
�

this analysis is a subset of control loops, along with their internal
components and their attributes that are further analyzed and added
hierarchically as nodes of the CPS risk overlay.

2.2.1 Control Loop Components. We begin by defning component
and the attributes that change the state of a CPS. We model the
behavior of the ��ℎ component at the ��ℎ time step as an input-

→− −→ →output pair, �������, � = (���, �, � , ����, �, �). The vectors ��
−

�, �, �

and −→����, �, � represent � input and � output signals as attributes
associated with component � at time step � . These input and output
attributes constitute a part of the threat surface.

− − −
−

−

−

− −

− −

−

−
−

−

−

−

−

−

−

2.2.2 Communication Interfaces. The communication paths be-
tween the ��ℎ and ��ℎ component, for some �, � ∈ N, are formal-
ized using the (directional) binary predicate connected(Src,Des), as
∀�≤�, ∃ � ≤� : ��������� (����, �, � , ���, �, �).

This path defnition implies that the connectivity among compo-
nents are transitively closed under information and control fows.
Identifed paths also become a part of the threat surface. If � = �,
then the communication path may represent some internal process
communication included within the component threat surface. Oth-
erwise, components along paths (such as routers, hubs, or switches)
should be considered as another type of �������, � and as part of
the threat surface.

2.2.3 Controller Process Model. A controller is an �������, � , that
converts its inputs to outputs to manage the control loop. Irrespec-
tive of a human or digital controller, we model the ��ℎ controller
executing its ��ℎ time step as a six-tuple, where for some �, �, �, � ∈

→− −→ −−−→ −−−−−→
N, we have �����, � = (���, �, � , ����, �, � , �����, �, � , �������, �, � , → →
��� ��, � , �). Here,

−
����,�, � respectively represent � in-���, �, � and −

−−−→
put and � output values of the controller. The vector �����, �, �

contains the � internal process model values of the ��ℎ controller
that describe its context of the environment, which may be up-
dated. The vectors

−−−−−
������

→
�,�, � are the � components within the

��ℎ controller’s control loop, that provide input data or actuate the
physical process. All of these attribute vectors also constitute the
controller’s threat surface.

The remaining defnitions model how a controller makes the
decision to change the physical system state. The local control ob-
jective at time step � is ��� ��, � , which may be dynamically derived
from some global control objective. The input-output behavior of
the control loop during the ��ℎ time step is modeled as the response

−−−→ −→function � , where � (�����, �, � , ��� ��, �) = ����, �, � . The function
� abstracts traditional control functions such as those found in
a proportional–integral–derivative (PID) controller or in model
predictive control (MPC) [14].

2.3 Potential HCAs
Now we have the threat surface identifed as a collection of attribute
vectors that could be used by a threat actor to drive the system
state towards the consequence. Any action in this list is a Potential
Hazardous Control Action (PHCA), referred to as a Hazardous
Control Action (HCA) in [15]. Our objective here is to determine
subsets of actions that could lead to the undesirable consequence.

We model the ��ℎ PHCA for controller, �����, � , at time � as a four-
−−−→ −→tuple, �ℎ�����, �, � = (�����,�, � , ��� ��, � , ����, �, � , �����ℎ� (�)),

for some �, � ∈ N. Possible values for inputs and outputs are
mapped back to the control function � , and a PHCA may result if
this response is not provided in a timely manner, represented by
the function �����ℎ� (�), described as follows. Let ��� and ���� rep-
resent time steps when −���→

�, �, � is expected to be received versus
when it is actually received at the actuator. When �����ℎ� (�) = 1,
these moments are approximate enough to provide the response
in a timely manner, such that � = ���� and ��� ≈ ���� . Similarly,
�����ℎ� (�) = 0 if the signal is not provided at the expected time.

The PHCA model is a table entry mapping inputs and the control
objective to outputs along with �����ℎ� (�).

To summarize the utility of �����ℎ� (�), a PHCA may result ei-
ther when −→����, �, � is an improper response when provided in con-

−−−→
text �����, �, � with control objective ��� ��, � at time � , represented

by �����ℎ� (�) = 1. Or it could result when −���→
�, �, � is not provided

at the proper time given the same inputs, where �����ℎ� (�) = 0.

2.3.1 Control Loop Analysis. PHCAs within a controller are identi-
fed by analyzing the components within their control loop. We rep-
resent this control loop consequence analysis ������� for analyz-
ing the consequence, ���� , within controller �����, � as a four-tuple
where ������� = (����, ℎ�ℎ� (), ℎ��ℎ� (), ���ℎ� ()). The value
returned by the hazard check function ℎ�ℎ� (����, �ℎ�����, �, �)
is equal to 1 if and only if ���� results from the ��ℎ controller
executing −���→

�, �, � to satisfy � at time � . The value returned by
the untimely hazard check function ℎ��ℎ� (����, �ℎ�����, �, �)
is equal to 1 if and only if ���� results from the ��ℎ controller not
executing −���→

�, �, � to satisfy � at time � . The value returned by
the control loop check function ���ℎ� (�ℎ�����, �, �) is equal to 1

if and only if the ��ℎ controller is required to execute −���→
�, �, � to

satisfy � within the control loop at time � . This analysis may result
in 3 diferent scenarios for a PHCA:

(1) A PHCA is an HCA for ���� if its execution results in
ℎ�ℎ� () = 1 and ���ℎ� () = 0, which occurs when the action
represented by the PHCA results in ���� within an execution
of the control loop regardless the value of �����ℎ� (�).

(2) A PHCA may be an HCA if the execution results in ℎ��ℎ� () =
1 when �����ℎ� (�) = 0, indicating that proper timing is re-
quired for this action to be non-hazardous. Otherwise, if the
PHCA is executed at the proper time when �����ℎ� (�) = 1,
then ���ℎ� () = 1, and it may not be an HCA.

(3) Any PHCA where ℎ�ℎ� () = 0 and ℎ��ℎ� () = 0 is not
considered hazardous and results in ���ℎ� () = 1. These
control actions are not HCAs for ���� .

At the system level, we can use these checks to assure that ����
does not occur when all � controllers execute −→����, �, � by satisfying
their response functions � at time � . This assurance is due to limiting
each controller only to the actions resulting in ���ℎ� () = 1. The
analysis of PHCAs at the control loop and system level is the reason
we transform the hierarchical control loop and component structure
to a CPS risk overlay so that we may further identify and assess
events leading up to an HCA using a tree-based model.

2.4 CPS Risk Overlay Construction
Using the attributes identifed for the consequence and threat sur-
faces, we now construct the CPS risk overlay using the top-down
method in Algorithm 1, Construct_CPS_Risk_Overlay. The result-
ing CPS risk overlay qualitatively groups components by their
connected control loop communication structure.

Inputs to the algorithm include the analyzed consequence, ���� ,
−→

and the threat surface comprised of � controllers, ����� , as described
in lines 1 and 2. Line 3 describes the output as the constructed CPS
risk overlay, ������� . Line 4 sets ������� to the input conse-
quence node. Line 5 initiates a for-loop with counter � that steps

−

Algorithm 1 : Construct_CPS_Risk_Overlay 3.2 Overlaying CPS Attributes and Reduction to
1: //input: Cons = consequence for risk scenario

−−→
2: //input: ����� = vector of � controllers in system
3: //output: topNode = representative tree root for Cons
4: topNode ← Cons
5: for � = 0 to � − 1 do //Assume � controllers
6: topNode.add_OR(����� CL)
7: cLNode ← topNode.get_child(����� CL)
8: cLNode.add_OR(�����)
9: for � ������

→
�, � = 0 to � − 1 do //Assume

−−−−−−

10: //Add check for PHCA relation
11: cLNode.add_OR(�������, �)
12: //Add loop for comm paths, if desired
13: end for
14: end for

through each controller. Lines 6 and 7 adds the control loop to the
tree, named "����� CL", as a disjunctive child to the top node. Line 8
adds the controller ���� to the tree as a disjunctive child node to
the control loop. Line 9 through 13 initiates a for-loop with counter
� that steps through all � components that communicate with the
controller and adds each as a disjunctive child to the control loop. If
some check is added to determine if a component afects the PHCAs
associated with ���� , then line 10 notes we could add further pro-
cedures to conduct this check. If a communications path between
some components is identifed with the transitive closure property,
then line 12 notes that we could add further procedures to loop
through each intermediary communication node and add them as
threat surfaces. When the for-loop invoked in line 5 completes in
line 14, ������� represents the CPS risk overlay for consequence
���� .

3 CPS ATTACK-DEFENSE TREES
We now describe how to apply the CPS risk overlay to an ADTree
using node attributes as well as other tree-based models through
reduction.

3.1 Attack-Defense Tree Review
An ADTree is a tree consisting of nodes of partial instantiations of
attributes with a label (AND, OR, SAND = sequential AND), name,
and a type (either proponent or opponent). The type of the root
node is referred to as the model’s proponent and models a desirable
or an undesirable scenario regarding a state of the system. The root
node may be either an attack node or a defense node. The opposite
type represents the opponent. A node in the ADTree can have one
child with the opposite type (representing a countermeasure) or
more than one child of the same type and a label. The children of
nodes labeled as AND, OR, or SAND represent refnements of their
parent. A node without refnements is called a basic action. Attack
nodes are typically shown as red circles and defense nodes as green
squares. The right hand side of Figure 1 shows an ADTree with only
attack nodes. The intermediate nodes are OR nodes refned with
children. Our case study show a more detailed ADTree in Figure 3.

Other Risk Models
A CPS-ADTree is an ADTree with additional attributes to model
both attacks and faults and their related countermeasures. To dif-
ferentiate between unintentional and attack-caused events within
CPS-ADTree models, we apply attributes to basic actions to de-
note them as being safety- or security-related. With this attribute
modifcations, CPS-ADTrees represent a two-person game focused
on causing or preventing some system state as defned by the risk
scenario. Our top-down construction method resulted in a CPS risk
overlay that may be applied to the CPS-ADTree. An example of
this risk overlay can be seen by the shaded threat nodes identi-
fed in the case study discussed in Section 4. The paths through
the risk overlay must be traversed by the threat to cause the con-
sequence. Each node may be further pruned, refned, or adjusted
per ADTree semantics. These refnements should derive and de-
fne possible threat paths and defensive countermeasures, applying
known threat modeling techniques, such as those found in MITRE
ATT&CK® [13], which identify known threats by tactics, tech-
niques, and procedures. These refnements allow for analysis to
plan realistic defensive strategies, if desired.

A CPS-ADTree may be reduced to a fault tree [16] / attack
tree [11, 12] if we prune subtrees consisting of only basic actions
with safety / security attributes along with all subtrees rooted in
defense nodes. Similarly, a CPS-ADTree may be reduced to an
attack-fault tree [8] by only pruning subtrees rooted in defense
nodes. A reduced tree represents all paths that leads to realizing
the risk scenario despite installed defensive measures. By using
these reductions one could apply use our CPS risk overlay to other
well-researched tree-based models. This reduction allows for struc-
turing trees according to their defnitions and would require no
additional changes to existing modeling tools to support the risk
overlay method, as the assessor would simply need to add the inter-
mediate control loop and sub-component nodes within these tools
when framing the tree.

4 CASE STUDY
We consider an elevator system situated in a high-trafc building
as a case study. Our example elevator services two foors and may
move up or down to the opposite foor based on the elevator’s
current position and the operator input to a control panel. Each
foor has a door that opens and closes for passengers, and the
elevator should only move to the opposite foor when both doors are
closed. It does not change direction during the upward or downward
journey, but it may stop for an emergency. The operator may only
press a button for the target foor and/or push a separate emergency
button to stop movement. The doors must only open once the
elevator stops moving and rests in the appropriate vertical position.
The doors may be opened manually if the elevator has performed
an emergency stop between foors. After some time, the doors will
close allowing the elevator to move to the opposite foor if some
user input is provided. Connections between the operator panel,
the elevator controller, and a separate controller for each door are
networked using the Modbus protocol over TCP/IP through wired
Ethernet connections on a standalone local area network (LAN). Our

Figure 2: An example HCS for the elevator system

Output Process Model Objective cLCons
Elevator

Movement
Motion Floor Door 1

Position
Door 2
Position

Target
Floor

hChk()=1 hNChk()=1 Unreach.|

0 Up moving 1 0 0 1 - Yes -
1 Up moving 1 0 (0,1] 1 Yes - -
2 Up moving 1 (0,1] 0 1 Yes - -
3 Up moving 1 (0,1] (0,1] 1 Yes - -
4 Up moving 1 0 0 2 - Yes -
5 Up moving 1 0 (0,1] 2 Yes - -
6 Up moving 1 (0,1] 0 2 Yes - -
7 Up moving 1 (0,1] (0,1] 2 Yes - -
8 Up moving (1,2) 0 0 1 - - Yes
9 Up moving (1,2) 0 (0,1] 1 - - Yes
10 Up moving (1,2) (0,1] 0 1 - - Yes
11 Up moving (1,2) (0,1] (0,1] 1 - - Yes

Table 1: A subset of PHCAs of the Elevator Controller

case study analyzes a potential risk scenario to this system because
of possible threats from the deployed system’s environment.

4.1 Identifying Consequences and Threat
Surfaces

The undesirable scenario we consider for this case study is the
event where the elevator moves with an open door. Thus, any de-
fensive measures should ensure the elevator only moves when the
doors are closed. Assuring or preventing this consequence would

involve considering threats against three identifed notional control
actions, to include Elevator Commands, Door 1 Commands, and Door
2 Commands that respectively move the elevator car or either door.

We conduct a review of the system architecture and determine
the notional control actions are handled by three control loops,
each respectively managed by an Elevator Controller, a Door 1 Con-
troller, and a Door 2 Controller. We generate a hierarchical control
structure (HCS [10]) to show these control loops, shown in Figure 2.
This HCS shows data fows for each numbered component and

includes their input and output signals. For example, (1) Elevator
Sensor provides an output signal representing the Floor value and
(2) Elevator Actuator receives an input signal representing the Ele-
vator Commands. The HCS also shows each controller’s inputs and
outputs, along with their internal process model variables and con-
trol objectives. Possible discrete values for all variables are included
in the HCS.

4.2 Analyzing Potential Hazardous Control
Actions

For the Elevator Controller and a Door Controller, we take dis-
cretized values of target variables deemed relevant to the conse-
quence. We then created a table of Potential Hazardous Control
Actions (PHCAs) and analyzed the discrete variable relationships
that would be of interest to a threat or defender.

In the case of the Elevator Controller, we identifed the following
variables and their discrete values to create a table of PHCAs: output
variable Elevator Commands = {Up, Down, Stop}; input variables
Motion = {moving, stopped}, Floor = {1, (1,2), 2}, Door 1 Position = {0,
(0,1]}, and Door 2 Position = {0, (0,1]}; and control objective Target
Floor = {1, 2}. The possible values resulted 144 possible system states,
32 of which we labeled as unreachable because the elevator could
not reach its control objective in the current state. As an example,
some nodes were labeled "not possible to move Up to Floor 1 from
another foor". Of the remaining 112 possible states, 42 of those
states (37.5 % of possible states) resulted in ℎ�ℎ� (�) = 1 as HCAs
because the elevator was moving while the doors were identifed
as open. Another 17 states (15.2 % of the possible states) resulted
in ℎ��ℎ� (�) = 1 because if the elevator did not move in a timely
manner while the doors were closed, it is possible that a door could
open simultaneously to lead to an HCA. Table 1 shows 12 example
HCAs from our analysis to provide some clarity as to how a small
subset of these target variables were analyzed.

For each Door Controller, we identifed output variable Door
Commands = {Open, Close, Stop}; input variables Motion = {moving,
stopped}, Floor = {1, (1,2), 2}, and Door Position = {0, (0,1]}; and
control object Target Position = {0, 1}, which resulted in 72 system
states. Of these states, 24 were unreachable because of reasons
such as "Open command issued while Target Position=0." Of the
remaining 48 possible states, there were 15 states (31.3 % of possible
states) HCAs resulting in ℎ�ℎ� (�) = 1 as the doors were opened
during elevator movement, and another 15 (again, 31.3 %) resulted
in ℎ��ℎ� (�) = 1 and may become an HCA if the elevator moved
while in that state.

If three constraints are imposed in the control logic we can elim-
inate all 42 ℎ�ℎ� (�) = 1 states in the elevator controller and 3 out
of 15 ℎ�ℎ� (�) = 1 states for the door controller. These constraints
are: (1) a reduction in latency should assure that the elevator’s
Motion ≠ moving when Elevator Command = Stop; (2) the Elevator
Controller should only allow movement if both doors are closed;
and (3) doors should not open when the elevator is moving. The
remaining 12 Door Controller ℎ�ℎ� (�) = 1 states could occur if
the doors were already opened when the elevator starts moving,
but ideally constraint (2) would also prevent these states. The Floor
and control objective (Target Floor or Target Position) variables for
each controller did not appear to efect event outcomes being in

ℎ�ℎ� (�) = 1, so we eliminate them as target attributes for this
example.

4.3 CPS Risk Overlay Construction
With the consequence, control threat surfaces, and target variable
attributes defned, we applied Algorithm 1 to generate the top
of the CPS ADTree. The results of applying this algorithm are
represented by the shaded nodes within Figure 3. The three control
loops that were previously identifed are disjointed children to the
consequence node, representing three distinct actions that could
lead to the consequence elevator moves when a door is open: (1)
Elevator Controller - the elevator itself moving when a door is
already open; (2) Door 1 Controller - the frst foor door opens
while the elevator is moving; or (3) Door 2 Controller - the second
foor door opens during movement.

4.4 Qualitative Analysis
With the CPS risk overlay and target information, we now identify
attacks, faults, and related defenses as events that may cause or
prevent the scenario and then fll in the CPS-ADTree to provide a
qualitative model of these relationships. We annotated each con-
trol loop node with target variable attributes to assist with event
selection. We apply safety- and security-related attributes to basic
actions, respectively represented in Figure 3 by a red cross or a
green shield. The resulting qualitative CPS-ADTree for this exam-
ple scenario is shown in Figure 3, which has 117 nodes outlining
attacks, faults, and countermeasures for the scenario. The events de-
picted within these nodes were selected as examples to highlight the
CPS risk overlay approach to identify the paths that failures must
traverse and may be further refned or countered using ADTree
semantics, if desired.

The CPS risk overlay does lead to many near-redundant paths
that result in diferent physical outcomes. For example, the Door
1 Controller and Door 2 Controller have similar threats and coun-
termeasures, as they consist of the same components in almost
the same environment. In Figure 3, we abstracted away the Door 1
Controller subtree for space, simply noting it is similar to the Door
2 controller. However, if a threat impacts the components of the
frst control loop instead of the second, then the efect could result
in a diferent door being opened.

As another security-related example, an attacker could target
the Elevator Controller by gaining LAN access, followed by either
gaining secure shell (SSH) access and then injecting commands or
by injecting Door Position data into Modbus trafc. Conversely, to
afect a Door Controller, the same attacker with the same access
could target a Door Controller by injecting Elevator Controller Mo-
tion data into its Modbus trafc. These subtleties in attack decisions
result in diferent physical outcomes but the same consequence.

For safety- and reliability-related issues, faults that occur within
a component could lead to similar outcomes. For example, the Ele-
vator Actuator could experience a brake failure that is countered by
annual inspection. A faulty brake may lead to latency in the time
between a Stop command action being issued and the elevator stop-
ping and could result in the consequence. Also, the Door Controllers
have fash memory components that are known to wear over time
due to excessive writes, which could corrupt stored variables.

Fi
gu

re
 3
: C

PS
-A

D
T
re
e
fo
r
th
e
el
ev

at
or

 s
ys
te
m
.

Finally, the top of the tree under the consequence, we have a
countermeasure named "Electronic door interlock". Interlocks have
been used as a safety mechanism in elevators for decades to ensure
that doors are locked shut before the elevator car moves, so this
node is a fnal defense mechanism against the other attack and
fault events. This countermeasure also provides an example that
shows how the CPS risk overlay may be refned or countered at any
level. It may also be countered during the system design process if
there are known attacks or faults that could impact its operation as
the electric door interlock component selection and integration are
further scrutinized.

4.5 Quantitative Analysis Discussion
The primary intent of this work was to provide a systems theo-
retic approach towards fnding possible threat surfaces associated
with a consequence and then constructing a CPS risk overlay to
assist with event identifcation. Our approach did not change the
inherited ADTree methods to quantify risk. If we were to proceed
with quantitative analysis for this case study, the resulting CPS-
ADTree could be assessed by assigning attributes such as costs and
conducting a bottom-up analysis, as described for ADTrees in [1].
We also described how ADTrees could be reduced to attack, fault,
or attack-fault trees, ensuring that the existing extensive research
towards quantitative risk evaluation methods with these models is
not changed by our approach.

In any case, the focus of tree-based quantitative analysis would
primarily be targeting control variables in the case where ℎ�ℎ� (�) =
1, resulting in some known bad system state within one of the con-
trol loops. Conversely, quantifying the adverse efects of states in
ℎ��ℎ� (�) = 1 should require additional use of a system model that
accounts for the time that system states occur. Such a system model
is necessary because ℎ��ℎ� (�) = 1 could result in the scenario if
an otherwise safe state in a control loop were to occur at the wrong
time. We leave this topic for future work.

5 CONCLUSION
In this work we provided a systems theoretic framework for synthe-
sizing a risk scenario to localized control decisions by converting
the threat surface to a CPS risk overlay. Our method addresses a
weakness of not having a system state-based description of tree-
based methods, which we overcome through the use of Potential
Hazardous Control Actions and control objectives. This approach
allowed us to focus on analyzing relevant events for only the com-
ponents that were objectively deemed within scope. We used a
case study to demonstrate how diferent decisions targeting similar
components could result in diferent physical results but the exact
same consequence.

Our approach adheres to our own practical attack research de-
tailed in [5] that demonstrated experimental attacks against electric
motor actuation from various locations within a control loop. Here,
we provide a method to augment tree-based models with those
fndings using systems theory to generate a CPS risk overlay using
a particular case study.

ACKNOWLEDGMENTS
This work was partially supported by the Commonwealth Cyber
Initiative (CCI), which invests in cyber research and development
innovation, and workforce development (cyberinitiative.org), the
Department of Energy’s Cyber Security for Manufacturing Automa-
tion Grant, the Cybersecurity Manufacturing Innovation Institute
(CyManII), and the National Institute of Standards and Technology
(NIST).

DISCLAIMER
Commercial products are identifed in order to adequately specify
certain procedures. In no such case does identifcation imply recom-
mendation or endorsement by the National Institute of Standards
and Technology, nor does it imply that the identifed products are
necessarily the best available for the purpose.

REFERENCES
[1] Alessandra Bagnato, Barbara Kordy, Per Håkon Meland, and Patrick Schweitzer.

2012. Attribute Decoration of Attack–Defense Trees. International journal of
secure software engineering 3, 2 (2012), 1–35.

[2] Andrew A Bochman and Sarah Freeman. 2021. Countering Cyber Sabotage:
Introducing Consequence-Driven, Cyber-Informed Engineering (CCE). Taylor &
Francis Group, Milton.

[3] Angèle Bossuat and Barbara Kordy. 2018. Evil Twins: Handling Repetitions in
Attack–Defense Trees: A Survival Guide. In Graphical Models for Security (Lecture
Notes in Computer Science). Springer International Publishing, Cham, 17–37.

[4] Jeremy Bryans, Hoang Nga Nguyen, and Siraj Ahmed Shaikh. 2019. Attack
Defense Trees with Sequential Conjunction. In 2019 IEEE 19th International
Symposium on High Assurance Systems Engineering (HASE). IEEE, Hangzhou,
China, 247–252. https://doi.org/10.1109/HASE.2019.00045

[5] Matthew Jablonski and Duminda Wijesekera (Eds.). 2019. Attacking electric
motors for fun and proft. BlackHat USA, Las Vegas.

[6] Barbara Kordy, Sjouke Mauw, Matthijs Melissen, and Patrick Schweitzer. 2010.
Attack–Defense Trees and Two-Player Binary Zero-Sum Extensive Form Games
Are Equivalent. In Decision and Game Theory for Security, Tansu Alpcan, Levente
Buttyán, and John S. Baras (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
245–256.

[7] Barbara Kordy, Sjouke Mauw, Saša Radomirović, and Patrick Schweitzer. 2012.
Attack-defense trees. Journal of logic and computation 24, 1 (2012), 55–87.

[8] Rajesh Kumar and Mariëlle Ida Antoinette Stoelinga. 2017. Quantitative security
and safety analysis with attack-fault trees. In Proceedings - IEEE International
Symposium on High-Assurance Systems Engineering. IEEE, Singapore, 25–32.

[9] Nancy G Leveson. 2012. Engineering a Safer World : Systems Thinking Applied to
Safety. The MIT Press, Cambridge.

[10] Nancy G. Leveson and John Thomas. 2018. STPA Handbook. Technical Report. De-
partment of Aeronautics and Astronautics, Massachusetts Institute of Technology,
Cambridge.

[11] Sjouke Mauw and Martijn Oostdijk. 2006. Foundations of attack trees. In Lecture
notes in computer science. Springer, Berlin, 186–198.

[12] Bruce Schneier. 1999. Attack Trees. Dr. Dobb’s Journal 24, 12 (December 1999),
21–29.

[13] Blake E. Strom, Joseph A. Battaglia, Michael S. Kemmerer, William Kupersanin,
Douglas P. Miller, Craig Wampler, Sean M. Whitley, and Ross D. Wolf. 2017. Find-
ing Cyber Threats with ATT&CK™-Based Analytics. Technical Report MTR170202.
The MITRE Corporation, Annapolis Junction, Maryland.

[14] William Y Svrcek, Donald P Mahoney, and Brent R Young. 2014. A real time
approach to process control (3rd ed ed.). Wiley, Somerset.

[15] John Thomas. 2012. Extending and automating a Systems-Theoretic hazard analysis
for requirements generation and analysis. Sandia National Laboratories (SNL),
Albuquerque, NM, and Livermore, CA (United States), United States.

[16] William E. Vesely, F. Goldberg, N. Roberts, and D. Haasl. 1981. Fault Tree Handbook.
Technical Report Document NUREG-0492. U.S. Nuclear Regulatory Commission,
Washington, DC.

[17] William Young and Nancy Leveson. 2013. Systems thinking for safety and security.
In Proceedings of the 29th Annual Computer Security Applications Conference
(ACSAC ’13). ACM, New Orleans, 1–8.

cyberinitiative.org
https://doi.org/10.1109/HASE.2019.00045

	Abstract
	1 Related Work
	2 Constructing a CPS Risk Overlay
	2.1 Consequence Identification
	2.2 Threat Surface Identification
	2.3 Potential HCAs
	2.4 CPS Risk Overlay Construction

	3 CPS Attack-Defense Trees
	3.1 Attack-Defense Tree Review
	3.2 Overlaying CPS Attributes and Reduction to Other Risk Models

	4 Case Study
	4.1 Identifying Consequences and Threat Surfaces
	4.2 Analyzing Potential Hazardous Control Actions
	4.3 CPS Risk Overlay Construction
	4.4 Qualitative Analysis
	4.5 Quantitative Analysis Discussion

	5 Conclusion
	Acknowledgments
	References

