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ABSTRACT 
We describe a formalized systems theoretic method for creating 
cyber-physical system (CPS) risk overlays that augment existing 
tree-based models used in CPS risk and threat analysis processes. 
This top-down approach objectively scopes the system’s threat 
surface for some risk scenario consequence by analyzing its under-
lying control attributes and communication fows between relevant 
internal hardware and software sub-components. The resulting 
analysis should assist with the qualitative selection of causal events 
when utilizing attack and fault tree models, which have tradition-
ally conducted this event selection using subjective and bottom-up 
methods. Objectively scoping the tree-based model analysis using a 
proven systems theoretic approach should also improve defensive 
and safety planning during the system development life cycle. We 
provide a control system case study using attack-defense trees and 
show how this approach may also be reduced to attack trees, fault 
trees, and attack-fault trees. 
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An incident occurring in a cyber-physical system (CPS) may be 
due to a fault, a complex series of logical or physical failures, or an 
intentional disruption or control alteration that afects the safety 
ensured by the physical components. Safety and security experts 
manage these risk scenarios by analyzing the possible chains of 
events that lead to such failures and constraining the system’s 
behaviors through standard-based design and other best practices. 

Tree-based risk models, such as fault trees [16], attack trees [11, 
12], and attack-defense trees [1, 3, 4, 6, 7], are modeling tools used 
to qualitatively and quantitatively assess CPS risks. These tools 
take input from the system’s architecture along with data from 
safety and security standards and frameworks to produce an output 
graph of possible issues that may arise for further analysis. The 
benefts from the analyzed output are due to the simplistic relational 
view of possible issues that experts may use in risk management 
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planning. They also have a variety of well-researched methods for 
quantitative analysis of risk. 

A general problem with these models recognized in systems the-
ory is that although they are useful in relating identifed events that 
realize some risk, they provide little guidance for event selection [9]. 
They do not provide a comprehensive approach in identifying paths 
that some threat actor(s) may take to realize a given consequence 
within a complex system. As such, event selection by analysts is 
subjective and prone to human error or bias due to their limited 
experience. 

In practice, CPS issues arise due to the related complexities of 
having multiple control systems synchronized at diferent levels 
of granularity within the overall system. As these systems control 
networked physical equipment, diferent events may result in sim-
ilar impacts to the functioning state of the system and/or other 
physical efects. Such a state change may be considered intentional 
(through attacks) or accidental (through faults) which are respec-
tively handled as security or safety risks or some combination. In 
addition, humans-in-the-loop involvements may create additional 
paths in terms of errors and delays. Tree-based risk models may be 
used to identify and analyze these complex event relationships if 
an objective approach is frst taken to properly scope their analysis. 

We address these shortcomings in tree-based risk models by 
adapting a system theoretic approach to frame the search space 
within a system for event selection. To meet this objective, our 
approach may be described in three steps: (1) Utilize Systems Theo-
retic Process Analysis (STPA [15]) to identify the operational space 
of undesirable activity of a CPS system by combining attack sur-
faces with the space of safety- and reliability-related faults, which 
we term a threat surface. (2) Identify Potential Hazardous Control 
Action (PHCA) attributes to select tactically relevant events. (3) Use 
a top-down construction method to convert the threat surface to 
paths within a tree-based risk model, which we term a CPS risk 
overlay. 

A high-level visualization of our approach is shown in Figure 1. 
Here, we take some generic CPS, analyze its threat surface through 
a systems theoretic approach, and generate a CPS risk overlay, 
which may be further analyzed through a tree-based model to 
identify and address faults and attacks. In this work, we formalize 
our approach and demonstrate the application of a risk overlay 
towards attack-defense trees. We provide a reduction method that 
applies the attack-defense tree modifcations towards other tree-
based models, specifcally discussing attack trees, fault trees, and 
attack-fault trees. We analyze an elevator control system as a case 
study. 
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Figure 1: Converting a CPS threat surface for some system-relevant consequence to a CPS risk overlay. 

The rest of the paper is written as follows. Section 1 presents 
related work. Section 2 describes the construction of our risk over-
lay, and Section 3 describes how attack-defense trees (ADTrees) 
may be augmented to improve analysis when using risk overlays. 
Section 4 shows our case study of applying the risk overlay method. 
Section 5 concludes the paper. 

1 RELATED WORK 
Leveson et al.’s Systems Theoretic Process Analysis (STPA [10]) is 
an accident causality model that uses a systems theoretic approach 
to identify threats to control systems and is based on their work 
on Systems-Theoretic Accident Model and Processes (STAMP [9]). 
Originally intended for safety risk analysis, STPA was extended 
to security risk analysis in STPA-Sec [17]. We utilize a formalized 
STPA process, derived from [15], for identifying the threat surface 
of a particular consequence and then construct a CPS risk overlay 
for existing tree-based models. We formalize this method to describe 
a repeatable and objective that may be adapted towards tree-based 
risk models. Other methods, such as Consequence-Driven, Cyber-
Informed Engineering (CCE [2]), take a similar systems theoretic 
top-down approach in system analysis for security research, and 
we see our work as an augmentation that assist with the integration 
of tree-based risk models within such approaches. 

We leverage Kordy et al.’s ADTree model [7] as an example tree-
based model that facilitates the inclusion of defensive actions within 
their qualitative and quantitative analysis. By assigning attribute 
values to basic attacker and defense actions, ADTrees facilitate the 
quantifcation of risk scenarios using bottom-up calculations [1]. 
Additional ADTree semantics and extensions introduced in litera-
ture include propositional semantics, those induced by De Morgan 
lattices, multiset and equational semantics [7], semantic extensions 
handling repetitions of node labels using twin and cloned nodes [3], 
semantic extensions incorporating sequential conjunctions [4], and 
the equivalence of ADTrees with two-player binary zero-sum exten-
sive form games [6]. To the best of our knowledge, no current work 

applies systems theory and ADTree attributes to safety and secu-
rity risk analysis in CPSs, which we show through our augmented 
model called CPS-ADTrees. 

2 CONSTRUCTING A CPS RISK OVERLAY 
We now describe the CPS risk overlay construction process for 
a given risk scenario within a CPS. In the rest of paper uses the 
general vector notations for an �-dimensional vector at time step � ,

→such that ���− 
�, � =< ���0, � , . . . , ����−1, � >. 

2.1 Consequence Identifcation 
The events that we want to prevent are those that impact its busi-
ness or mission objectives [9], where each identifed consequence 
may be the top node in a tree-based model, represented as ���� = 
−→ →
�������� �������� . The vectors − are the top node’s attributes rep-

� � 
resenting � notional output control actions that constitute the risk 
scenario. We use these attributes to identify the related threat sur-
face. 

2.2 Threat Surface Identifcation 
We analyze the consequence of the chosen scenario by looking 
for events that can be triggered by the system if the identifed 
scenario were to occur. This search identifes the threat surface by 
analyzing the data handling processes within system components 

�������� and communication interfaces relative to −→ . The result of
�

this analysis is a subset of control loops, along with their internal 
components and their attributes that are further analyzed and added 
hierarchically as nodes of the CPS risk overlay. 

2.2.1 Control Loop Components. We begin by defning component 
and the attributes that change the state of a CPS. We model the 
behavior of the ��ℎ component at the ��ℎ time step as an input-

→− −→ →output pair, �������, � = (���, �, � , ����, �, � ). The vectors �� 
− 

�, �, � 

and −→����, �, � represent � input and � output signals as attributes 
associated with component � at time step � . These input and output 
attributes constitute a part of the threat surface. 
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2.2.2 Communication Interfaces. The communication paths be-
tween the ��ℎ and ��ℎ component, for some �, � ∈ N, are formal-
ized using the (directional) binary predicate connected(Src,Des), as 
∀�≤�, ∃ � ≤� : ��������� (����, �, � , ���, �, � ). 

This path defnition implies that the connectivity among compo-
nents are transitively closed under information and control fows. 
Identifed paths also become a part of the threat surface. If � = �, 
then the communication path may represent some internal process 
communication included within the component threat surface. Oth-
erwise, components along paths (such as routers, hubs, or switches) 
should be considered as another type of �������, � and as part of 
the threat surface. 

2.2.3 Controller Process Model. A controller is an �������, � , that 
converts its inputs to outputs to manage the control loop. Irrespec-
tive of a human or digital controller, we model the ��ℎ controller 
executing its ��ℎ time step as a six-tuple, where for some �, �, �, � ∈ 

→− −→ −−−→ −−−−−→ 
N, we have �����, � = (���, �, � , ����, �, � , �����, �, � , �������, �, � , → →
��� ��, � , �). Here, 

− 
����,�, � respectively represent � in-���, �, � and − 

−−−→
put and � output values of the controller. The vector �����, �, � 

contains the � internal process model values of the ��ℎ controller 
that describe its context of the environment, which may be up-
dated. The vectors 

−−−−− 
������ 

→ 
�,�, � are the � components within the 

��ℎ controller’s control loop, that provide input data or actuate the 
physical process. All of these attribute vectors also constitute the 
controller’s threat surface. 

The remaining defnitions model how a controller makes the 
decision to change the physical system state. The local control ob-
jective at time step � is ��� ��, � , which may be dynamically derived 
from some global control objective. The input-output behavior of 
the control loop during the ��ℎ time step is modeled as the response 

−−−→ −→function � , where � (�����, �, � , ��� ��, � ) = ����, �, � . The function 
� abstracts traditional control functions such as those found in 
a proportional–integral–derivative (PID) controller or in model 
predictive control (MPC) [14]. 

2.3 Potential HCAs 
Now we have the threat surface identifed as a collection of attribute 
vectors that could be used by a threat actor to drive the system 
state towards the consequence. Any action in this list is a Potential 
Hazardous Control Action (PHCA), referred to as a Hazardous 
Control Action (HCA) in [15]. Our objective here is to determine 
subsets of actions that could lead to the undesirable consequence. 

We model the ��ℎ PHCA for controller, �����, � , at time � as a four-
−−−→ −→tuple, �ℎ�����, �, � = (�����,�, � , ��� ��, � , ����, �, � , �����ℎ� (�)), 

for some �, � ∈ N. Possible values for inputs and outputs are 
mapped back to the control function � , and a PHCA may result if 
this response is not provided in a timely manner, represented by 
the function �����ℎ� (�), described as follows. Let ��� and ���� rep-
resent time steps when −���→ 

�, �, � is expected to be received versus 
when it is actually received at the actuator. When �����ℎ� (�) = 1, 
these moments are approximate enough to provide the response 
in a timely manner, such that � = ���� and ��� ≈ ���� . Similarly, 
�����ℎ� (�) = 0 if the signal is not provided at the expected time. 

The PHCA model is a table entry mapping inputs and the control 
objective to outputs along with �����ℎ� (�). 

To summarize the utility of �����ℎ� (�), a PHCA may result ei-
ther when −→����, �, � is an improper response when provided in con-

−−−→
text �����, �, � with control objective ��� ��, � at time � , represented 

by �����ℎ� (�) = 1. Or it could result when −���→ 
�, �, � is not provided 

at the proper time given the same inputs, where �����ℎ� (�) = 0. 

2.3.1 Control Loop Analysis. PHCAs within a controller are identi-
fed by analyzing the components within their control loop. We rep-
resent this control loop consequence analysis ������� for analyz-
ing the consequence, ���� , within controller �����, � as a four-tuple 
where ������� = (����, ℎ�ℎ� (), ℎ��ℎ� (), ���ℎ� ()). The value 
returned by the hazard check function ℎ�ℎ� (����, �ℎ�����, �, � )
is equal to 1 if and only if ���� results from the ��ℎ controller 
executing −���→ 

�, �, � to satisfy � at time � . The value returned by 
the untimely hazard check function ℎ��ℎ� (����, �ℎ�����, �, � )
is equal to 1 if and only if ���� results from the ��ℎ controller not 
executing −���→ 

�, �, � to satisfy � at time � . The value returned by 
the control loop check function ���ℎ� (�ℎ�����, �, � ) is equal to 1 

if and only if the ��ℎ controller is required to execute −���→ 
�, �, � to 

satisfy � within the control loop at time � . This analysis may result 
in 3 diferent scenarios for a PHCA: 

(1) A PHCA is an HCA for ���� if its execution results in 
ℎ�ℎ� () = 1 and ���ℎ� () = 0, which occurs when the action 
represented by the PHCA results in ���� within an execution 
of the control loop regardless the value of �����ℎ� (�). 

(2) A PHCA may be an HCA if the execution results in ℎ��ℎ� () = 
1 when �����ℎ� (�) = 0, indicating that proper timing is re-
quired for this action to be non-hazardous. Otherwise, if the 
PHCA is executed at the proper time when �����ℎ� (�) = 1, 
then ���ℎ� () = 1, and it may not be an HCA. 

(3) Any PHCA where ℎ�ℎ� () = 0 and ℎ��ℎ� () = 0 is not 
considered hazardous and results in ���ℎ� () = 1. These 
control actions are not HCAs for ���� . 

At the system level, we can use these checks to assure that ���� 
does not occur when all � controllers execute −→����, �, � by satisfying 
their response functions � at time � . This assurance is due to limiting 
each controller only to the actions resulting in ���ℎ� () = 1. The 
analysis of PHCAs at the control loop and system level is the reason 
we transform the hierarchical control loop and component structure 
to a CPS risk overlay so that we may further identify and assess 
events leading up to an HCA using a tree-based model. 

2.4 CPS Risk Overlay Construction 
Using the attributes identifed for the consequence and threat sur-
faces, we now construct the CPS risk overlay using the top-down 
method in Algorithm 1, Construct_CPS_Risk_Overlay. The result-
ing CPS risk overlay qualitatively groups components by their 
connected control loop communication structure. 

Inputs to the algorithm include the analyzed consequence, ���� ,
−→

and the threat surface comprised of � controllers, ����� , as described 
in lines 1 and 2. Line 3 describes the output as the constructed CPS 
risk overlay, ������� . Line 4 sets ������� to the input conse-
quence node. Line 5 initiates a for-loop with counter � that steps 



−

Algorithm 1 : Construct_CPS_Risk_Overlay 3.2 Overlaying CPS Attributes and Reduction to 
1: //input: Cons = consequence for risk scenario 

−−→
2: //input: ����� = vector of � controllers in system 
3: //output: topNode = representative tree root for Cons 
4: topNode ← Cons 
5: for � = 0 to � − 1 do //Assume � controllers 
6: topNode.add_OR(����� CL) 
7: cLNode ← topNode.get_child(����� CL) 
8: cLNode.add_OR(����� ) 
9: for � ������ 

→ 
�, � = 0 to � − 1 do //Assume 

−−−−−− 

10: //Add check for PHCA relation 
11: cLNode.add_OR(�������, � ) 
12: //Add loop for comm paths, if desired 
13: end for 
14: end for 

through each controller. Lines 6 and 7 adds the control loop to the 
tree, named "����� CL", as a disjunctive child to the top node. Line 8 
adds the controller ���� to the tree as a disjunctive child node to 
the control loop. Line 9 through 13 initiates a for-loop with counter 
� that steps through all � components that communicate with the 
controller and adds each as a disjunctive child to the control loop. If 
some check is added to determine if a component afects the PHCAs 
associated with ���� , then line 10 notes we could add further pro-
cedures to conduct this check. If a communications path between 
some components is identifed with the transitive closure property, 
then line 12 notes that we could add further procedures to loop 
through each intermediary communication node and add them as 
threat surfaces. When the for-loop invoked in line 5 completes in 
line 14, ������� represents the CPS risk overlay for consequence 
���� . 

3 CPS ATTACK-DEFENSE TREES 
We now describe how to apply the CPS risk overlay to an ADTree 
using node attributes as well as other tree-based models through 
reduction. 

3.1 Attack-Defense Tree Review 
An ADTree is a tree consisting of nodes of partial instantiations of 
attributes with a label (AND, OR, SAND = sequential AND), name, 
and a type (either proponent or opponent). The type of the root 
node is referred to as the model’s proponent and models a desirable 
or an undesirable scenario regarding a state of the system. The root 
node may be either an attack node or a defense node. The opposite 
type represents the opponent. A node in the ADTree can have one 
child with the opposite type (representing a countermeasure) or 
more than one child of the same type and a label. The children of 
nodes labeled as AND, OR, or SAND represent refnements of their 
parent. A node without refnements is called a basic action. Attack 
nodes are typically shown as red circles and defense nodes as green 
squares. The right hand side of Figure 1 shows an ADTree with only 
attack nodes. The intermediate nodes are OR nodes refned with 
children. Our case study show a more detailed ADTree in Figure 3. 

Other Risk Models 
A CPS-ADTree is an ADTree with additional attributes to model 
both attacks and faults and their related countermeasures. To dif-
ferentiate between unintentional and attack-caused events within 
CPS-ADTree models, we apply attributes to basic actions to de-
note them as being safety- or security-related. With this attribute 
modifcations, CPS-ADTrees represent a two-person game focused 
on causing or preventing some system state as defned by the risk 
scenario. Our top-down construction method resulted in a CPS risk 
overlay that may be applied to the CPS-ADTree. An example of 
this risk overlay can be seen by the shaded threat nodes identi-
fed in the case study discussed in Section 4. The paths through 
the risk overlay must be traversed by the threat to cause the con-
sequence. Each node may be further pruned, refned, or adjusted 
per ADTree semantics. These refnements should derive and de-
fne possible threat paths and defensive countermeasures, applying 
known threat modeling techniques, such as those found in MITRE 
ATT&CK® [13], which identify known threats by tactics, tech-
niques, and procedures. These refnements allow for analysis to 
plan realistic defensive strategies, if desired. 

A CPS-ADTree may be reduced to a fault tree [16] / attack 
tree [11, 12] if we prune subtrees consisting of only basic actions 
with safety / security attributes along with all subtrees rooted in 
defense nodes. Similarly, a CPS-ADTree may be reduced to an 
attack-fault tree [8] by only pruning subtrees rooted in defense 
nodes. A reduced tree represents all paths that leads to realizing 
the risk scenario despite installed defensive measures. By using 
these reductions one could apply use our CPS risk overlay to other 
well-researched tree-based models. This reduction allows for struc-
turing trees according to their defnitions and would require no 
additional changes to existing modeling tools to support the risk 
overlay method, as the assessor would simply need to add the inter-
mediate control loop and sub-component nodes within these tools 
when framing the tree. 

4 CASE STUDY 
We consider an elevator system situated in a high-trafc building 
as a case study. Our example elevator services two foors and may 
move up or down to the opposite foor based on the elevator’s 
current position and the operator input to a control panel. Each 
foor has a door that opens and closes for passengers, and the 
elevator should only move to the opposite foor when both doors are 
closed. It does not change direction during the upward or downward 
journey, but it may stop for an emergency. The operator may only 
press a button for the target foor and/or push a separate emergency 
button to stop movement. The doors must only open once the 
elevator stops moving and rests in the appropriate vertical position. 
The doors may be opened manually if the elevator has performed 
an emergency stop between foors. After some time, the doors will 
close allowing the elevator to move to the opposite foor if some 
user input is provided. Connections between the operator panel, 
the elevator controller, and a separate controller for each door are 
networked using the Modbus protocol over TCP/IP through wired 
Ethernet connections on a standalone local area network (LAN). Our 



Figure 2: An example HCS for the elevator system 

Output Process Model Objective cLCons 
# Elevator 

Movement 
Motion Floor Door 1 

Position 
Door 2 
Position 

Target 
Floor 

hChk()=1 hNChk()=1 Unreach.| 

0 Up moving 1 0 0 1 - Yes -
1 Up moving 1 0 (0,1] 1 Yes - -
2 Up moving 1 (0,1] 0 1 Yes - -
3 Up moving 1 (0,1] (0,1] 1 Yes - -
4 Up moving 1 0 0 2 - Yes -
5 Up moving 1 0 (0,1] 2 Yes - -
6 Up moving 1 (0,1] 0 2 Yes - -
7 Up moving 1 (0,1] (0,1] 2 Yes - -
8 Up moving (1,2) 0 0 1 - - Yes 
9 Up moving (1,2) 0 (0,1] 1 - - Yes 
10 Up moving (1,2) (0,1] 0 1 - - Yes 
11 Up moving (1,2) (0,1] (0,1] 1 - - Yes 

Table 1: A subset of PHCAs of the Elevator Controller 

case study analyzes a potential risk scenario to this system because 
of possible threats from the deployed system’s environment. 

4.1 Identifying Consequences and Threat 
Surfaces 

The undesirable scenario we consider for this case study is the 
event where the elevator moves with an open door. Thus, any de-
fensive measures should ensure the elevator only moves when the 
doors are closed. Assuring or preventing this consequence would 

involve considering threats against three identifed notional control 
actions, to include Elevator Commands, Door 1 Commands, and Door 
2 Commands that respectively move the elevator car or either door. 

We conduct a review of the system architecture and determine 
the notional control actions are handled by three control loops, 
each respectively managed by an Elevator Controller, a Door 1 Con-
troller, and a Door 2 Controller. We generate a hierarchical control 
structure (HCS [10]) to show these control loops, shown in Figure 2. 
This HCS shows data fows for each numbered component and 



includes their input and output signals. For example, (1) Elevator 
Sensor provides an output signal representing the Floor value and 
(2) Elevator Actuator receives an input signal representing the Ele-
vator Commands. The HCS also shows each controller’s inputs and 
outputs, along with their internal process model variables and con-
trol objectives. Possible discrete values for all variables are included 
in the HCS. 

4.2 Analyzing Potential Hazardous Control 
Actions 

For the Elevator Controller and a Door Controller, we take dis-
cretized values of target variables deemed relevant to the conse-
quence. We then created a table of Potential Hazardous Control 
Actions (PHCAs) and analyzed the discrete variable relationships 
that would be of interest to a threat or defender. 

In the case of the Elevator Controller, we identifed the following 
variables and their discrete values to create a table of PHCAs: output 
variable Elevator Commands = {Up, Down, Stop}; input variables 
Motion = {moving, stopped}, Floor = {1, (1,2), 2}, Door 1 Position = {0, 
(0,1]}, and Door 2 Position = {0, (0,1]}; and control objective Target 
Floor = {1, 2}. The possible values resulted 144 possible system states, 
32 of which we labeled as unreachable because the elevator could 
not reach its control objective in the current state. As an example, 
some nodes were labeled "not possible to move Up to Floor 1 from 
another foor". Of the remaining 112 possible states, 42 of those 
states (37.5 % of possible states) resulted in ℎ�ℎ� (�) = 1 as HCAs 
because the elevator was moving while the doors were identifed 
as open. Another 17 states (15.2 % of the possible states) resulted 
in ℎ��ℎ� (�) = 1 because if the elevator did not move in a timely 
manner while the doors were closed, it is possible that a door could 
open simultaneously to lead to an HCA. Table 1 shows 12 example 
HCAs from our analysis to provide some clarity as to how a small 
subset of these target variables were analyzed. 

For each Door Controller, we identifed output variable Door 
Commands = {Open, Close, Stop}; input variables Motion = {moving, 
stopped}, Floor = {1, (1,2), 2}, and Door Position = {0, (0,1]}; and 
control object Target Position = {0, 1}, which resulted in 72 system 
states. Of these states, 24 were unreachable because of reasons 
such as "Open command issued while Target Position=0." Of the 
remaining 48 possible states, there were 15 states (31.3 % of possible 
states) HCAs resulting in ℎ�ℎ� (�) = 1 as the doors were opened 
during elevator movement, and another 15 (again, 31.3 %) resulted 
in ℎ��ℎ� (�) = 1 and may become an HCA if the elevator moved 
while in that state. 

If three constraints are imposed in the control logic we can elim-
inate all 42 ℎ�ℎ� (�) = 1 states in the elevator controller and 3 out 
of 15 ℎ�ℎ� (�) = 1 states for the door controller. These constraints 
are: (1) a reduction in latency should assure that the elevator’s 
Motion ≠ moving when Elevator Command = Stop; (2) the Elevator 
Controller should only allow movement if both doors are closed; 
and (3) doors should not open when the elevator is moving. The 
remaining 12 Door Controller ℎ�ℎ� (�) = 1 states could occur if 
the doors were already opened when the elevator starts moving, 
but ideally constraint (2) would also prevent these states. The Floor 
and control objective (Target Floor or Target Position) variables for 
each controller did not appear to efect event outcomes being in 

ℎ�ℎ� (�) = 1, so we eliminate them as target attributes for this 
example. 

4.3 CPS Risk Overlay Construction 
With the consequence, control threat surfaces, and target variable 
attributes defned, we applied Algorithm 1 to generate the top 
of the CPS ADTree. The results of applying this algorithm are 
represented by the shaded nodes within Figure 3. The three control 
loops that were previously identifed are disjointed children to the 
consequence node, representing three distinct actions that could 
lead to the consequence elevator moves when a door is open: (1) 
Elevator Controller - the elevator itself moving when a door is 
already open; (2) Door 1 Controller - the frst foor door opens 
while the elevator is moving; or (3) Door 2 Controller - the second 
foor door opens during movement. 

4.4 Qualitative Analysis 
With the CPS risk overlay and target information, we now identify 
attacks, faults, and related defenses as events that may cause or 
prevent the scenario and then fll in the CPS-ADTree to provide a 
qualitative model of these relationships. We annotated each con-
trol loop node with target variable attributes to assist with event 
selection. We apply safety- and security-related attributes to basic 
actions, respectively represented in Figure 3 by a red cross or a 
green shield. The resulting qualitative CPS-ADTree for this exam-
ple scenario is shown in Figure 3, which has 117 nodes outlining 
attacks, faults, and countermeasures for the scenario. The events de-
picted within these nodes were selected as examples to highlight the 
CPS risk overlay approach to identify the paths that failures must 
traverse and may be further refned or countered using ADTree 
semantics, if desired. 

The CPS risk overlay does lead to many near-redundant paths 
that result in diferent physical outcomes. For example, the Door 
1 Controller and Door 2 Controller have similar threats and coun-
termeasures, as they consist of the same components in almost 
the same environment. In Figure 3, we abstracted away the Door 1 
Controller subtree for space, simply noting it is similar to the Door 
2 controller. However, if a threat impacts the components of the 
frst control loop instead of the second, then the efect could result 
in a diferent door being opened. 

As another security-related example, an attacker could target 
the Elevator Controller by gaining LAN access, followed by either 
gaining secure shell (SSH) access and then injecting commands or 
by injecting Door Position data into Modbus trafc. Conversely, to 
afect a Door Controller, the same attacker with the same access 
could target a Door Controller by injecting Elevator Controller Mo-
tion data into its Modbus trafc. These subtleties in attack decisions 
result in diferent physical outcomes but the same consequence. 

For safety- and reliability-related issues, faults that occur within 
a component could lead to similar outcomes. For example, the Ele-
vator Actuator could experience a brake failure that is countered by 
annual inspection. A faulty brake may lead to latency in the time 
between a Stop command action being issued and the elevator stop-
ping and could result in the consequence. Also, the Door Controllers 
have fash memory components that are known to wear over time 
due to excessive writes, which could corrupt stored variables. 
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Finally, the top of the tree under the consequence, we have a 
countermeasure named "Electronic door interlock". Interlocks have 
been used as a safety mechanism in elevators for decades to ensure 
that doors are locked shut before the elevator car moves, so this 
node is a fnal defense mechanism against the other attack and 
fault events. This countermeasure also provides an example that 
shows how the CPS risk overlay may be refned or countered at any 
level. It may also be countered during the system design process if 
there are known attacks or faults that could impact its operation as 
the electric door interlock component selection and integration are 
further scrutinized. 

4.5 Quantitative Analysis Discussion 
The primary intent of this work was to provide a systems theo-
retic approach towards fnding possible threat surfaces associated 
with a consequence and then constructing a CPS risk overlay to 
assist with event identifcation. Our approach did not change the 
inherited ADTree methods to quantify risk. If we were to proceed 
with quantitative analysis for this case study, the resulting CPS-
ADTree could be assessed by assigning attributes such as costs and 
conducting a bottom-up analysis, as described for ADTrees in [1]. 
We also described how ADTrees could be reduced to attack, fault, 
or attack-fault trees, ensuring that the existing extensive research 
towards quantitative risk evaluation methods with these models is 
not changed by our approach. 

In any case, the focus of tree-based quantitative analysis would 
primarily be targeting control variables in the case where ℎ�ℎ� (�) = 
1, resulting in some known bad system state within one of the con-
trol loops. Conversely, quantifying the adverse efects of states in 
ℎ��ℎ� (�) = 1 should require additional use of a system model that 
accounts for the time that system states occur. Such a system model 
is necessary because ℎ��ℎ� (�) = 1 could result in the scenario if 
an otherwise safe state in a control loop were to occur at the wrong 
time. We leave this topic for future work. 

5 CONCLUSION 
In this work we provided a systems theoretic framework for synthe-
sizing a risk scenario to localized control decisions by converting 
the threat surface to a CPS risk overlay. Our method addresses a 
weakness of not having a system state-based description of tree-
based methods, which we overcome through the use of Potential 
Hazardous Control Actions and control objectives. This approach 
allowed us to focus on analyzing relevant events for only the com-
ponents that were objectively deemed within scope. We used a 
case study to demonstrate how diferent decisions targeting similar 
components could result in diferent physical results but the exact 
same consequence. 

Our approach adheres to our own practical attack research de-
tailed in [5] that demonstrated experimental attacks against electric 
motor actuation from various locations within a control loop. Here, 
we provide a method to augment tree-based models with those 
fndings using systems theory to generate a CPS risk overlay using 
a particular case study. 
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